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Abstract. In the context of smooth interval maps, we study an inducing scheme
approach to prove existence and uniqueness of equilibrium states for potentials ϕ
with the ‘bounded range’ condition supϕ − inf ϕ < htop, first used by Hofbauer
and Keller [HK]. We compare our results to Hofbauer and Keller’s use of Perron-
Frobenius operators. We demonstrate that this ‘bounded range’ condition on the
potential is important even if the potential is Hölder continuous. We also prove
analyticity of the pressure in this context.

1. Introduction

Thermodynamic formalism is concerned with existence and uniqueness of measures
µϕ that maximise the free energy, i.e., the sum of the entropy and the integral over
the potential. In other words

hµϕ(f) +
∫
X
ϕ dµϕ = P (ϕ) := sup

ν∈Merg

{
hν(f) +

∫
X
ϕ dν : −

∫
X
ϕ dν <∞

}
where Merg is the set of all ergodic f–invariant Borel probability measures. Such
measures are called equilibrium states, and P (ϕ) is the pressure. This theory was
developed by Sinai, Ruelle and Bowen [Si, Bo, R] in the context of Hölder potentials
on hyperbolic dynamical systems, and has been applied to Axiom A systems, Anosov
diffeomorphisms and other systems too, see e.g. [Ba, K2] for more recent expositions.

In this paper we are interested in smooth interval maps f : I → I with a finite
number of critical points. More precisely, H will be the collection of topologically
mixing (i.e., for each n > 1, fn has a dense orbit) C2 maps on the interval (or
circle) with finitely many branches and only non–flat critical points. The existence of
critical points prevents such maps from being uniformly hyperbolic for the ‘natural’
potential ϕ = − log |Df |. In [BrT] (cf. [PeSe]) we applied inducing schemes to
regain hyperbolicity, and using ideas of so-called Hofbauer towers and infinite state
Markov chains (as presented by Sarig [Sa1, Sa2, Sa3]) to prove the existence and
uniqueness of equilibrium states within the class

M+ = {µ ∈Merg : λ(µ) > 0, supp(µ) 6⊂ orb(Crit)} .
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where λ(µ) =
∫

log |Df |dµ is the Lyapunov exponent of µ. In fact the assumptions
that we make on our potentials ensure that any equilibrium state must lie in this
class, and hence it is no restriction to only consider measures there.

In this work we want to use inducing schemes to prove existence and uniqueness
of equilibrium states for “general” potentials. In this area, there are many results,
in particular several papers by Hofbauer and Keller [H1, H2, HK] from the late
1970s. These results were inspired by Bowen’s exposition for hyperbolic dynamical
systems, and investigate what happens when hyperbolicity fails. Their main tool
was the Perron-Frobenius operator, which even for non-hyperbolic interval maps
continues to have a quasi-compact structure for many potentials. In this paper we
focus on what can be proved for these problems using inducing techniques. We
then apply Sarig’s theory of countable Markov shifts. (A related application of that
theory for multidimensional piecewise expanding maps can be found in [BuSa].) In
[HK] two main sets of results are given, based on different regularity conditions for
the potential; we will present them briefly in Sections 1.1 and 1.2. At the same time
we set out some definitions which will be used throughout the paper. In Section 1.3
we present our main results.

1.1. Potentials in BV . Given a function ϕ : I → R, we define the semi-norm
‖ · ‖BV as

‖ϕ‖BV := sup
N∈N

sup
0=a0<···<aN=1

N−1∑
k=0

|ϕ(ak+1)− ϕ(ak)|.

We say that ϕ ∈ BV if ‖ϕ‖BV <∞.

The following result is proved by Hofbauer and Keller in [HK].

Theorem 1 (Hofbauer & Keller). Let f ∈ H and ϕ ∈ BV . If

supϕ− inf ϕ < htop, (1)

then there exists an equilibrium state for ϕ. Moreover, the transfer operator defined
by

Lϕg(x) :=
∑

y∈f−x

eϕ(y)g(y)

is quasi-compact.

Condition (1) stipulates that ϕ does not vary too much; similar conditions have been
used by e.g. Denker and Urbański [DU] for rational maps on the Riemann sphere
(and further results in [DPU, Ha]), and by Oliveira [O] for higher dimensional maps
without critical points. We next state a similar result to Theorem 1, by Paccaut in
[P]. That paper also gives many interesting statistical properties for the equilibrium
states.

Theorem 2 (Paccaut). Suppose that ϕ satisfies

(a) exp(ϕ) ∈ BV ;
(b)

∑∞
n=1 supC∈Pn

‖ϕ|C‖BV <∞;
(c) supϕ < P (ϕ).
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Then there exists a unique equilibrium state µϕ for ϕ.

Note that condition (b) on ϕ is stronger than the condition ϕ ∈ BV , used in Theo-
rem 1. It is also stronger than that in our results in Section 1.3. However, (1) implies
condition (c). This follows since assuming (1), the measure of maximal entropy µhtop

gives

P (ϕ) > htop +
∫
ϕ dµhtop > htop + inf ϕ > supϕ.

Condition (c) implies that any equilibrium state µ must have hµ > P (ϕ)− supϕ >
0. Similarly, supposing (1), and using Ruelle’s inequality on Lyapunov exponents,
equilibrium states µ satisfy

λ(µ) > hµ = P (ϕ)−
∫
ϕ dµ

> htop +
∫
ϕ dµhtop − supϕ > htop − (supϕ− inf ϕ) > 0. (2)

Hence P+(ϕ) := supµ∈M+
{hµ(f) +

∫
ϕ dµ} = P (ϕ), unless the equilibrium state is

supported on orb(Crit).

1.2. Potentials with summable variations. The results that we want to present
rely on a different approach to variation to that above, which is closer to symbolic
dynamics. Let P1 be the partition of I into maximal interval of monotonicity (the
branch partition) and write Pn =

∨n−1
i=0 f

−i(P1). With respect to this partition we
define that n-th variation

Vn(ϕ) := sup
Cn∈Pn

sup
x,y∈Cn

|ϕ(x)− ϕ(y)|,

In this context the following was proved in [HK].

Theorem 3 (Hofbauer & Keller). Let f ∈ H and let ϕ be a potential so that

(i) it has summable variations, i.e.,
∑
n Vn(ϕ) <∞;

(ii) the following specification property holds: for every x ∈ I, there is k and an
increasing sequence {ni}i such that

∪kj=1f
ni+j(Cni [x]) = I,

where Cni [x] ∈ Pni is the ni-cylinder containing x.

Then there exists an equilibrium state for ϕ and the transfer operator Lϕ is quasi-
compact.

The specification property (ii) above is not automatic for interval maps. For instance,
the Fibonacci unimodal map, or more generally, every map with a persistently re-
current critical point (see e.g. [Br2]) fails this condition.

Notice that the set of potentials with summable variations and the set BV have non-
empty intersection, but neither is contained in the other, as the following examples
demonstrate.
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Example 1: Let f(x) = 2x (mod 1) on [0, 1] be the doubling map. Clearly, the
n-cylinders of f are dyadic intervals of length 2−n. The potential function

ϕ(x) :=


0 if x = 0;
−1

log x if x ∈ (0, 1
2);

1
log 2 if x ∈ [12 , 1],

is increasing and bounded, and has ‖ϕ‖BV = 1
log 2 . However, Vn(ϕ) > 1

n log 2 , because
ϕ(2−n)− ϕ(0) = 1

n log 2 . So
∑
n Vn(ϕ) diverges. Note that ϕ is not Hölder either.

Example 2: For f as in Example 1, the potential function

ψ(x) :=
∑
n>1

ψn(x), where ψn(x) := 2−n sin(4n+1πx) · 1[ 1
2n ,

1
2n−1

](x)
has ‖ψ‖BV =

∑
n ‖ψn‖BV = ∞ since ‖ψn‖BV = 4. But Vn(ψ) ≈ 2−n, so it has

summable variations. Note that this function is Lipschitz.

1.3. Main Results. Give a potential ϕ and inducing scheme (X,F, τ), see Sec-
tion 2.1, the lifted potential Φ is given by Φ(x) :=

∑τ(x)−1
k=0 ϕ ◦ fk(x). If∑

n

Vn(Φ) <∞, (SVI)

then we say that ϕ satisfies the summable variations for induced potential condition,
with respect to this inducing scheme. Proposition 2 below gives a general way of
constructing inducing schemes which we will apply throughout the paper. We start
with a lemma giving conditions under which (SVI) holds.

Lemma 1. (a) If ∑
n

nVn(ϕ) <∞;

then (SVI) with respect to any inducing scheme.
(b) If ϕ is α-Hölder continuous and an inducing scheme (X,F,Φ) is obtained

from Proposition 2 has

sup
i

τi−1∑
k=0

|fk(Xi)|α <∞, (3)

then (SVI) holds w.r.t. that inducing scheme.

The following lemma gives conditions on f , under which condition (b) can be used
for Hölder potentials1. We say that c ∈ Crit has critical order `c if |f(x) − f(c)| ≈
|x− c|`c ; f is non-flat if `c <∞ for c ∈ Crit.

Lemma 2. Assume that f is a C3 multimodal map with non-flat critical points,
with `max := max{`c : c ∈ Crit}. There exists K = K(#Crit, `max) such that if

lim inf
n

|Dfn(f(c))| > K for all c ∈ Crit,

1In Lemma 2 we take inducing schemes on a union of intervals. As in Section 2.1, transitivity
implies that this result passes to any single sufficiently small interval.
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then for any inducing scheme obtained as in Proposition 2 on a sufficiently small
neighbourhood of Crit, (3) holds for every α.

Note that the function µ 7→ hµ(f) is upper semicontinuous, cf. [BrK, Lemma 2.3].
Hence, if the potential is upper semicontinuous, then the free energy map µ 7→
hµ(f)+

∫
ϕ dµ is upper semicontinuous too. As M is compact in the weak topology,

this gives the existence of equilibrium states, but not uniqueness. The following
theorem gives conditions for uniqueness of equilibrium states in M+.

Theorem 4. Let f ∈ H and ϕ be a potential such that supϕ − inf ϕ < htop and
Vn(ϕ) → 0. If the induced potentials corresponding to the inducing schemes given
by Proposition 2 have (SVI) then

(a) there exists a unique equilibrium state µϕ;
(b) µϕ is compatible to an induced system with inducing time such that the tails

µΨ({τ > n}) decrease exponentially. (Here µΨ is the equilibrium state of the
induced potential of ψ = ϕ− P (ϕ).)

Note that Vn(ϕ) → 0 implies that ϕ can only have discontinuities at precritical
points.

Remark 1. The existence of an inducing scheme with exponential tails suffices to
deduce many statistical properties of the equilibrium state. These include exponential
decay of correlations, the Central Limit Theorem [Y] and Invariance Principles, e.g.
[MeN].

Instead of a single potential, thermodynamic formalism makes use of families t ·ϕ of
potentials. The occurrence of phase transitions is related to the smoothness of the
pressure function t 7→ P (t · ϕ). Using the technique in [BrT] we derive

Theorem 5. Let f ∈ H and ϕ as in Theorem 4. Then the map t 7→ P (−t ϕ) is
analytic for t in a neighbourhood of [−1, 1].

We will not supply a proof of the above theorem, since it follows rather easily from
[BrT, Theorem 5]. We will focus our attention on the following related theorem
dealing with the potential ϕt = −t log |Df |. This potential is unbounded, except
for t = 0. We conclude that t 7→ P (ϕt) is analytic near t = 0, which is somewhat
surprising as we do not require any of the summability conditions of the critical
orbits of f used in [BrT].

Theorem 6. Let f ∈ H. There exist t1 < 0 < t2 so that the map t 7→ P (−t log |Df |)
is analytic for t ∈ (t1, t2). In fact for t ∈ (t1, t2) there exists a unique equilibrium
state with respect to the potential x 7→ −t log |Df(x)|.

We next make a detailed study of an example by Hofbauer and Keller [HK, pp32-33]
which applies ideas from [H1]. They used it to show the importance of the condition
(1) for the quasi-compactness of the transfer operator. We use the example to test
the restrictions of the inducing scheme methods, and we also show that (1) cannot
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simply be replaced by Hölder continuity of the potential by proving the following
proposition, cf. [Sa2].

Proposition 1. For α ∈ (0, 1), let f be the Manneville-Pomeau map fα : x 7→
x+ x1+α (mod 1). For any b < − log 2, there exists a Hölder potential with supϕ−
inf ϕ = |b| and which has the form ϕ(x) = −2αxα for x ≈ 0, which has no equilibrium
state accessible from an inducing scheme given by Proposition 2.

The remainder of this paper is organised as follows. In Section 2 we set out our main
tools for generating inducing schemes and applying the theory of thermodynamic
formalism. Section 3 contains the tail estimates of inducing schemes we use. In
Section 4 we prove our main theorem on existence and uniqueness of equilibrium
states. In Section 5 we show that a consequence of our results is an analyticity
result for the pressure, with respect to the kind of potentials considered in [BrT]. In
Section 6 we give examples to show where these techniques break down. Finally in
Section 7 we discuss the recurrence implied by compactness of the transfer operator,
and we present conditions implying the recurrence of the potential ϕ.

Acknowledgements: We would like to thank Ian Melbourne, Benôıt Saussol and
Godofredo Iommi for fruitful discussions. We would also like to thank the LMS for
funding the visit of B Saussol. HB would like to thank CMUP for its hospitality.

2. Equilibrium States via Inducing

2.1. Inducing schemes. As in [BrT] we want to construct equilibrium state via
inducing schemes. We say that (X,F, τ) is an inducing scheme over (I, f) if

• X is an interval2 containing a (countable) collection of disjoint intervals Xi

such that F maps each Xi homeomorphically onto X.
• F |Xi = f τi for some τi ∈ N := {1, 2, 3 . . . }.

The function τ : ∪iXi → N defined by τ(x) = τi if x ∈ Xi, is called the inducing
time. It may happen that τ(x) is the first return time of x to X, but that is certainly
not the general case. Given an inducing scheme (X,F, τ), we say that a measure µF
is a lift of µ if for all µ–measurable subsets A ⊂ I,

µ(A) =
1

ΛF,µ

∑
i

τi−1∑
k=0

µF (Xi ∩ f−k(A)) for ΛF,µ :=
∫
X
τ dµF . (4)

Conversely, given a measure µF for (X,F ), we say that µF projects to µ if (4) holds.

Not every inducing scheme is relevant to every invariant measure. Let X∞ =
∩nF−n(∪iXi) is the set of points on which all iterates of F are defined. We call
a measure µ compatible with the inducing scheme if

• µ(X) > 0 and µ(X \X∞) = 0, and

2Due to our assumption that f is topological mixing, we can always find a single interval to
induce on, but similar theory works for X a finite union of intervals
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• there exists a measure µF which projects to µ by (4), and in particular
ΛF,µ <∞.

2.2. The Hofbauer tower. Let Pn be the branch partition for fn. The canonical
Markov extension (commonly called Hofbauer tower) is a disjoint union of subin-
tervals D = fn(Cn), Cn ∈ Pn, called domains. Let D be the collection of all such
domains. For completeness, let P0 denote the partition of I consisting of the single
set I, and call D0 = f0(I) the base of the Hofbauer tower. Then

Î = tn>0 tCn∈Pn f
n(Cn)/ ∼,

where fn(Cn) ∼ fm(Cm) if they represent the same interval. Let π : Î → I be the
inclusion map. Points x̂ ∈ Î can be written as (x,D) if D ∈ D is the domain that x̂
belongs to and x = π(x̂). The map f̂ : Î → Î is defined as

f̂(x̂) = f̂(x,D) = (f(x), D′)

if there are cylinder sets Cn ⊃ Cn+1 such that x ∈ fn(Cn+1) ⊂ fn(Cn) = D and
D′ = fn+1(Cn+1). In this case, we write D → D′, giving (D,→) the structure
of a directed graph. It is easy to check that there is a one-to-one correspondence
between cylinder sets Cn ∈ Pn and n-paths D0 → · · · → Dn starting at the base of
the Hofbauer tower and ending at some terminal domain Dn. If R is the length of
the shortest path from the base to Dn, then the level of Dn is level(Dn) = R. Let
ÎR = tlevel(D)6RD.

Several of our arguments rely on the fact that the “top” of the infinite graph (D,→)
generates arbitrarily small entropy. These ideas go back to Keller [K1], see also [Bu].
It is also worth noting that the main information is contained in a single transitive
part of Î.

Lemma 3. If I is a finite union of intervals, and the multimodal map f : I → I is
transitive, then there is a closed primitive subgraph (E ,→) of (D,→) containing a
dense f̂–orbit and such that I = π(∪D∈ED).

We denote the transitive part of the Hofbauer tower by Îtrans. For details of the
proof see [BrT, Lemma 1].

Let i : I → D0 be the trivial bijection (inclusion) such that i−1 = π|D0 . Given a
probability measure µ, let µ̂0 := µ ◦ i−1, and

µ̂n :=
1
n

n−1∑
k=0

µ̂0 ◦ f̂−k. (5)

We say that µ is liftable to (Î , f̂) if there exists a vague accumulation point µ̂ of the
sequence {µ̂n}n with µ̂ 6≡ 0, see [K1]. The following theorem is essentially proved
there, see [BrK] for more details.

Theorem 7. Suppose that µ ∈ M+. Then µ̂ is an f̂-invariant probability measure
on Î, and µ̂ ◦ π−1 = µ.

Conversely, if µ̂ is f̂-invariant and non-atomic, then λ(µ̂) > 0.
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The strategy followed in [BrT] is to take the first return map to appropriate set in
the Hofbauer tower of (I, f) and to use the same inducing time for the projected
partition on the interval. Saying that an induced system (X,F, τ) corresponds to a
first return map (X̂, F̂ , τ) on the Hofbauer tower means that if x̂ ∈ X̂ ⊂ Î, then τ ◦π
is the first return time of x̂ under f̂ to X̂. This leads to the following statement, see
[BrT, Theorem 3] and also [BrT, Lemma 2].

Proposition 2. If µ ∈ M+ then it is compatible to some induced system (X,F, τ)
that corresponds to a first return map to a set X̂ on the Hofbauer tower, where
µ̂(X̂) > 0. So 1

µ̂(X̂)

∫
X̂ τ dµ̂ <∞, and in addition, we can take X ∈ Pn for some n.

Conversely, if an inducing scheme (X,F, τ) has a non-atomic F -invariant measure
µF such that

∫
τ dµF <∞, then it projects to an f-invariant measure µ ∈M+.

2.3. Pressure and recurrence. A topological, i.e. measure independent, way to
define pressure was presented in [W]; with respect to the branch partition P1, it is
defined as

Ptop(ϕ) := lim
n→∞

1
n

log
∑

Cn∈Pn

sup
x∈Cn

eϕn(x),

where ϕn(x) :=
∑n−1
k=0 ϕ ◦ fk(x). We say that the Variational Principle holds

if P (ϕ) = Ptop(ϕ). If ϕ has sufficiently controlled distortion, then the sum of
supx∈Cn

eϕn(x) over all n-cylinders can be replaced by the sum of eϕn(x) over all
n-periodic points, and thus we arrive at the Gurevich pressure w.r.t. cylinder set
C ∈ P1.

PG(ϕ) := lim sup
n→∞

1
n

logZn(ϕ,C) for Zn(ϕ,C) :=
∑

fnx=x

eϕn(x)1C(x).

If (I, f) is topologically mixing and

βn(ϕ) := sup
Cn∈Pn

sup
x,y∈Cn

|ϕn(x)− ϕn(y)| = o(n), (6)

then PG(ϕ) is independent of the choice of C ∈ P1, as was shown in [FFY].

Since the branch partition is finite, potentials with bounded variations are bounded,
and hence their Gurevich pressure is finite. If ϕ is unbounded above (whence
Ptop(ϕ) = ∞) or the number of 1-cylinders is infinite (as may be the case for induced
maps F and induced potential Φ), Gurevich pressure proves its usefulness.

Suppose that (I, f, ϕ) is topologically mixing. For every C ∈ P1 and n > 1, recall
that we defined

Zn(ϕ,C) :=
∑

fnx=x

eϕn(x)1C(x).

Let

Z∗n(ϕ,C) :=
∑

fnx=x,

fkx/∈C for 0<k<n

eϕn(x)1C(x).
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The potential ϕ is said to be recurrent if3∑
n

λ−nZn(ϕ) = ∞ for λ = expPG(ϕ). (7)

Moreover, ϕ is called positive recurrent if it is recurrent and
∑
n nλ

−nZ∗n(ϕ) <∞.

In some cases we will use the quantity Z0(ϕ) :=
∑

C∈P1
supx∈C e

ϕ(x). Proposition
1 of [Sa1] implies that if ϕ has summable variations then for any C, Zn(ϕ,C) =
O(Z0(ϕ)n). Hence Z0(ϕ) <∞ implies PG(ϕ) <∞.

Although we do not assume that the potential ϕ has summable variations, it is
important that the induced potential Φ has summable variations, as we want to
apply the following result which collects the main theorems of [Sa3]. We give a
simplified version of the original result since we assume that each branch of the
induced system (X,F ) is onto X. We refer to such a system as a full shift.

Theorem 8. If (X,F,Φ) is a full shift and
∑
n>1 Vn(Φ) < ∞, then Φ has an in-

variant Gibbs measure if and only if PG(Φ) < ∞. Moreover the Gibbs measure µΦ

has the following properties.

(a) If hµΦ(T ) < ∞ or −
∫

ΦdµΦ < ∞ then µΦ is the unique equilibrium state
(in particular, P (Φ) = hµΦ(T ) +

∫
X Φ dµΦ);

(b) If Z0(Φ) <∞ then the Variational Principle holds, i.e., PG(Φ) = P (Φ).

Note that an F -invariant measure µ is a Gibbs measure w.r.t. potential Φ if there
is K > 1 such that for every n > 1, every n-cylinder set Cn and every x ∈ Cn

1
K

6
µ(Cn)

eΦn(x)−nPG(Φ)
6 K.

Using this theory, the following was proved in [BrT].

Proposition 3. Suppose that ψ is a potential with PG(ψ) = 0. Let X̂ be the set used
Proposition 2 to construct the corresponding inducing scheme (X,F, τ). Suppose that
the lifted potential Ψ has Z0(Ψ) <∞ and

∑
n>1 Vn(Ψ) <∞.

Consider the assumptions:

(a)
∑
i τie

Ψi <∞ for Ψi := supx∈Xi
Ψ(x);

(b) there exists an equilibrium state µ ∈M+ compatible with (X,F, τ);
(c) there exist a sequence {εn}n ⊂ R− with εn → 0 and measures {µn}n ⊂M+

such that every µn is compatible with (X,F, τ), hµn(f) +
∫
ψ dµn > εn and

PG(Ψεn) <∞ for all n;

If any of the following combinations of assumptions holds:{
1. (a) and (b);
2. (a) and (c);

3The convergence of this series is independent of the cylinder set C, so we suppress it in the
notation.
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then there is a unique equilibrium state µ for (I, f, ψ) among measures µ ∈ M+

with µ̂(X̂) > 0. Moreover, µ is obtained by projecting the equilibrium state µΨ of
the inducing scheme and we have PG(Ψ) = 0.

In the remaining part of this section, we give some technical results which connect
different ways of computing pressure and Gurevich pressure.

We use the following theorem of [FFY] to show the connection between PG(ϕ̂) and
P+(ϕ).

Theorem 9. If (Ω, S) be a transitive Markov shift and ψ : Ω → R is a continuous
function satisfying βn(ψ) = o(n) then PG(ψ) = P (ψ).

Corollary 1. If βn(ϕ̂) = o(n), and ϕ̂ is continuous in the symbolic metric on (Î , f̂)
then PG(ϕ̂) = P+(ϕ).

Proof. We show that the system (Îtrans, f̂ , ϕ̂) satisfies the conditions of Theorem 9,
where Îtrans is given below Lemma 3. For x̂, ŷ ∈ P̂ with P̂ ∈ P̂n, we have |ϕ̂n(x̂) −
ϕ̂n(ŷ)| = o(n), and Theorem 9 implies PG(ϕ̂) = P (ϕ̂).

It remains to show that P (ϕ̂) = P+(ϕ). By Theorem 7, any measure in M+ lifts
to Î. We also know that a countable-to-one factor map preserves entropy, provided
the Borel sets are preserved by lifting, see [DoS]. For similar arguments, see [Bu].
Suppose that {µ̂n}n is a sequence of f̂ -invariant measures such that hµ̂n +

∫
ϕ̂ dµ̂n →

P (ϕ̂) as n → ∞. Then for the projections µn = µ̂n ◦ π−1, hµn +
∫
ϕ dµn → P (ϕ̂)

also. So P+(ϕ) > P (ϕ̂). On the other hand, let {µn}n ⊂ M+ be a sequence of
measures such that hµn +

∫
ϕ dµn → P+(ϕ) as n→∞. Lifting these measures using

Theorem 7, we get hµ̂n +
∫
ϕ̂ dµ̂n → P+(ϕ), so P+(ϕ) 6 P (ϕ̂) as required. �

We next show that Gurevich pressure can be computed from cylinders of any order.

Lemma 4. Let (Ω, f) be a topologically mixing Markov system. If ϕ : Ω → R
satisfies βn(ϕ) = o(n), then PG(ϕ,C) = PG(ϕ,C′) for any two cylinders C,C′ of
any order.

Proof. Denote the Markov partition of Î into domains D by D. Take D,D′ ∈ D such
that C ⊂ D and C′ ⊂ D′. By transitivity, there is a k-path C ⊂ D → · · · → D′ and a
k′-path C′ ⊂ D′ → · · · → D. Then for every n-periodic point x ∈ C, there is a point
x′ ∈ C′ such that fk

′
(x′) ∈ Cn[x], the n-cylinder containing x. Therefore fk

′+n(x′) ∈
C and fk

′+n+k(x′) ∈ x′. It follows that eϕn+k+k′ (x
′) 6 eβn+(k+k′) supϕeϕn(x), whence

Zn(ϕ,C) > e−βn−(k+k′) supϕZn+k+k′(ϕ,C′).

Therefore, using βn = o(n), we obtain for the exponential growth rate PG(ϕ,C) >
limn

βn

n +PG(ϕ,C′) = PG(ϕ,C′). Reversing the roles of C and C′ yields PG(ϕ,C) =
PG(ϕ,C′). �
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2.4. Summable variations for the inducing scheme (SVI).

Proof of Lemma 1. To prove (a), we apply [Sa1, Lemma 3, Part 1]. Note that
the results in the chapter of [Sa1] containing this result are valid if (X,F, τ) is a
first return map, which is not true for our case. However, from Proposition 2, we
constructed (X,F, τ) to be isomorphic to a first return map on the Hofbauer tower,
with potential ϕ̂ = ϕ ◦ π. Since Φ(x) =

∑τ(x)−1
k=0 ϕ ◦ fk(x) =

∑τ(x)−1
k=0 ϕ̂ ◦ f̂k(x̂) for

each x̂ ∈ π−1(x), both the original system and the lift to the Hofbauer tower lead to
the same induced potential. Therefore [Sa1, Lemma 3, Part 1] does indeed apply.

Now to prove (b), note that F : ∪iXi → X is extendible, f τi−k : fk(Xi) → X
has bounded distortion for each 0 6 k < τi. Consequently, also fk : Xi → fk(Xi)
has bounded distortion. Suppose that |ϕ(x) − ϕ(y)| 6 Cϕ|x − y|α. Since Φ(x) =∑τi−1
k=0 ϕ ◦ fk(x) for x ∈ Xi, we get for x, y ∈ Xi.

|Φ(x)− Φ(y)| 6
τi−1∑
k=0

|ϕ ◦ fk(x)− ϕ ◦ fk(y)|

6
τi−1∑
k=0

Cϕ|fk(x)− fk(y)|α

6
τi−1∑
k=0

CϕK|fk(Xi)|α ·
( |x− y|

|Xi|

)α

where K is the relevant Koebe constant for F . Thus the condition in (b) implies that
the variation V1(Φ) is bounded. Because F is uniformly expanding, the diameter
of n-cylinders of F decreases exponentially fast, so if x and y ∈ Xi belong to the
same n-cylinder, the above estimate is exponentially small in n, and summability of
variations follows. �

Proof of Lemma 2. We will use several results of [BRSS]. First, Proposition 1 of
that paper says that for any r > 1, we can find ε0 > 0 and K = K(#Crit, `max, r)
such that if lim infn |Dfn(f(c))| > K for all c ∈ Crit, then the following backward
contraction property holds: Given ε ∈ (0, ε0) and Uε := ∪c∈CritB(f(c); ε) and s ∈ N,
if W is a component of f−s(Uε) with d(W, f(Crit)) < ε/r, then |W | < ε/r.

Furthermore, see [BRSS, Proposition 5], we can find a nice set V := ∪c∈CritVc ⊂
f−1(Uε/r), where each Vc is an interval neighbourhood of c ∈ Crit and nice means
that fn(∂V ) ∩ V = ∅ for all n ∈ N. It follows that if W is a component of f−s(V )
contained in V , then |W | 6 r−1/`max maxc∈Crit |Vc|.

Proceeding by induction, and assuming that r > 2 is sufficiently large to control
distortion effects (cf. [BRSS, Lemma 3]), we can draw the following conclusion. Let
V0 be a component of f−n(V ), Vi := f i(V0) and let 0 = t0 < t1 < · · · < tk = n be
the successive times that Vt ⊂ V . Then |Vtj | 6 2j−k maxc∈Crit |Vc|.
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Additionally, Mañé’s Theorem implies that there are λ > 1 and C > 0 (depending
on V and f only) such that |Vi| 6 Cλ−(tj−i)|Vtj | for tj−1 < i < tj . Therefore

n∑
i=0

|Vi|α 6
k∑
j=0

∑
m>0

Cαλ−mα|Vtj |α 6
Cα

1− λ−α

k∑
j=0

2−jα max
c∈Crit

|Vc|α.

This implies the lemma. �

3. Tail Estimates for Inducing Schemes

In the following lemma, we let X̂ ⊂ Îtrans be a cylinder in π−1(PN ) ∨ D compactly
contained in its domain. This cylinder set corresponds to an N -path q: D → · · · →
DN in Î. The first return map to X̂ is the induced system that we will use.

The growth rate of paths in the Hofbauer tower is given by the topological entropy.
Clearly, if we remove X̂ from the tower, then this rate will decrease: we will denote it
by h∗top. If X̂ is very small, then h∗top is close to htop, so (1) implies that supϕ−inf ϕ <
h∗top for X̂ sufficiently small. Note that we can in fact take X̂ to be the type of set,
a union of domains in Î, considered in [Br1]. We will use this type of domain in
Section 5.

Proposition 4. Suppose that Vn(ϕ) → 0 and let ψ̂ = ϕ̂− PG(ϕ̂, X̂). If X̂ ∈ P̂N is
so small that

supϕ− inf ϕ < h∗top,

then there exist C, γ > 0 such that Z∗n(ψ̂, X̂) < C e−γn.

Proof. We will approximate Z∗n(ϕ̂, X̂) by adding the weights eϕ̂n−1(x̂) of all n − 1-
paths from f̂(X̂) to X̂ in the Hofbauer tower with outgoing arrows from X̂ re-
moved. By removing these arrows we ensure that these paths will not visit X̂
before step n, so we indeed approximate Z∗n(ϕ̂, X̂) and not Zn(ϕ̂, X̂). In consid-
ering n − 1-paths, we only miss the initial contribution eϕ̂|X̂ in the weight eϕ̂n(x̂)

for x̂ = f̂n(x̂) ∈ X̂, so it will not effect the exponential growth rate P ∗G(ϕ̂, X̂) of
Z∗n(ϕ̂, X̂). Since Z∗n(ψ̂, X̂) = e−nPG(ϕ̂,X̂)Z∗n(ϕ̂, X̂), the lemma follows if we can show
the strict inequality P ∗G(ϕ̂, X̂) < PG(ϕ̂, X̂).

Remark: It is this strict inequality that is responsible for the discriminant DF [ϕ]
in Section 5 being strictly positive.

The rome technique: We will approximate the Hofbauer tower by finite Markov
graphs, and use the following general idea of romes in transition graphs from Block
et al. [BGMY] to estimate Z∗n(ϕ̂, X̂). Let G be a finite graph where every edge i→ j
has a weight wi,j , and let W = (wi,j) be the corresponding (weighted) transition
matrix. More precisely, wi,j is the total weight of all edges i→ j, and if there is no
edge i→ j, then wi,j = 0.

A subgraph R of G is called a rome, if there are no loops in G \ R. A simple path
p of length l(p) is given by i = i0 → i1 → · · · → il(p) = j, where i, j ∈ R, but the
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intermediate vertices belong to G \ R. Let w(p) =
∏l(p)
k=1wik−1,ik be the weight of p.

The rome matrix Arome(x) = (ai,j(x)), where i, j run over the vertices of R, is given
by

ai,j(x) =
∑
p

w(p)x1−l(p),

where the sum runs over all simple paths p as above. (Note that with the convention
that x0 = 1 for x = 0, Arome(0) reduces to the weighted transition matrix of the
rome R.) The result from [BGMY] is that the characteristic polynomial of W is
equal to

det(W − xIW ) = (−x)#G−#R det(Arome(x)− xIrome), (8)

where IW and Irome are the identity matrices of the appropriate dimensions.

In our proof, we will use k-cylinder sets as vertices in the graph G, and we will
approximate w(p) ≈ eϕ̂l(p)(x) where x belongs to the interval in Î that is represented
by the path p. The pressure P ∗G(ϕ̂) is approximated (with error of order Vk(ϕ̂)) by
the logarithm of the leading eigenvalue of Arome.

Choice of the rome: Fix a large integer k. The partition P̂k is clearly a Markov
partition for the Hofbauer tower, and its dynamics can be expressed by a countable
graph (P̂k,→), where P̂ → Q̂ for P̂ , Q̂ ∈ P̂k only if f̂(P̂ ) ⊃ Q̂. Choose R � k (to
be determined later). Given a domain D of level R, from all the R-paths starting at
D, at most two (namely those corresponding the the outermost R-cylinders in D)
avoid ÎR. Any other R-path from D has a shortest subpath D → · · · → D′ where
both D and D′ ∈ ÎR. Let us call the union of all points in Î that belong to one of
such subpaths the wig of ÎR.

The vertices of the rome R are those cylinder sets P̂ ∈ P̂k, P̂ 6⊂ X̂, that are either
contained in domains D ∈ D of level < R, or that belong to the wig. We retain all
arrows between two vertices in R. Let Arome be the weighted transition matrix of
R. For each arrow P̂ → Q̂, choose x̂ ∈ P̂ such that f̂(x̂) ∈ Q̂, and set wP̂ ,Q̂ = eϕ̂(x̂).
Let ρ = ρ(Arome) be the spectral radius of weighted transition matrix.

The graph (R,→) is a finite subgraph of the full infinite Markov graph (P̂k,→). We
will construct two other finite graphs (G0,→) and (G1,→) both having R as a rome,
and minorising respectively majorising (P̂k,→) in the following sense: For each path
in (G0,→), including those passing through X̂, we can assign a path in (P̂k,→) of
comparable weight, and this assignment can be done injectively. Conversely, for each
path in (P̂k,→), except those passing through X̂, we can assign a path in (G1,→)
of comparable weight, and this assignment can be done injectively.

As R is a rome to both G0 and G1, we can use the rome technique to compare the
spectral radii ρ0 and ρ1 of their respective weighted transition matrices W0 and W1.
By the above minoration/majoration property, we can separate eP

∗
G(ϕ) from ePG(ϕ)

by ρ0 and ρ1, up to a distortion error. By refining the partition of the Hofbauer tower
into k-cylinders, i.e., taking k large, whilst maintaining the majoration/minoration
property, we can reduce the distortion error (relative to the iterate), and also show
that ρ0 < ρ1. This will prove the strict inequality P ∗G(ϕ̂) < PG(ϕ̂).



14 HENK BRUIN, MIKE TODD

The graph G0: First, to construct G0, we add the arrows P̂ → Q̂ for each P̂ ∈ P̂k∩X̂
and Q̂ ∈ P̂k such that f̂(P̂ ) ⊃ Q̂. The weight of this arrow is eϕ̂(x̂) for some chosen
x̂ ∈ P̂ . Let W0 be the weighted transition matrix of G0. It follows that its spectral
radius is a lower bound for ePG(ϕ̂), up to an error of order eVk(ϕ̂). Furthermore, the
number of n-paths in R is at least en(htop−εR), where εR → 0 as R → ∞, cf. [H2].
Since each arrow has weight at least einf ϕ̂, we obtain

ehtop+inf ϕ̂−εR 6 ρ0 := ρ(W0) 6 ePG(ϕ̂)+Vk(ϕ̂). (9)

On the other hand, we can use (8) to deduce that

det(W0 − xIW0) = (−x)#G0−#R det(A0(x)− xIrome),

where the rome matrix A0(x) equals Arome, except for extra entries wX̂,Q̂ > einf ϕ̂ for

all terminal vertices Q̂ of the added arrows. In other words, A0(x) > Arome+einf ϕ̂∆0,
where ∆0 is a square matrix with some ones in the rows corresponding to the k-
cylinders P̂ ⊂ X̂ and zeros otherwise.

The eigenvalue ρ0 solves the equation det(A0(x)− xI0) = 0; it is in fact the leading
eigenvalue of A0(ρ0). Recall that ρ is the leading eigenvalue of Arome, and let v be
the corresponding positive left eigenvector, normalised so that ‖v‖ :=

∑
i |vi| = 1.

Then
ρ0 > ‖vA0(ρ0)‖ > ‖vArome + einf ϕ̂v∆0‖ > ρ+ einf ϕ̂

∑
P̂∈P̂k∩X̂

|vP̂ |. (10)

Since v is the leading eigenvector of a nonnegative matrix Arome,
∑
P̂∈P̂k∩X̂ |vP̂ | > 0.

In fact, we make the following claim, which is proved later on.∑
P̂∈P̂k∩X̂

|vP̂ | > 0 uniformly in R and k. (11)

The graph G1: For each P̂ ∈ P̂k ∩ D where D has level R, consider all R-paths
p : P̂ → · · · → Q̂ that avoid ÎR; these are not included in (R,→). From each D of
level R, there at most 2 such R-paths avoiding ÎR, corresponding to R-cylinders in
D. These two R-cylinders are contained in two k-cylinders in D. For each such k-
cylinder P̂ (i.e., vertex in (P̂k,→)), and each Q ∈ Pk∩fR(π(P̂ )), choose Q̂ ∈ P̂k∩ ÎR
and attach an artificial R-path with R − 1 new vertices and a terminal vertex Q̂.
Assign weight w(p) = eR sup ϕ̂ to this path. Therefore, if f is d-modal, the number of
vertices added to ÎR is therefore no larger that 2d(R − 1). Call the resulting graph
G1 and W1 its weighted transition matrix.

Any n-path in the Hofbauer tower that leaves ÎR for at least R iterates can be
mimicked by an n-path following one of the additional R-paths in G1. But n-orbits
visiting X̂ are still left out. It follows that this time, the leading eigenvalue estimate
exceeds the exponential growth rate of the contributions of all n-periodic orbits in
the Hofbauer tower that avoid X̂. Since the error of order eVk(ϕ̂) still needs to be
taken into account, we get

ρ1 := ρ(W1) > eP
∗
G(ϕ̂)−Vk(ϕ̂). (12)

On the other hand, we can use (8) to deduce that

det(W1 − xIW1) = (−x)#G1−#R det(A1(x)− xIrome),
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where the rome matrixA1(x) equalsArome, except for new entries wP̂ ,Q̂ 6 eR sup ϕ̂x1−R

for the R-path added to the rome. These paths correspond to R-cylinders, at most
2 for each of the d domains of level R, and since R > k, there are at most 2d paths
with initial vertices P̂ ∈ Pk, each with at most #Pk terminal vertices Q̂. In other
words, A1(x) 6 Arome+x1−ReR sup ϕ̂∆1, where ∆1 is a square matrix with at most 2d
non-zero rows (corresponding to initial vertices P̂ ) and zeros otherwise. The above
formula shows that ρ1 is also the leading eigenvalue of A1(ρ1) and if v′ is the corre-
sponding positive right eigenvector of A1(ρ1), normalised so that ‖v′‖ :=

∑
i |v′i| = 1,

then

ρ1 = ‖ρ1v
′‖ = ‖A1(ρ1)v′‖

= ‖Aromev
′ + ρ1−R

1 eR sup ϕ̂∆1v
′‖ 6 ρ+ eR sup ϕ̂ 2dρ1−R

1 , (13)

because all entries of ∆1v
′ are 6 ‖v′‖ = 1 and at most 2d entries of ∆1v

′ are nonzero.

Using (13), (10), (12) and the fact that P ∗G(ϕ̂) > h∗top + inf ϕ̂ respectively, we obtain

ρ1 6 ρ+ eR sup ϕ̂2dρ1−R
1

6 ρ0 + eR sup ϕ̂2dρ1−R
1 − einf ϕ̂

∑
P̂∈P̂k∩X̂

|vP̂ |.

6 ρ0 + 2dρ1e
R(sup ϕ̂−P ∗G(ϕ̂)+Vk(ϕ̂)) − einf ϕ̂

∑
P̂∈P̂k∩X̂

|vP̂ |

6 ρ0 + 2dρ1e
R(sup ϕ̂−inf ϕ̂−h∗top+Vk(ϕ̂)) − einf ϕ̂

∑
P̂∈P̂k∩X̂

|vP̂ |.

By claim (11),
∑
P̂∈P̂k∩X̂ |vP̂ | > 0 uniformly in R and k. Observe that sup ϕ̂−inf ϕ̂−

h∗top + Vk(ϕ̂) < 0 for k sufficiently large. Letting R→∞, we get ρ1 < ρ0. It follows
by (9) and (12) that

ePG(ϕ̂)+Vk(ϕ̂) > ρ0 > ρ1 > eP
∗
G(ϕ̂)−Vk(ϕ̂).

so taking the limit k →∞, we get PG(ϕ̂) > P ∗G(ϕ̂) as required.

Proof of Claim (11): We start with the uniformity in R, i.e., the level at which
the Hofbauer tower is cut off. Recall that we assumed that X̂ is so small that
sup ϕ̂− inf ϕ̂ < h∗top. The leading eigenvalue ρ of Arome satisfies ρ > eP

∗
G(ϕ̂)−Vk(ϕ̂)−εR

(see (9)), because R is a subgraph of the Hofbauer tower with X̂ removed. For any
r and any domain D ∈ Î, there are at most two r-paths ending outside Îr. Therefore
if P̂ , Q̂ ∈ P̂k where Q̂ is contained in a domain D of level > r, the P̂ , Q̂-entry of
Arrome is at most 2er sup ϕ̂. Thus we find for the left eigenvector v

ρr
∑

Q̂∈P̂k∩D

vQ̂ =
∑

Q̂∈P̂k∩D

(vArrome)Q̂ 6 2er sup ϕ̂
∑
P̂∈P̂k

vP̂ 6 2er sup ϕ̂.

It follows that∑
Q̂∈P̂k∩D

vQ̂ 6 2er(sup ϕ̂−P ∗G(ϕ̂)+Vk(ϕ̂)+εR)) 6 2er(sup ϕ̂−inf ϕ̂−h∗top+Vk(ϕ̂)+εR)
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is exponentially small in r. There are at most 2d domains D of level r, which implies
that

∑
level(Q̂)>r vP̂ is exponentially small in r, and this is independent of R > r, and

of how (or whether) the Hofbauer tower is truncated.

Next take r0 so large that
∑

level(Q̂)>r0
vP̂ < 1

2 irrespective of the way the Hofbauer

tower is cut, and such that X̂ belongs to a transitive subgraph of Îr0 . Therefore
there is r′0 such that for every domain D of level(D) 6 r0 and every Q̂ ∈ P̂k ∩ D,
there is an r′0-path from Q̂ to X̂. Hence the Q̂, P̂ entry in A

r′0
rome is at least er

′
0 inf ϕ̂

for every P̂ ∈ P̂k ∩ X̂. Since v = v(ρ−1Arome)r
′
0 , we find

∑
P̂∈P̂k∩X̂

vP̂ > ρ−r
′
0er

′
0 inf ϕ̂

∑
Q̂∈P̂k∩Îr0

vQ̂ >
1
2
ρ−r

′
0er

′
0 inf ϕ̂

independently of R > r0.

Now we continue with the uniformity in k. This is achieved by analysing the effect of
splitting of vertices of the transition graph into new vertices, representing cylinders
of higher order. We do this one vertex at the time.

Let W be a weighted transition matrix of a graph G. Given a vertex g ∈ G, we can
represent the 2-paths from g by splitting g as follows (for simplicity, we assume that
the first row/column in W represents arrows from/to g):

• If g →w1,b1
b1, g →w1,b2

b2, . . . , g →w1,bm
bm are the outgoing arrows, re-

place g by k vertices g1, . . . , gm with outgoing arrows g1 →w1,b1
b1, g2 →w1,b2

b2, . . . , gm →w1,bm
bm respectively, where w1,bj represents the weight of the

arrow.
• Replace all incoming arrows c →wc,1 g by m arrows c →wc,1 g1, c →wc,1

g2, . . . , c→wc,1 gm, all with the same weight.
• If g → g was an arrow in the old graph, this means that g1 will now have k

outgoing arrows: g1 →w1,1 g1, c→w1,1 g2, . . . , g1 →w1,1 gm, all with the same
weight.

Lemma 5. If W has leading eigenvalue ρ with left eigenvector v = (v1, . . . , vn), then
the weighted transition matrix W̃ obtained from the above procedure has again ρ as
leading eigenvalue, and the corresponding left eigenvector is ṽ = (v1, . . . , v1︸ ︷︷ ︸

m times

, v2, . . . vn).

Proof. Write W = (wi,j) and assume that w1,1 6= 0, and the other nonzero entries
in the first row are w1,b2 , . . . , w1,bm . The multiplication ṽW̃ for the new matrix and
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eigenvector becomes
m times︷ ︸︸ ︷

(v1, . . . , v1︸ ︷︷ ︸
m times

, v2, . . . vn)



w1,1 . . . w1,1 0 . . . . . . 0
0 . . . 0 . . . 0 w1,b2 0
...

...
0 . . . 0 . . . 0 w1,bm 0 . . .
w2,1 . . . w2,1 w2,2 . . . . . . w2,n

w3,1 . . . w3,1 w3,2
. . .

...
...

...
...

...
...

. . .
...

wn,1 . . . wn,1 wn,2 . . . . . . wn,n


A direct computation shows that this equals ρṽ. Since ṽ is positive, it has to belong
to the leading eigenvalue, so ρ is the leading eigenvalue of W̃ as well. The proof
when w1,1 = 0 is similar. �

The effect of going from P̂k to P̂k′ for k′ > k is that by repeatedly applying Lemma 5,
the entries vP̂ for P̂ ∈ P̂k have to be replaced by #(P̂ ∩ P̂k′) copies of themselves
which, when normalised, leads to the new vector ṽ. There is N such that fN (X) ⊃ I,
and therefore there is a constant C such that for every interval J ⊂ I, #(Pk′ ∩J) 6
C#(Pk′∩X). Thus the normalising factor of ṽ is at most C ·#P̂k′∩X, and therefore∑
P̂∈Pk′∩X̂

vP̂ > 1
C

∑
P̂∈Pk∩X̂ vP̂ . When passing from P̂k to P̂k′ , we also need to to

adjust the weight eϕ̂(x) for x ∈ P̂ ∈ P̂k slightly, but this adjustment is exponentially
small since Vk′(ϕ̂) → 0. It follows that

∑
P̂∈Pk′∩X̂

vP̂ is uniformly bounded away
from 0, uniformly in k′. �

4. Proof of Theorem 4

The following is [BrT, Lemma 3].

Lemma 6. For every ε > 0, there are R ∈ N and η > 0 such that if µ ∈ Merg has
entropy hµ > ε, then µ is liftable to the Hofbauer tower and µ̂(ÎR) > η. Furthermore,
there is a set Ê, depending only on ε, such that µ̂(Ê) > η/2 and minD∈D∩ÎR d(Ê ∩
D, ∂D) > 0.

The following lemma will allow us to implement condition (c) in Proposition 3.

Lemma 7. There exist sequences {εn}n ⊂ R− with εn → 0 and {µn}n ⊂ M+ so
that hµn +

∫
ψ dµn > εn. Moreover, there exists a domain X̂ compactly contained

in some D ∈ D so that µ̂n(X̂) > 0.

Proof. First notice that by the definition of pressure, there must exist sequences
{εn}n ⊂ R− with εn → 0 and {µn}n ⊂ Merg so that hµn +

∫
ψ dµn > εn. By
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(2), there exists ε > 0 so that we can choose hµn > ε and {µn}n ⊂ M+. Now by
Lemma 6, we can choose X̂ compactly contained in some D ∈ D and a subsequence
{nk}k with µ̂nk

(X̂) > 0 for all k. �

Proof of Theorem 4. Take ψ := ϕ−P (ϕ). By the remark below (2) and Corollary 1,
we have P (ϕ) = P+(ϕ) = PG(ϕ̂). Notice that Vn(ϕ) → 0 implies that βn(ϕ̂) = o(n)
and ϕ̂ is continuous in the symbolic metric on (Î , f̂).

Take X̂ ⊂ Îtrans compactly contained in its domain in the Hofbauer tower and
satisfying the statement of Lemma 6. By Proposition 4, there are C, η > 0 such that
Z∗n(ψ̂, X̂) < Ce−ηn.

We denote the first return time to X̂ by rX̂ , the first return map to X̂ by RX̂ := f̂ rX̂

and the induced potential by Ψ̂ := ψrX̂ . We will shift these potentials, defining
ψS := ψ−S. Then Ψ̂S = Ψ−SrX̂ . Since PG(ψ̂) = 0 and therefore Zn(ψ̂, X̂) < eo(n),
we have for S > −η

Z0(Ψ̂S) =
∑
n

∑
rX̂ ,i=n

e(Ψ̂S)i 6
∑
n

Z∗n(ψ̂ − S, X̂)

< C
∑
n

en(−S−η)Zn(ψ̂, X̂)

6 C ′
∑
n

en(PG(ψ̂)−S−η)+o(n) <∞.

Since PG(ψ̂) = 0, this implies that PG(Ψ̂S) < ∞ for all S > −η. In fact, it also
shows that (a) of Proposition 3 holds. We let S∗ 6 −η < 0 be minimal such that
PG(Ψ̂S) <∞ for all S > S∗.

We can prove precisely the same estimates for the map F = f τ , where τ = rX̂ ◦π|
−1

X̂
,

and the potential Φ = ϕτ . That is, for all S > S∗, PG(ΨS) < ∞ and (a) of
Proposition 3 holds. By Lemma 7, item (c) of Proposition 3 holds. Therefore,
Case 2 of Proposition 3 implies that there exists a unique equilibrium state µψ with
µ̂ψ(X̂) > 0.

To show that µ is the unique equilibrium state over I, we assume that there is another
equilibrium state µ′. Let µ̂′ be the corresponding measure on Î from Theorem 7.
We now use the fact that µ̂ is positive on cylinders. This follows firstly by the
Gibbs properties of the measures obtained for (X,F, µ), and then by the transitivity
of (I, f) and (Îtrans, f̂). Thus there exists some cylinder X̂ ′ in the Hofbauer tower
which has µ̂(X̂ ′), µ̂′(X̂ ′) > 0.

We can use the above arguments to say that the corresponding inducing scheme
(X ′, F ′,Ψ′) satisfies (a) of Proposition 3. But since µψ is an equilibrium state
compatible with (X ′, F ′), also (b) is satisfied. Therefore, Case 1 of Proposition 3
completes the proof of uniqueness.
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Finally we note that µΨ{τ > n} decays exponentially in n, since the Gibbs property
implies that

µΨ{τ > n} =
∑
τi>n

µΨ(Xi) .
∑
τi>n

eΨi =
∑
k>n

Z∗k(ψ, X̂).

By Proposition 4, the latter quantity decays exponentially, as required. �

5. Analyticity of the Pressure Function

In this section we prove Theorem 6. Let X ⊂ I and (X,F, τ) be an inducing scheme
on X where F = f τ . As usual we denote the set of domains of the inducing scheme
by {Xi}i∈N. Define a tower over the inducing scheme as follows (see [Y])

∆ =
⊔
i∈N

τi−1⊔
j=0

(Xi, j),

with dynamics

f∆(x, j) =
{

(x, j + 1) if x ∈ Xi, j < τi − 1;
(F (x), 0) if x ∈ Xi, j = τi − 1.

For i ∈ N and 0 6 j < τi, let ∆i,j := {(x, j) : x ∈ Xi} and ∆l :=
⋃
i∈N ∆i,l is called

the l-th floor. Define the natural projection π∆ : ∆ → X by π∆(x, j) = f j(x). Note
that (∆, f∆) is a Markov system, and the first return map of f∆ to the base ∆0 is
isomorphic (X,F, τ).

Also, given ψ : I → R, let ψ∆ : ∆ → R be defined by ψ∆(x, j) = ψ(f j(x)). Then
the induced potential of ψ∆ to the first return map to ∆0 is exactly the same as the
induced potential of ψ to the inducing scheme (X,F, τ).

The differentiability of the pressure functional can be expressed using directional
derivatives d

dsPG(ψ + sυ)
∣∣∣
s=0

. For inducing scheme (X,F, τ), let ψ∆ and υ∆ be the
lifted potentials to ∆. Suppose that for ψ∆ : ∆ → R, we have βn(ψ∆) = o(n). We
define the set of directions with respect to ψ:

DirF (ψ) :=

{
υ : sup

µ∈M+

∣∣∣∣∫ υ dµ

∣∣∣∣ < ∞, βn(υ∆) = o(n),
∞∑
n=2

Vn(Υ) <∞, and

∃ε > 0 s.t. PG(ψ∆ + sυ∆) <∞ ∀ s ∈ (−ε, ε)
}
,

where Υ is the induced potential of υ. Let ψS := ψ − S (and so ΨS = Ψ− Sτ). Set
p∗F [ψ] := inf{S : PG(ΨS) < ∞}.4 If p∗F [ψ] > −∞, we define the X-discriminant of
ψ as

DF [ψ] := sup{PG(ΨS) : S > p∗F [ψ]} 6 ∞.

Given a dynamical system (X,F ), we say that a potential Ψ : X → R is weakly
Hölder continuous if there exist C, γ > 0 such that

Vn(Ψ) 6 Cγn for all n > 0. (14)

4Note that we use the opposite sign for p∗F [ψ] to Sarig.
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The following is from [BrT, Theorem 5].

Theorem 10. Let f ∈ H be a map with potential ϕ : I → (−∞,∞]. Suppose that
ϕ has bounded variations. Take ψ = ϕ − P (ϕ). Then DF [ψ] > 0 if and only if
(X,F, µΨ) has exponential tails.

We are now ready to prove Theorem 6.

Proof of Theorem 6. We fix (X,F ) as in Proposition 2. Lemma 5 implies that we
have exponential tails for the equilibrium state associated to the constant potential
ψ = −htop, i.e., there exist C, η > 0 such that

µ−htopτ{τi = n} 6 Ce−ηn. (15)

Hence Theorem 10 implies that we have positive discriminant. We can then apply
the arguments of the proof of [BrT, Theorem 5] to show that for υ ∈ Dir(−htop),
there exists ε > 0 such that t 7→ P (−htop + tυ) is analytic.

Therefore, in order to ensure analyticity here we must prove− log |Df | ∈ Dir(−htop).
It follows from [BrT, Lemma 7] that this potential has

∑∞
n=2 Vn(− log |DF |) < ∞,

and [Pr] gives supµ∈M+
|
∫

log |Df | dµ| <∞; so it only remains to prove that there
exists ε > 0 such that PG((−htop − t log |Df |)∆) < ∞ for t ∈ (−ε, ε). Since
PG((−htop − t log |Df |)∆) 6 PG(−τhtop − t log |DF |), by Abramovs Theorem it suf-
fices to bound PG(−τhtop − t log |DF |). As in Section 2.3, Z0(Φ) < ∞ implies
PG(Φ) < ∞. In the following calculation we use the fact that for all ε > 0 there
exists Cε > 0 so that #{τi = n} 6 Cεe

n(htop+ε), see the discussion at (20). For
0 < t < 1, choose 0 < ε <

(
t

1−t

)
htop. Using the Hölder inequality,

Z0(−τhtop − t log |DF |) �
∑
n

e−nhtop
∑
τi=n

e−t log |DFi| �
∑
n

e−nhtop
∑
τi=n

|Xi|t

6
∑
n

e−nhtop

(∑
τi=n

|Xi|
)t

(#{τi = n})1−t

6 C1−t
ε

∑
n

en(−htop+(1−t)(htop+ε))

= C1−t
ε

∑
n

en(−thtop+(1−t)ε) <∞.

(For further explanation of these calculations see [BrT, Section 5 ].)

For t < 0, first notice that by the Gibbs property of µ−htopτ

µ−htopτ{τ = n} � e−nhtop
∑
τi=n

1 = e−nhtop#{τi = n}.

Hence, by (15),

e−nhtop#{τi = n} 6 Ce−ηn. (16)
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Since |Xi| > |X|e−γτi for γ := log sup |Df |, we have

Z0(−τhtop − t log |DF |) � 1
|X|t

∑
n

e−nhtop
∑
τi=n

|Xi|t

6
∑
n

[e−nhtop#{τi = n}]e−γnt

6 C
∑
n

e−n(tγ+η) <∞,

if tγ + η > 0. Hence there exists ε > 0 so that − log |Df | ∈ Dir(−htop − ε).

It remains to show existence and uniqueness of equilibrium states. By (16), we have
for t > 0, using the Hölder inequality again,

Z0(−t log |DF | − τP (ϕt)) �
∑
n

e−nP (ϕt)
∑
τi=n

e−t log |DFi| �
∑
n

e−nP (ϕt)
∑
τi=n

|Xi|t

6
∑
n

e−nP (ϕt)

(∑
τi=n

|Xi|
)t

#{τi = n}1−t

6
∑
n

[e−nhtop#{τi = n}]1−te−n(P (ϕt)−(1−t)htop)

6 C
∑
n

en((1−t)(htop−η)−P (ϕt)).

Since P (ϕt) → htop as t→ 0, for all small t we have (1− t)(htop − η′)− P (ϕt) < 0.
Hence Z0(−t log |DF | − τP (ϕt)) <∞ for small positive t.

For t < 0, we use a similar computation as before:

Z0(−t log |DF | − τP (ϕt)) �
∑
n

e−nP (ϕt)
∑
τi=n

e−t log |DFi| �
∑
n

e−nP (ϕt)
∑
τi=n

|Xi|t

6
∑
n

e−n(P (ϕt)+tγ)#{τi = n}

< Cε
∑
n

e−n(tγ+P (ϕt)−htop−ε),

where we use the fact that for all ε > 0 there exists Cε > 0 so that #{τi = n} 6
Cεe

n(htop+ε). Since P (ϕt) > htop we can ensure that tγ + P (ϕt) − htop − ε > 0 for
all t close to zero. Hence Z0(−t log |DF | − τP (ϕt)) is finite for all t close enough to
zero.

This implies that for t in a neighbourhood of 0, PG(−t log |DF | − τP (ϕt)) < ∞.
Similarly property (a) of Proposition 3 holds, and thus we can apply Case 2 of that
proposition to get existence of an equilibrium state µ. This is the unique equilibrium
state among those that can be lifted to (X,F ). Following the argument in the proof
of Theorem 4, we have that µ is the unique global equilibrium state as required. �

6. Necessity of the Condition supϕ− inf ϕ < htop

In this section we show the importance of the condition (1) for the existence and
uniqueness of equilibrium states obtained by inducing methods.
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Hofbauer and Keller gave an example, originally in a symbolic setting [H1] and later
in the context of the angle doubling map on the circle [HK], which showed that
(1) is essential for their results on quasi-compactness of the transfer operator. In
Section 6.1, we discuss how that example fits in with our inducing results. The
Hofbauer and Keller example uses a non-Hölder potential, so it is natural to ask if is
really the lack of Hölder regularity which causes problems in obtaining equilibrium
states. In Section 6.2, we provide an example of a family of Hölder continuous
potentials which, if a member of the family violates (1), then the equilibrium state
is not obtained from any inducing scheme with integrable inducing time.

We note here that these Markov examples are often modelled by the renewal shift,
see [Sa2] and [PeZ]. That approach uses a rather different partition to the one we use
in this paper, and so does not elucidate our theory. However, the inducing schemes
we use and the ones that [Sa2] and [PeZ] get from the renewal shift are the same.

6.1. Hofbauer and Keller’s example. As mentioned in Theorem 1, potentials
ϕ ∈ BV satisfying supϕ − inf ϕ < htop have equilibrium states; in fact Hofbauer
and Keller [HK] show that this equilibrium state is absolutely continuous w.r.t. to
a ϕ-conformal measure, and that the transfer operator is quasi-compact. They also
present, for the angle doubling map f(x) = 2x (mod 1), a class of potentials ϕ to
show that (1) is essential for these latter properties. This map f was inspired by
an example based in [H1] based on the full shift σ : {0, 1}N → {0, 1}N, showing that
Hölderness of potentials is essential to obtain the results from [Bo].

We demonstrate how this class of examples fits into the framework of our paper.
Fix K > 0 and let b < 0. Let

ϕ = ϕb,K =
∞∑
k=0

ak · 1(2−k−1,2−k],

where

ak :=

{
b for 0 6 k < K,

2 log
(
k+1
k+2

)
for k > K.

Also let sn =
∑n−1
k=0 ak. Since the Dirac measure δ0 at the fixed point has free energy

hδ0 + ϕ(0) = 0, the pressure P (ϕ) > 0. Figure 1 summarises the results of [H1] and
the example in [HK] that are relevant for us.

Define the inducing scheme (X,F ) where X = (1
2 , 1] and F :

⋃
nXn → X is the

first return map to X where for n > 1, Xn :=
(

1
2 + 2−n−1, 1

2 + 2−n
]
. Notice that if

we denote X∞ = {x : #orb(x) ∩ X = ∞}, then µ(X∞) = 1 for every measure in
Merg \ {δ0}.

In [HK], it is important that b is chosen so that −b > htop(f) = log 2, but for our
case we allow b to vary.

Lemma 8. For all K > 2 there exists bK < − log 2 such that

• b > bK implies P (ϕb,K) > 0 and there exists a unique equilibrium state which
can be found from (X,F );
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∑
k e

sk < 1

∑
k e

sk = 1

∑
k e

sk > 1

∑
k(k + 1)esk = ∞

∑
k(k + 1)esk <∞

∑
k ak = ∞

∑
k ak <∞

Pressure
P (ϕ)

P (ϕ) > 0

P (ϕ) > 0

P (ϕ) = 0

P (ϕ) = 0

P (ϕ) = 0

µϕ is
a Gibbs
measure

yes

no

no

no

no

ϕ has a
unique equi-
librium state

yes

yes

no

yes

yes

Figure 1. Summary of results in [H1]: Equation (2.6) and Section 5.

• b 6 bK implies P (ϕb,K) = 0 and the unique equilibrium state is the Dirac
measure δ0 on 0. This cannot be found from (X,F ).

Moreover, bK → − log 2 as K →∞.

Proof. Firstly, we compute

sn =

{
nb if n 6 K,

Kb+ 2 log
(∏n−1

j=K

(
j+1
j+2

))
= Kb+ 2 log

(
K+1
n+1

)
if n > K.

As in [HK], we can estimate∑
n

esn =
K∑
n=1

enb + eKb
∑
n>K

(
K + 1
n+ 1

)2

< eb
(

1− ebK

1− eb

)
+ ebK(K + 1). (17)

For b < − log 2 the first term is strictly less than 1 for all K and the second term
tends to zero as b → −∞. Hence if we fix K, then we can find bK such that∑
n e

sn 6 1 for b 6 bK (with equality if and only if b = bK), and Figure 1 shows
that P (ϕ) = 0. Alternatively, by fixing b < − log 2 and taking K large enough we
have P (ϕ) = 0, and in fact bK → − log 2 as K →∞. A computation similar to (17)
shows that

∑
n(n + 1)esn > C

∑
n>K(n + 1)(K+1

n+1 )2 diverges. Whenever P (ϕ) = 0,
Figure 1 shows that δ0 is the unique equilibrium state.

We next show what P (ϕ) = 0 or P (ϕ) > 0 imply for obtaining the equilibrium state
from the inducing scheme. As usual, we set ψ := ϕ−PG(ϕ). Notice that Vn(Ψ) = 0,
so clearly we have summable variations. Also notice that for x ∈ Xn,

Ψ(x) = sn − nP (ϕ) � −nP (ϕ) + 2 log

(
n−1∏
k=0

(
k + 1
k + 2

))
= −nP (ϕ)− 2 log(n+ 1).

Therefore

Z0(Ψ) =
∞∑
n=1

eΨ|Xn �
∞∑
n=0

e−nP (ϕ)−2 log(n+1) =
∞∑
n=0

e−nP (ϕ)

(n+ 1)2
<∞, (18)
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because P (ϕ) > 0. So as in Section 2.3 this means that PG(Ψ) < ∞. Thus Theo-
rem 8 yields a Gibbs state µΨ. Similarly to the calculation above, we can show from
the Gibbs property of µΨ that

−
∫

Ψ dµΨ �
∞∑
n=0

e−nP (ϕ) log(n+ 1)
(n+ 1)2

<∞.

for P (ϕ) > 0. Therefore, µΨ is an equilibrium state for (X,F ). We also have∫
τ dµΨ �

∞∑
n=1

ne−nP (ϕ)

(n+ 1)2

{
<∞ if P (ϕ) > 0,
= ∞ if P (ϕ) = 0. (19)

Therefore if P (ϕ) = 0, we cannot project this measure to the original system. �

In the limit K → ∞, the potential is ϕ(x) = b for x ∈ (0, 1] and ϕ(0) = 0. It is
easy to see that the same results above hold in this case and that for ϕ− log 2,∞ the
equilibrium states are δ0 and the measure of maximal entropy.

We briefly summarise the conclusions of this example, in order to clarify how it
fits in with the results stated in this paper. We fix K > 2. Since ϕ is monotone,
‖ϕ‖BV < ∞, but

∑
n supC∈Pn

‖ϕ|C‖BV =
∑
n Vn(ϕ) = ∞. Therefore Theorem 2

does not apply for any value of b.

• For b 6 bK , we have P (ϕ) = 0 but (1) fails, so Theorems 1 and 4 do not
apply. However, there exists a unique equilibrium state δ0 by [H1].

• For bK < b 6 − log 2, we have P (ϕ) > 0, but again Theorems 1 and 4 do not
apply. However, there exists a unique equilibrium state by [H1]. Moreover,
direct computations as in (18) and (19) allow us to use our inducing method
and Case 2 of Proposition 3 to show that there exists a unique equilibrium
state, which can be obtained from an inducing scheme.

• For − log 2 < b < 0, Theorem 1 applies (since ‖ϕ‖BV <∞) and Theorem 4
applies because Ψ is piecewise constant (so (SVI) holds and in fact, Ψ is
weakly Hölder continuous, see (14)). Both theorems produce the unique
equilibrium state.

In general, inducing schemes are used to improve the hyperbolicity of the map
or properties of the potential (e.g. to obtain weak Hölder continuity). For this
system (or for the Manneville-Pomeau map of Section 6.2 below), there are inducing
schemes that produce the equilibrium state δ0. For instance, one can take the original
map itself, or the ‘unnatural’ system consisting of the left branch only, as induced
system. But to obtain nice properties for map or potential, one has to induce to a
domain disjoint from 0, and none of these ‘natural’ inducing schemes produces δ0 as
equilibrium state.

For b 6 bK we have DF [ϕ] = 0, since PG(Φ − Sτ) = ∞ for all S < 0. If ϕ had
summable variations, then the discriminant theorem [Sa2] would imply that ϕ is
not ‘strong positive recurrent’, but can be either positive recurrent or null recurrent.
The fact that we cannot project µΨ appears to suggest that ϕ is null recurrent.
However, since the variations of ϕ are not summable we are not able to use this
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theory. However, in the following lemma we make a direct computation to show
that indeed ϕ is null recurrent when b 6 bK .

Lemma 9. Fix K > 2. If b 6 bK then ϕ is null recurrent.

Proof. Let C0 and C1 the left and right cylinders in P1. Rather than considering
all n-periodic cycles, we will restrict ourselves to special ones, and show that these
are sufficient to imply recurrence. For each n there is a cycle cycn := {pnn, . . . , p1

n}
where p1

n ∈ Xn as defined above, f(pkn) = pk−1
n for n > k > 2 and f(p1

n) = pnn (in
fact it is easy to compute pnk = 2n−k

2n−1). For x ∈ cycn, ϕn(x) = sn. This cycle features
n− 1 times in the computation of Zn(ϕ,C0). Hence,

Zn(ϕ,C0) > nesn > (n− 1−K)

[(
K

n+ 1

)2

· eKb
]
,

so
∑
n Zn(ϕ,C0) >

∑
n
C
n = ∞. Recalling that PG(ϕ) = 0 for b 6 bK , this implies

that the potential is recurrent.

Notice that p1
n is the only point in cycn that belongs to C1. So using this point and

cylinder C1, the same computation implies that
∑
n nZ

∗
n(ϕ,C1) = ∞, so ϕ is null

recurrent. �

6.2. The Manneville-Pomeau map. The Manneville-Pomeau map fα(x) = x +
x1+α (mod 1) with α ∈ (0, 1) is well-known to have zero entropy equilibrium states
for the potential −t log |Dfα| and appropriate values of t. See [Sa2] for an exposition
of this theory and the relevant references. Supposing that α < log 2

2 , for p1 < p2 < 1
and b < − log 2 we will use the potential

ϕ(x) = ϕα,p1,p2,b(x) :=


−2αxα if x ∈ [0, p1],(
b+2αpα

1
p2−p1

)
(x− p1)− 2αpα1 if x ∈ (p1, p2],

b if x ∈ (p2, 1],

as an example to show that (1) is sharp. (Note that ϕ has the same Hölder exponent
as − log |Dfα|.) Since htop = log 2, condition (1) is violated whenever b 6 − log 2. It
turns out that as soon as this occurs, we can choose α, p1, p2 so that no equilibrium
state can be achieved from a ‘natural’ inducing scheme on an interval bounded away
from the neutral fixed point 0. Thus (1) is sharp, even when the potential is Hölder.

The conclusion of Proposition 1 proved below is that Hölder regularity of the po-
tential is not sufficient to dispense with the condition (1).

Proof of Proposition 1. We will make a suitable choice for p1, p2 later in the proof.
Let y0 = 1 and define yn ∈ (0, yn−1) for n > 1 such that fα(yn) = yn−1. We make
an approximation yn = An−

1
α . Then f(yn) = yn−1 becomes

An−
1
α + (An−

1
α )1+α = A(n− 1)−

1
α = An−

1
α

1 +
n−1

α
+

1
α

(
1
α + 1

)
2

n−2 + . . .

 .
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Neglecting the O(n−2− 1
α ), this is solved by A =

(
1
α

) 1
α . Hence yn = (αn)−

1
α with an

error of O(n−2− 1
α ). Therefore, near zero ϕ(yn) = − 2

n +O(n−2α−1).

For all n sufficiently large, the variations w.r.t. the branch partition satisfy Vn(ϕ) >
2
n (obtained on the n-cylinder set [0, yn]), so ϕ does not have summable variations.
However, since ϕ is monotone, ‖ϕ‖BV <∞.

For any b < − log 2 we will choose K > N and p1 = K and p2 = yN depending on
α and b. n > N implies

sn < Nb− 2
n−1∑
k=N

1
n

+O(N−α)

Clearly choosing N large enough we can make this error as small as we like. By the
above, we have

∑
n

esn .
N∑
k=1

ekb + eNb
∞∑
N+1

(
N

n

)2

6 eb
(

1− ebN

1− eb

)
+ ebN (N + 1).

Hence, we can choose N so large that
∑
n e

sn 6 1 and hence by Figure 1 we have
P (ϕ) = 0. (Likewise we can fix suitable α,N,K and find a critical value bα,N,K
where below this value,

∑
n e

sn 6 1 and above it,
∑
n e

sn > 1.)

We define F to be the first return map to X := (y1, 1], so if xi ∈ (y1, 1] is such that
fα(xi) = yi, then Xi = (xi+1, xi] and τi = i. A straightforward computation shows
that Φ|Xn is monotone and for large n, Φ|Xn ≈ −2 log n, and supΦ|Xn − inf Φ|Xn =
O(1/n); in fact Φ is weakly Hölder. As in Lemma 8, we can show that Z0(Φ) <∞,
so PG(Φ) < ∞ and there is a unique equilibrium state µΦ for (X,F,Φ) which also
satisfies the Gibbs property. However, as in (19), the inducing time has

∫
τ dµΦ = ∞,

as required. �

7. Recurrence of Potentials

Although not crucial for the main results of this paper, the question whether the
potential is recurrent (see (7)) is of independent interest. In this section we give
sufficient conditions for ϕ to be recurrent, and for the topological pressure and the
Gurevich pressure to coincide.

Recall that Theorems 1 and 3 gave conditions under which transfer operator Lϕ is
quasi-compact. Let us first lay out an argument why this implies that ϕ is recurrent.
Recall that quasi-compactness means that the essential spectrum σess is strictly
less than the leading eigenvalue λ = exp(P (ϕ)), and there are only finitely many
eigenvalues outside {|z| 6 σess}, each with finite multiplicity. A result due to Baladi
and Keller [BaK] says that this spectral gap implies that the dynamical ζ-function

ζ(z) = exp

 ∞∑
n=1

zn

n

∑
fn(x)=x

eϕn(x)
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is meromorphic on {|z| 6 λ−1}, with a pole at λ−1 whose multiplicity is the same as
the multiplicity of the eigenvalue λ of Lϕ. The argument why this implies recurrence
of the potential is somewhat implicit in [BaK]. Namely, there is a function g which
is analytic on {|z| < λ−1} ∩ {|z − λ−1| < ε} such that g(λ−1) 6= 0 and ζ ′(z)/ζ(z) =
g(z)/(z− λ−1) on this region. Hence limz→λ−1 ζ ′(z)/ζ(z) = ∞. Direct computation
gives

ζ ′(z)
ζ(z)

=
1
z

∞∑
n=1

zn
∑

fn(x)=x

eϕn(x) =
1
z

∞∑
n=1

zn Zn(ϕ),

so recurrence follows.

Proposition 5. Let f ∈ H and ϕ be a potential such that supϕ− inf ϕ < htop . If

Vn(ϕ) → 0 and
∑
n

e−βn = ∞,

then ϕ is recurrent. (Here βn := βn(ϕ) is defined as in (6).)

Clearly βn 6
∑n
k=1 Vk(ϕ), and Vn(ϕ) → 0 implies βn = o(n). The condition∑

n e
−βn = ∞ is stronger: it implies that βn = o(log n) and is implied by Vn(ϕ) =

O(n−(1+ε)).

It is well known that the Variational Principle holds for the potential ϕ = 0; in fact

htop = P (0) = PG(0) = Ptop(0) = lim
n

1
n

log laps(fn),

where laps(fn) := #Pn is the lap number, i.e., the number of maximal intervals
on which fn is monotone, see [MSz]. In fact, the lap number is submultiplicative:
laps(fn+m) 6 laps(fn)laps(fm). Therefore htop = infn 1

n log laps(fn) and

ehtopn 6 laps(fn) 6 en(htop+εn), (20)

where εn → 0 as n → ∞. We will extend this idea to ergodic averages of more
general potentials in Lemma 10. For J ∈ Pm, let ϕm(J) = sup{ϕm(x) : x ∈ J} and

Ztopm (ϕ) :=
∑
J∈Pm

eϕm(J).

For the remainder of this section we assume that (I, f) is topologically mixing, i.e.,
for each m, (I, fm) is topologically transitive. In order to prove recurrence of ϕ, we
need the following lemma.

Lemma 10. Let ϕ be a potential satisfying (1) and with βn(ϕ) = o(n). Then there
exists η > 0 such that Zn(ϕ) > ηe−βnePtop(ϕ)n for all n, and Ptop(ϕ) = PG(ϕ).

Proof. Since f is topologically transitive, there is a collection of intervals permuted
cyclically by f , such that for any interval J , there is n such that fn(J) contains a
component of this cycle. For simplicity, let us assume that this collection is just a
single interval I.

Since every m-cylinder set can contain at most one m-periodic point, Zm(ϕ) 6
Ztopm (ϕ) for all m. Furthermore, Ztopm (ϕ) is submultiplicative, cf. (20), so

Ptop(ϕ) := lim
m→∞

1
m

logZtopm (ϕ) = inf
m

1
m

logZtopm (ϕ) <∞.
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Therefore PG(ϕ) 6 Ptop(ϕ) <∞.

Recall that every J ∈ Pm corresponds to a unique m-path D0 → D1 → · · · → Dm

in the Hofbauer tower (Î , f̂) leading from the base D0 of the tower to some terminal
domain Dm. The level of Dm was defined as the length of the shortest path from
the base to Dm. We say that the pre-level of J is pre-level(J) = R.

The topological entropy htop is the exponential growth rate of the number of n-paths
D0 → · · · → Dn in the Hofbauer tower, and the limit of the exponential growth rates
of the number of n-paths within ÎR as R→∞, see [H2] for the unimodal and [BBr,
Sections 9.3-9.4] for the general case. Therefore, by taking R sufficiently large, we
can find γ > 0 and C0 ∈ (0, 1) such that the number of k-paths

#{D0 → D1 → · · · → Dk : level(Dk) 6 R, 1 6 j 6 k} > C0e
k(htop−γ) (21)

for all k > 1, and

supϕ− inf ϕ < htop − γ − log 2
R

. (22)

Since (I, f) is topologically transitive (and using our simplifying assumption), there
exists R′ depending on R, such that for each D ∈ D with level(D) 6 R, fR

′
(D) ⊃ I.

This implies that every J ∈ Pm with pre-level(J) 6 R. contains a periodic point of
period n := m+R′.

The idea is now for an arbitrary J ∈ Pm to extend the corresponding path by R′

arrows to find an n-periodic point p ∈ J . If pre-level(J) 6 R, then by the choice
of R′, this is indeed possible. We call such cylinder sets J type 1, and we can thus
compare Ztype 1

m (ϕ) to Zn(ϕ) as:

Ztype 1
m (ϕ) =

∑
J∈Pm,type 1

eϕm(J)

6
∑

p=fn(p)∈J

J∈Pm is type 1

eβme−R
′ inf ϕeϕn(p) 6 eβme−R

′ inf ϕZn(ϕ). (23)

If pre-level(J) > R, then the existence of an n-periodic point in J cannot be guaran-
teed. We call such cylinder sets J type 2. Given such a type 2 cylinder set J , there
is a maximal m′ < m such that pre-level(J ′) = R for the m′-cylinder J ′ containing
J . As we mentioned before, from any domain in the Hofbauer tower, there are at
most two R-paths that are outside ÎR. Using this property repeatedly, we find that
there are at most 2(m−m′)/R = e(m−m

′) log 2
R starting at Dm′ but otherwise outside ÎR.

From Dm′ , there is at least one R′-path leading back to some D ∈ ÎR, and using (22)
and (21) we derive that there are at least C0e

(m−m′−R′)(htop−γ) ‘type 1’ m−m′-paths
from Dm′ . From this we conclude that the type 1 cylinders “sufficiently” outnumber
the type 2 cylinders, and we can bound the contributions of type 2 cylinders in J ′
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by the contribution of type 1 cylinders in J ′ as follows:∑
J⊂J ′,type 2

eϕm(J) 6 e(m−m
′)(supϕ+ log 2

R
)

× 1
C0

e−(m−m′−R′)(htop−γ)e−(m−m′) inf ϕ
∑

J⊂J ′,type 1

eϕm(J)

6
1
C0

e(m−m
′)(supϕ−inf ϕ−htop+γ+ log 2

R
)eR

′(htop−γ)
∑

J⊂J ′,type 1

eϕm(J)

6
1
C0

eR
′htop

∑
J⊂J ′,type 1

eϕm(J).

Summing over all m′ and J ′ ∈ Pm′ , we get

Ztype 2
m (ϕ) 6

1
C0

eR
′htopZtype 1

m (ϕ).

Now we combine this with (23) and the fact that {Ztopn (ϕ)}n is submultiplicative to
obtain

enPtop(ϕ) 6 Ztopn (ϕ) 6 ZtopR′ (ϕ) · Ztopm (ϕ) 6 ZtopR′ (ϕ)
[
Ztype 1
m (ϕ) + Ztype 2

m (ϕ)
]

6 ZtopR′ (ϕ)
[
1 +

1
C0
eR

′htop

]
Ztype 1
m (ϕ)

6 ZtopR′ (ϕ)
[
1 +

1
C0
eR

′htop

]
e−R

′ inf ϕeβmZn(ϕ)

6 ZtopR′ (ϕ)
(

2
C0

)
eR

′(htop−inf ϕ)eβm−βneβnZn(ϕ) =
1
η
eβnZn(ϕ)

for η =
(

C0

2Ztop

R′ (ϕ)

)
e−R

′(htop−inf ϕ)eβn−βm . Since n − m = R′, we can assume that

eβm−βn is bounded independently of m, so η > 0. This proves the first statement.
In fact, since βn = o(n), we also find Ptop(ϕ) = PG(ϕ). �

Corollary 2. If supϕ − inf ϕ < htop and
∑
n e

−βn = ∞, then the potential ϕ is
recurrent.

Proof. Since ϕ is recurrent by definition if
∑
n λ

−nZn(ϕ) = ∞ for λ = ePG(ϕ), this
corollary is immediate from Lemma 10. �

The above ideas lead us to show that in our setting Ptop and PG are in fact the same.

Corollary 3. If supϕ − inf ϕ < htop, then Ptop(ϕ̂) = PG(ϕ̂, Ĉ) for every cylinder
set Ĉ in Îtrans.

Proof. This is the same proof as Lemma 10 with J ∈ Pm replaced by Ĵ ∈ P̂m∩Ĉ. �
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