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Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

jnmartins@fc.up.pt

Aleksandar Miković ∗
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Abstract

We formulate the spin foam perturbation theory for three-dimensional

Euclidean Quantum Gravity with a cosmological constant. We analyse

the perturbative expansion of the partition function in the dilute-gas limit

and we argue that the Baez conjecture stating that the number of possible

distinct topological classes of perturbative configurations is finite for the

set of all triangulations of a manifold, is not true. However, the conjecture

is true for a special class of triangulations which are based on subdivisions

of certain 3-manifold cubulations. In this case we calculate the partition

function and show that the dilute-gas correction vanishes for the simplest

choice of the volume operator. By slightly modifying the dilute-gas limit,

we obtain a nonvanishing correction which is related to the second order

perturbative correction. By assuming that the dilute-gas limit coupling

constant is a function of the cosmological constant, we obtain a value for

the partition function which is independent of the choice of the volume

operator.
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1 Introduction

Spin foam state sum models can be understood as the path integrals for BF
topological field theories [Ba1]. Since General Relativity in 3 and 4 dimensions
can be represented as a perturbed BF theory, see [FK, M2], then, in order to
find the corresponding Quantum Gravity theory, one would need a spin foam
perturbation theory. Baez has analysed the spin foam perturbation theory from
a general point of view in [Ba2], and he was able to show that, under certain
reasonable assumptions, the perturbed spin foam state sum Z can be calculated
in the dilute gas limit. In this limit, the number N of tetrahedra of a manifold
triangulation ∆ tends to infinity and λ, the perturbation theory parameter,
tends to zero, in a way such that the effective coupling constant g = λN is finite.
By assuming that the number of topologically inequivalent classes of perturbed
configurations at a given order of perturbation theory is limited when N → ∞,
Baez showed that the perturbation series

Z(M, ∆) = Z0(M) + λZ1(M, ∆) + λ2Z2(M, ∆) + · · · =

∞
∑

n=0

λnZn(M, ∆) , (1)
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where M is the manifold, is dominated by the contributions from the dilute
configurations in the dilute gas limit. The dilute configurations of order n are
the configurations where n non-intersecting simplices carry a single perturbation
insertion. Let Z̄N =

∑N
n=0 λnZn(M, ∆), then

lim
N→∞

Z̄N (M, ∆) = egz1Z0(M) , (2)

where

z1 = lim
N→∞

Z1(M, ∆)

NZ0(M)

does not depend on the chosen manifold M .
In this paper, we are going to study in detail the Baez approach on the exam-

ple of three-dimensional (3d) Euclidean Quantum Gravity with a cosmological
constant. In this case it is possible to construct explicitly the perturbative
corrections, and we will show how to do it. Therefore one can check all the
assumptions and the results from the general approach. We will show that the
conjecture that there are only finitely many topological classes of perturbative
configurations at a given order of the perturbation theory is not true. However,
if the triangulations are restricted to those corresponding to special subdivisions
of certain acceptable manifold cubulations, then the number of these topological
classes is finite. In this case we show that the formula (2) is still valid and we
calculate z1. A surprising feature of 3d gravity is that z1 = 0 and consequently
the dillute gas limit has to be modified in order to obtain a nonzero contribution.
We will show that for g = λ2N

lim
N→∞

Z̄N (M, ∆) = egz2Z0(M) , (3)

where

z2 = lim
N→∞

Z2(M, ∆)

NZ0(M)
.

The value of z2, which we conjecture to be non-zero, is independent of the
triangulation ∆ and the manifold M . Recall that N denotes the number of
tetrahedra of the triangulation ∆ of M .

In order to construct the perturbative corrections Zn, we will use the path-
integral expression for the partition function of Euclidean 3d gravity with a
cosmological constant λ

Z(M, Λ) =

∫

DADB exp

(

i

∫

M

Tr (B ∧ F ) + Λ ǫabcB
a ∧ Bb ∧ Bc

)

, (4)

where A is an SU(2) principal bundle connection, F is the corresponding cur-
vature 2-form, B is a one-form taking values in the SU(2) Lie algebra and ǫabc

are the structure constants. This path integral can be defined as a finite spin
foam state sum when Λ = 4π2/r2, r ∈ N, see [FK], and in this case it is given
by the Turaev-Viro (TV) state sum [TV]. However, if Λ 6= 4π2/r2 then it is not
obvious how to define Z. A natural approach is to use the generating functional

3



technique [FK], and in [HS] the first order perturbation theory spin foam am-
plitudes were studied for the Ponzano-Regge (PR) model [PR]. However, the
problem with the PR model is that it is not finite, so that the state sums Zn in
(1) are not well defined. Since the TV model can be considered as a quantum
group regularisation of the PR model, we are going to use the TV model to
define the perturbation series (1). Physically this means expanding the path
integral (4) by using λ = Λ − 4π2/r2 as the perturbation theory parameter
instead of λ = Λ.

The TV model perturbation series can be constructed by using the PR model
perturbation series and then replacing all the weights in the PR amplitudes with
the corresponding quantum group spin network evaluations. The calculation of
the corresponding state sums is substantially simplified if the Chain-Mail tech-
nique is used, see [R, BGM, FMM]. In section 2 we review the PR perturbation
theory. In section 3 we review the Chain-Mail technique, while in section 4 we
define the perturbative corrections. In section 5 we discuss the dilute gas limit,
while in section 6 we present our conclusions.

2 Perturbative expansion for the PR model

Given a triangulation ∆ of M with N tetrahedra, let us associate to each edge
ǫ of ∆ a source current Jǫ = Ja

ǫ Ta which belongs to the Lie algebra su(2) with
a basis {Ta|a = 1, 2, 3}. One can then write

Z = exp

(

−λ

N
∑

k=1

∂3
J (τk)

)

Z(J)
∣

∣

∣

J=0
, (5)

where ∂3
J(τk) is a differential operator associated with the volume of a tetra-

hedron τk and Z(J) is the generating functional, given by the Ponzano-Regge
state sum with the D(jǫ)(eJǫ) insertions at the edges of the 6j spin networks,
where D(j)(eJ) is the matrix of the group element eJ in the representation of
spin j, see [FK, HS]. The operator ∂3

J can be chosen to be

∂3
J =

1

4

∑

ǫ,µ,ν

ǫabc ∂

∂Ja
ǫ

∂

∂Jb
µ

∂

∂Jc
ν

,

where ǫabc is a totally antisymmetric tensor and ǫ, µ, ν are tetrahedron edges
sharing a common vertex1.

Since
∂

∂Ja
ǫ

· · · ∂

∂Ja′

ǫ

D(jǫ)(eJǫ)
∣

∣

∣

J=0
= T

(jǫ)
(a · · ·T (jǫ)

a′) ,

where

X(a1···ap) =
1

p!

∑

σ∈Sp

Xaσ(1)
· · ·Xaσ(p)

,

1One can choose a more general expression for ∂3
J
, involving all possible triples of the edges,

see [HS], but in this paper we will study the simplest possible choice.
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Figure 1: The evaluation of a tetrahedral spin network with a grasping insertion.

then the result of the action of ∂3
J on a tetrahedron’s vertex will be given by

the grasping insertion
∑

a,b,c

ǫabcT (j)
a T

(k)
b T (l)

c ,

where j, k and l are the spins of the three edges sharing the vertex.
By using

ǫabc = C111
abc ,

(

T (j)
a

)

αα′
= AjC

1jj
aαα′ ,

where Cjkl
αβγ is the intertwiner tensor for Hom(Vj ⊗ Vk, V ∗

l ) (3j symbol) and Aj

is a normalisation factor given by

A2
j =

j(j + 1)(2j + 1)

θ(1, j, j)
, (6)

one obtains

∑

a,b,c

ǫabc
(

T (j)
a

)

αα′

(

T
(k)
b

)

ββ′

(

T (l)
c

)

γγ′
= AjAkAl

∑

a,b,c

C111
abc C1jj

aαα′C
1kk
bββ′C1ll

cγγ′ .

This equation implies that the evaluation of a tetrahedral spin network with
a grasping insertion is proportional to the evaluation of a spin network based
on a tetrahedron graph with an additional trivalent vertex whose edges carry
the spin one representations and connect the 3 edges carrying the spins j, k and
l, see Figure 1. The Zn which follows from (5) will be then given by a sum

of (n+N−1)!
n!(N−1)! terms where each term corresponds to the PR state sum with n

graspings distributed among the N tetrahedra. The weight of a tetrahedron
with m graspings is given by an analogous evaluation of the SU(2) spin network
from Figure 1 with m insertions.

In order to make all the PR state sums Zn finite, we will replace all the SU(2)
spin networks associated with a Zn with the corresponding quantum SU(2) spin
networks at a root of unity. In the following sections we will show how to do
this.
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3 Quantum SU(2) invariants of links and three-

manifolds

We gather some well known facts about quantum SU(2) invariants which we
will need in this paper.

3.1 Spin network calculus

Consider an integer parameter r ≥ 3 (fixed throughout this article), and let

q = e
iπ
r . Define the quantum dimensions dimq j = (−1)2j q2j+1−q−2j−1

q−q−1 , where

i ∈ {0, 1/2, . . ., (r − 2)/2}. If the edges of a trivalent framed graph Γ embed-
ded in S3 are assigned spins j1, j2, ..., jn ∈ {0, 1/2, ..., (r − 2)/2}, then we can
consider the value 〈Γ; j1, ..., jn〉 ∈ C obtained by using the quantum spin net-
work calculus at q; we will use the normalisation of [KL]. We can also consider
the case in which the edges of Γ are assigned linear combination of spins, with
multilinear dependence on the colourings of each edge of Γ. A very important
linear combination of spins is the “Ω-element” given by:

Ω =

r−2
2
∑

j=0

dimq(j)Rj ,

where Rj denotes the representation of spin j.
A sample of the properties satisfied by the Ω-element appears in [R, L, KL].

In Figure 3 we display a special case of the Lickorish Encircling Lemma, of
which we will make explicit use.

Define 〈©0; Ω〉 = η and 〈©1; Ω〉 = κ
√

η, the evaluation of the 0- and 1-
framed unknots coloured with the Ω-element. Therefore we have that

η =

(r−2)/2
∑

j=0

(dimq j)2 =
r

2 sin2
(

π
r

) .

On the other hand κ = q
−3−r2

2 e−
iπ
4 , and 〈©−1〉 =

√
ηκ−1; see [R].

3.2 Generalised Heegaard diagrams

Let M be a closed oriented piecewise-linear 3-manifold. Choose a handle de-
composition of M ; see [RS, GS]. Let H− be the union of the 0- and 1-handles
of M . Let also H+ be the union of the 2- and 3-handles of M . Both H− and
H+ have natural orientations induced by the orientation of M . There exist two
non-intersecting naturally defined framed links m and ǫ in H−; see [R]. The sec-
ond one is given by the attaching regions of the 2-handles of M in ∂H− = ∂H+,
pushed inside H−, slightly. On the other hand, m is given by the belt-spheres of
the 1-handles of M , living in ∂H−. The sets of curves m and ǫ in H− have natu-
ral framings, parallel to ∂H−. The triple (H−, m, ǫ) will be called a generalised
Heegaard diagram of the oriented closed 3-manifold M .
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3.3 The Chain-Mail Invariant

We now recall the definition of J. Robert’s Chain-Mail invariant of closed ori-
ented 3-manifolds. This construction will play a fundamental role in this article.
Let M be a connected 3-dimensional closed oriented piecewise linear manifold.
Consider a generalised Heegaard diagram (H−, m, ǫ), associated with a handle
decomposition of M . Give H− the orientation induced by the orientation of
M . Let Φ: H− → S3 be an orientation preserving embedding. Then the image
of the links m and ǫ under Φ defines a link CH(H−, m, ǫ, Φ) in S3, called the
“Chain-Mail Link”. J. Roberts proved that the evaluation 〈CH(H−, m, ǫ, Φ); Ω〉
of the Chain-Mail Link coloured with the Ω-element is independent of the ori-
entation preserving embedding Φ: H− → S3; see [R], Proposition 3.3.

The Chain-Mail Invariant of M is defined as:

ZCH(M) = η−n0−n2 〈CH(H−, m, ǫ, Φ); Ω〉 ,

where ni is the number of i-handles of M . It is proved in [R] that this Chain-
Mail Invariant is independent of the chosen handle decomposition of M and
that it coincides with the Turaev-Viro Invariant ZTV(M) of M ; see [TV].

3.4 The Turaev-Viro Invariant

Let M be 3-dimensional closed connected oriented piecewise linear manifold.
Consider a piecewise linear triangulation of M . We can consider a handle de-
composition of M where each i-simplex of M generates a (3 − i)-handle of M ;
see for example [R]. Applying the Chain-Mail construction to this handle de-
composition, yields the following combinatorial picture for the calculation of the
Chain-Mail Invariant ZCH(M), which, in this form, is called the Turaev-Viro
Invariant ZTV.

A colouring of M is an assignment of a spin j ∈ {0, 1/2, ..., (r−2)/2} to each
edge of M . Each colouring of a simplex s gives rise to a weight W (s) ∈ C, in
the way shown in Figure 2.

Using the identity shown in Figure 3 together with Figure 4, it follows that:

ZCH(M) =
∑

colourings of M

∏

simplices s of M

W (s)

= ZTV(M).

Note that we apply Lickorish Encircling Lemma to the 0-framed unknot defined
from each face of the triangulation of M ; see Figure 5. The last expression for
ZCH is the usual definition of the Turaev-Viro Invariant. For a complete proof
of the fact that ZTV = ZCH, see [R].

3.5 The Witten-Reshetikhin-Turaev Invariant

The main references now are [L], [RT] and [R]. Let M be an oriented connected
closed 3-manifold. Then M can be presented by surgery on some framed link
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η−1

a dimq(a) =
〈

a

c
d

e

c d e

i j k

l m

n

θ(c, d, e)−1 =
〈

i

j

k

l

m

nτ(i, j, k, l, m, n) =
〈

〉

〉−1

〉

Figure 2: Weights associated with coloured simplices. All spin networks are
given the blackboard framing.

Ω

a b c a b c

a b c

= ηθ(a, b, c)−1

Figure 3: Lickorish Encircling Lemma for the case of three strands. All networks
are given the blackboard framing.
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Figure 4: Local configuration of the Chain-Mail Link at the vicinity of a tetra-
hedron.

Ω

Ω Ω Ω a b c

a b c

= η
∑

a,b,c

dimq(a) dimq(b) dimq(c)θ(a, b, c)−1

Figure 5: Applying Lickorish Encircling Lemma to the 0-framed link determined
by a face of the triangulation of M .

L ⊂ S3, up to orientation preserving diffeomorphism. Any framed graph Γ in
M can be pushed away from the areas where the surgery is performed, and
therefore any pair (M, Γ), where Γ is a trivalent framed graph in the oriented
closed 3-manifold M , can be presented as a pair (L, Γ), where Γ is a framed
trivalent graph in S3, not intersecting L.

The Witten-Reshetikhin-Turaev Invariant of a pair (M, Γ), where the framed
graph Γ is coloured with the spins j1, ..., jn, is defined as:

ZWRT(M, Γ; j1, ..., jn) = η−#L+1
2 κ−σ(L) 〈L ∪ Γ; Ω, j1, ..., jn〉 .

Here σ(L) is the signature of the linking matrix of the framed link L, and #L is
the number of components of L. This is an invariant of the pair (M, Γ), up to
orientation preserving diffeomorphism. In contrast with the Turaev-Viro Invari-
ant, the Witten-Reshetikhin-Turaev Invariant is sensitive to the orientation of
M . If M is an oriented 3-manifold, we represent the manifold with the reverse
orientation by M .

With the normalisations that we are using, the Turaev-Walker theorem
reads:

ZTV(M) = |ZWRT(M)|2,
for any closed 3-manifold M ; see [R, T].

Some other well known properties of the Witten-Reshetikhin-Turaev Invari-
ant are the following:
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Theorem 3.1 We have:

ZWRT(S3) = η−1/2, ZWRT(S2 × S1) = 1,

ZWRT(M) = ZWRT(M),

ZWRT

(

(P, Γ)#(Q, Γ′)
)

= ZWRT(P, Γ)ZWRT(Q, Γ′)η
1
2 .

Here M , P and Q are oriented closed connected 3-manifolds. In addition, Γ
and Γ′ are coloured graphs embedded in P and Q. It is understood that the
connected sum P#Q is performed away from Γ and Γ′.

Given oriented closed connected 3-manifolds P and Q, we define P#nQ in
the following way; see [BGM]. Remove n 3-balls from P and Q, and glue the
resulting manifolds P ′ and Q′ along their boundary in the obvious way, so that
the final result is an oriented manifold. We denote it by:

P#nQ = P ′
⋃

∂P ′=∂Q′

Q′.

It is immediate that P#1Q = P#Q, and that P#nQ is diffeomorphic to
(P#Q)#(S1 × S2)#(n−1), if n > 1. By using Theorem 3.1 it follows that:

ZWRT(P#nQ, Γ ∪ Γ′; j1, ..., jp, i1, ..., im)

= ZWRT(P, Γ; j1, ..., jp)ZWRT(Q, Γ′; i1, ..., im)η
n
2 . (7)

Here P and Q are closed oriented 3-manifolds. In addition, Γ and Γ′ are graphs
in P and Q, coloured with the spins j1, ..., jp and i1, ..., im, respectively. As
before, it is implicit that the multiple connected sum P#nQ is performed away
from Γ and Γ′.

4 Perturbative expansion

In this section we are going to define the Zn’s considered in the introduction.

4.1 Graspings

Let K be a simplicial complex whose geometric realisation |K| is a piecewise-
linear closed p-dimensional manifold. Recall that we can define the dual cell
decomposition of |K|, where each k-simplex of K generates a dual (p− k)-cell of
the dual cell decomposition of |K|, see [TV, 3.3], for example. This is very easy
to visualise in three dimensions.

Definition 4.1 (n-grasping) Let T ⊂ R3 be the standard tetrahedron. For a
positive integer n ∈ N, an n-grasping γ is a sequence (v1v2 . . . vn), where vk is
a vertex of T for each k = 1, 2, . . . , n.

10



v

Iv

GT

Figure 6: The form of the graph Gγ = GT ∪ Iv ⊂ ∂T defined from a grasping
γ = (v), where v is a vertex of T. Note that Iv is placed inside the dual face to
v, and thus it intersects GT in the dual edges of the edges incident to v.

Any 1-grasping γ = (v), where v is a vertex of T, naturally defines a trivalent
graph Gγ on the boundary ∂T of T (usually called a grasping itself), by doing
the transition shown in Figure 6. The graph Gγ is therefore the union GT ∪Iv,
where GT is the dual graph to the 1-skeleton of the obvious triangulation of ∂T,
and Iv is homeomorphic to the graph Y made from a trivalent vertex and three
open-ends.

We want to define, in an analogous fashion, a trivalent graph Gγ ⊂ ∂T from
an n-grasping γ = (v1v2 . . . vn). This is not possible unless further information
is given. We want Gγ to be the union of GT and a disjoint union ⊔n

i=1Yi,
where each graph Yi is homeomorphic to the graph Y. To describe Gγ we
need to specify where the ends of each Yi intersect GT, as well as the crossing
information. To this end we give the following definition:

Definition 4.2 (Space ordering of an n-grasping) Let again T ⊂ R
3 be

the standard tetrahedron. Let GT be the dual graph to the obvious triangula-
tion of the boundary ∂T of T. Any edge e of T therefore defines a dual edge
e∗ of the graph GT ⊂ ∂T. Let γ = (v1 . . . vn) be an n-grasping. A space pre-
ordering of γ is given by an assignment of a subset Oi = {xi

1, x
i
2, x

i
3} ⊂ GT to

each i = 1, 2, . . . , n such that:

1. For each i, xi
1, x

i
2 and xi

3 belong to different edges of GT, and each of these
points belongs to the dual edge of an edge incident to vi.

2. Oi ∩ Oj = ∅ if i 6= j.

A space ordering Oγ of γ is given by a space pre-ordering of γ considered up to
ambient isotopy of ∪n

i=1O
i inside GT.

There exists therefore a unique space ordering of a 1-grasping γ = (v).
Let now γ = (v1v2 . . . vn) be an n-grasping with a certain space ordering

Oγ =
(

{xi
1, x

i
2, x

i
3}
)n

i=1
. We define an associated graph G(γ,O) in ∂T, with

11



v

w

I1
v

I2
v

I3
w

I1
v

I2
v

I3
wGT

GT

Figure 7: Defining the graph G(γ,Oγ) defined from a grasping γ = (vvw) for
two different space orderings of γ.

crossing information, as being:

G(γ,O) = GT ∪
n
⋃

i=1

Ii
vi ,

where:

1. Ii
vi is homeomorphic to Ivi (see above) for each i = 1, . . . n.

2. Ii
vi
∩ GT = {xi

1, x
i
2, x

i
3} for each i = 1, 2, . . . , n.

3. If i < j then Ii
vi

is placed above Ii
vj

, with respect to the boundary of T.

See Figure 7 for the description of the graph G(γ,Oγ) for two different space
orderings of γ = (vvw), where v 6= w.

Given a 1-grasping γ = (v) living in the tetrahedron T, define σ(v) as being
given by the set made from the three edges of T incident to v. Given an n-
grasping γ = (v1 . . . vn) living in T, define σ(γ) = ∪n

i=1σ(vi).

4.2 The first-order volume expectation value

Let M be a piecewise linear oriented closed 3-manifold (from now on called
simply a 3-manifold). Consider a triangulation ∆ of M . Let M0, M1, M2 and
M3 be the set of vertices, edges, triangles and tetrahedra of M .

A colouring of M is an assignment of a spin j ∈ {0, 1/2, ..., (r−2)/2} to each
edge of M . Each colouring of a simplex s of M gives rise to a weight W (s), in
the way shown in Figure 2, exactly the same fashion as in the definition of the
Turaev-Viro Invariant ZTV.

Consider a tetrahedron T of M (whose edges are coloured), with some n-
grasping γ = (v1 . . . vn), provided with a space ordering O. Choose an orienta-
tion preserving embedding of T into S3, which is defined up to isotopy. Then
the weight W (T, γ,O) is defined as being the factor A(T, γ) (see below) times
the evaluation of the spin network G(γ,O) = GT ∪⋃n

i=1 Ii
vi ⊂ ∂T ⊂ S3, where

GT has the colouring given by the colouring of M (recall that each edge of GT

is dual to a unique edge of T ), and all edges of each Ii
vi are assigned the spin

12



1. Note that the graph G(γ,O) ⊂ ∂T has a natural framing parallel to the
boundary of T . If γ = (v1, . . . , vn) is an n-grasping, the factor A(T, γ) is, by
definition:

n
∏

i=1

Ali1
Ali2

Ali3
,

where for each i we let li1, li2 and li3 denote the colourings of the three edges of
T incident to vi and the Al’s are given by (6).

The first-order volume expectation value can be represented as

〈V (M)〉 =

∫

DADB V (M) ei
R

M
Tr(B∧F ) ,

where V (M) =
∫

M ǫabcB
a ∧ Bb ∧ Bc is the volume of M . It corresponds to

−iZ1 = i
∑N

k=1 ∂3
J (τk)ZJ

∣

∣

∣

0
, which can be defined as

iVTV(M, ∆) =
i

4

∑

T∈M3

∑

1-graspings γ of T

vTV(M, T, γ), (8)

where, by definition:

vTV(M, T, γ) =
∑

colourings of M

W
(

T, γ,O)

∏

T ′∈M3\{T}
W (T ′)

∏

s∈M0∪M1∪M2

W (s). (9)

Recall that any 1-grasping γ has a unique space ordering O.
Let v(M) = VTV(M, ∆)/N , where N is the number of tetrahedra of M .

Theorem 4.3 For any triangulation of M we have v(M) = 0.

Proof. Each term vTV(M, T, γ) can be presented in a Chain-Mail way. As
in [R], consider the natural handle decomposition of M for which each i-simplex
of M generates a (3− i)-handle of M . This handle decomposition is dual to the
one where each i-simplex of M is thickened to an i-handle of M .

Let us consider the Chain-Mail formula

ZCH(M) = η−n0−n2 〈CH(H−, m, ǫ, Φ); Ω〉 ,

for ZTV(M), obtained from this handle decomposition of M ; see 3.4 and [R].
Here ni is the number of i-handles of M , and therefore it equals the number of
(3 − i)-simplices of M . From the same argument that shows that ZTV(M) =
ZCH(M), follows that:

vTV(M, T, γ) =
∑

a,b,c

AaAbAc dimq(a) dimq(b) dimq(c)η
−n0−n2

〈CH(H−, m, ǫT,γ , (l1 ⊔ l2 ⊔ l3) ∪ Yv, Φ); Ω, Ω, a, b, c, 1〉 ,

where:
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v

1
1

1

a b

c

Figure 8: Local configuration of the Chain-Mail Link at the vicinity of a tetra-
hedron T , for the case when T has a grasping γ = (v). All strands are coloured
with Ω, unless indicated.

1. All components of m are coloured with Ω.

2. Recall that each circle of the link ǫ corresponds to a certain edge of M .
The components l1, l2 and l3 of ǫ which correspond to the edges e1, e2

and e3 incident to v, where γ = (v), should be coloured with the spins
a, b, c ∈ {0, 1/2, ..., (r − 2)/2}, whereas the remaining components (which
form the link ǫT,γ) should be coloured with Ω.

3. The component Yv, where γ = (v), is a trivalent vertex with three open
ends, each of which is incident to either l1, l2 or l3, with no repetitions,
with framing parallel to the surface of H−; see Figure 8. The three edges
of Yv are to be assigned the spin 1.

4. Finally, Φ is an orientation preserving embedding H− → S3. As in the
case where no graspings are present, the final result is independent of this
choice; see [R, Proof of Proposition 3.3].

By cancelling some pairs of 0- and 1-handles, we can reduce the handle
decomposition of M to one with a single 0-handle. Similarly, by eliminating
pairs of 2- and 3-handles, we can reduce the handle decomposition of M to
one having four 3-handles, each of which corresponds to one of the vertices of
the triangulation of M which are endpoints of the edges of T incident to v,
where γ = (v), and so that the 2-handles corresponding to the three edges of
T incident to v are still in the handle decomposition. The chain-mail link of
the new handle decomposition of M will then be CH(H−, m′, ǫ′, Φ), where m′ is
obtained from m by removing some circles, and the same for ǫ′. Let n′

i be the
number of i-handles of the new handle decomposition of M .

14
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Figure 9: The graph Rγ inside ∂ρ(Sγ).

1
1

1

a b

c

Figure 10: The coloured graph Ŷ.

Let ǫ′T,γ = ǫ′\{l1⊔l2⊔l3}. By the same argument as in [R, Proof of Theorem
3.4] follows:

vTV(M, T, γ) =
∑

a,b,c

AaAbAc dimq(a) dimq(b) dimq(c)η
−n′

0−n′
2

〈

CH(H−, m′, ǫ′T,γ , (l1 ⊔ l2 ⊔ l3) ∪ Yv, Φ); Ω, Ω, a, b, c, 1
〉

.

Given a compact 3-manifold with border Q embedded in the oriented 3-
manifold M , define M#QM as being the manifold obtained from M and M by
removing the interior of Q from each of them and gluing the resulting manifolds
along the identity map ∂(M \ Q) → ∂(M \ Q).

Let Sγ be the graph in M made from the edges of T incident to γ = (v),
together with their endpoints. Each edge of Sγ will induce a 2-handle of M and
its four vertices will induce 3-handles of M . The union of these handles will be
a regular neighbourhood ρ(Sγ) of Sγ . Consider the graph Rγ in ∂ρ(Sγ) made
from the attaching spheres of these 2-handles, with a Y-graph inserted, as in
Figure 9.

By the using either the argument in [BGM, Proof of Theorem 1]) or in

15



[FMM, Proof of Lemma 3.3], the pair (Φ(m′ ∪ ǫ′T,γ), Φ((l1 ⊔ l2 ⊔ l3) ∪ Yv)) is a

surgery presentation of the manifold M#ρ(Sγ)M , with the graph Rγ ⊂ ∂ρ(Sγ)
inserted in ∂(M \ ρ(Sγ)).

The signature of the link Φ(m′∪ǫ′T,γ) is zero, given that it is a Kirby diagram
for the manifold (M \ ρ(Sγ))× I; see [R, Proof of Theorem 3.7] or [BGM, Proof
of Theorem 1]. Therefore it follows that:

vTV(M, T, γ) =
∑

a,b,c

AaAbAc dimq(a) dimq(b) dimq(c)

η− 7
2 ZWRT(M#ρ(Sγ)M, Rγ ; a, b, c, 1).

We have used the calculation η−n′
0−n′

2+
1+n′

1+n′
2−3

2 = η− 7
2 , which follows from

the fact that the Euler characteristic of a closed orientable 3-manifold is zero.
Note that n′

0 = 1 and n′
3 = 4, by construction.

Since ρ(Sγ) is a closed 3-ball embedded in M it follows that M#ρ(Sγ)M ∼=
M#M . On the other hand, the graph Rγ is obviously trivially embedded in
M#M , in the sense that there exists an embedding B3 → M sending the graph
Ŷ of Figure 10 to Rγ . This leads to:

vTV(M, T, γ)

=
∑

a,b,c

AaAbAc dimq(a) dimq(b) dimq(c)η
− 7

2 ZWRT(M#ρ(Sγ)M, Rγ ; a, b, c, 1)

=
∑

a,b,c

AaAbAc dimq(a) dimq(b) dimq(c)η
− 7

2 ZWRT(M#M#S3, Ŷ; a, b, c, 1)

=
∑

a,b,c

AaAbAc dimq(a) dimq(b) dimq(c)η
− 7

2 +1ZTV(M)ZWRT(S3, Ŷ; a, b, c, 1)

=
∑

a,b,c

AaAbAc dimq(a) dimq(b) dimq(c)η
−3ZTV(M)

〈

Ŷ; a, b, c, 1
〉

.

Since the graph Ŷ consists of three tadpole graphs, and the evaluation of a
tadpole quantum spin network is zero, see [CFS, Theorem 3.7.1] or [KL, Chapter
9], then < Ŷ; a, b, c, 1 >= 0, which implies v(M) = 0.

Given that Z1 = −VTV, we have

Z1(M, ∆) = Nz1ZTV(M) = 0 ,

where

z1 = −η−3
∑

a,b,c

AaAbAc dimq(a) dimq(b) dimq(c)
〈

Ŷ; a, b, c, 1
〉

= 0 ,

and N is the number of tetrahedra of M .
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4.3 Higher-order corrections

Let M be a 3-manifold with a triangulation ∆. Let n be a positive integer.
An n-grasping G of M is a set TG = {T G

1 , . . . , T G
mG

} of tetrahedra of M (where

T G
i 6= T G

j if i 6= j), each of which is provided with a space ordered nG
i -grasping

(γG
i ,OG

i ), where nG
i > 0, such that nG

1 + nG
2 + . . . + nG

mG
= n. The set TG is said

to be an n-grasping support and the n-grasping G of M is said to be supported
in TG .

Recall the definition of the weights W (T, γ,O) ∈ C, where T is a coloured
tetrahedra, with a space ordered grasping (γ,O) living in T . This appears in
the beginning of Subsection 4.2, to which we refer for the notation below.

Define:

V
(n)
TV (M, ∆) =

1

4n

∑

n-graspings G of M

∑

colourings of M

mG
∏

i=1

W (T G
i , γG

i ,OG
i )

∏

T ′∈M3\TG

W (T ′)
∏

s∈M0∪M1∪M2

W (s), (10)

which can also be written as

V
(n)
TV (M, ∆) =

1

4n

n
∑

K=1

∑

n−graspings supports T
with K tetrahedra

∑

n−graspings G of M
supported in T

∑

colourings of M

K
∏

i=1

W (T G
i , γG

i ,OG
i )

∏

T ′∈M3\T
W (T ′)

∏

s∈M0∪M1∪M2

W (s). (11)

Observe that V
(n)
TV is related to the expectation value of the n-th power of

the volume V =
∫

M
ǫabcB

a ∧ Bb ∧ Bc:

〈V n〉 ≡ V̂ nZ(J)
∣

∣

∣

0
= inn!V

(n)
TV ,

where V̂ = i
∑N

k=1 ∂3
J (τk) is the volume operator. Furthermore

Z =

∞
∑

n=0

inλn

n!
〈V n〉 =

∞
∑

n=0

(−1)nλnV
(n)
TV . (12)

Let us analyse whether expressions (10) and (11) define a topological invari-
ant. Consider the bottom term of (11):

X(M, ∆, K,G)

=
∑

colourings of M

K
∏

i=1

W (T G
i , γG

i ,OG
i )

∏

T ′∈M3\TG

W (T ′)
∏

s∈M0∪M1∪M2

W (s).
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It depends on an n-grasping G = {T G
i , γG

i ,OG
i }K

i=1 of M supported in the set
with K tetrahedra TG = {T G

i }K
i=1.

As in the proof of Theorem 4.3, the value of X(M, ∆, K,G) can be presented
as the evaluation of a chain-mail link, with some additional 3-valent vertices
inserted.

Let T 1
G be given by

T 1
G =

K
⋃

i=1

σ
(

γG
i

)

, (13)

see the end of Subsection 4.1 for this notation. Let also

A(G, c) =

K
∏

i=1

A
(

T G
i , γG

i

)

; (14)

depending on a colouring c of M ; see subsection 4.2.
We have

X(M, ∆, K,G)

=
∑

colourings c of T 1
G

A(G, c) dimq(c)η
−n0−n2 〈CH(m, ǫTG

, LG , Φ); Ω, c, 1〉 , (15)

where:

1. All components of the link m are coloured with Ω.

2. The graph LG is made from the attaching regions of the 2-handles of M
which correspond to the edges of the triangulation of M belonging to T 1

G ,
with the obvious colouring, with n Y-graphs inserted in the obvious way,
and coloured by the spin-1 representation.

3. The link ǫTG
is formed by the attaching regions of the 2-handles of M

corresponding to the remaining edges of M . These should be coloured
with the Ω-element.

4. We have put

dimq(c) =
∏

e∈T 1
G

dimq c(e).

5. As usual Φ is an embedding H− → S3. The final result is independent of
this choice.

We can now reduce the handle decomposition of M to one with a unique
0-handle, and so that all n′

3 3-handles of it are dual to vertices of M occurring
as endpoints of edges in T 1

G . Moreover, we can suppose that the 2-handles of
M which are dual to the edges of T 1

G are still in the new handle decomposition.
Let ρ(T 1

G ) be a regular neighbourhood of T 1
G in M . Similarly to the n = 1

case, the graph LG naturally projects to a graph RG in ∂(ρ(T 1
G )), with crossing
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Figure 11: The graph RG in ∂(ρ(T 1
G )). Here G is a grasping of M supported in

the set T 1
G = {T1, T2}, with γ1

G = (v) and γ2
G = (vw), and the space ordering

shown. In this example, ρ(T 1
G ) is obtained by thickening the solid edges of T1

and T2.

information; see Figure 11 for an example. By the same argument as in the
proof of Theorem 4.3 it follows that:

X(M, ∆, K,G) =

∑

colourings c of T 1
G

A(G, c) dimq(c)η
− n′

3
2 −#T 1

G
2 ZWRT

(

M#ρ(T 1
G

)M, RG
)

. (16)

In contrast to the case when G is a 1-grasping, the expression (16) is not
apriori a topological invariant of M . This is because there can exist several
subsets of M that are of the form ρ(T 1

G ), for some n-graping G of M with K
tetrahedra, if we consider an arbitrary triangulation ∆ of M ; we will go back
to this later. This is the reason why a similar result to Theorem 4.3 does not

immediately hold for V
(n)
TV (M, ∆) for n > 1.

Note that equation (16) simplifies to

X(M, ∆, K,G)

=
∑

colourings c of T 1
G

A(G, c) dimq(c)η
−n′

3
2 −#T 1

G
2 ZWRT

(

M#(S3#ρ(T 1
G

)S
3)#M, RG

)

(17)

=
∑

colourings c of T 1
G

A(G, c) dimq(c)η
1− n′

3
2 −#T 1

G
2 ZTV(M)ZWRT

(

S3#ρ(T 1
G

)S
3, RG

)

,

(18)
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whenever T 1
G is confined to a closed ball contained in M . For fixed n, this

happens whenever the triangulation ∆ of M is fine enough.

5 Dilute Gas Limit

Let M be a 3-manifold. Similarly to [Ba2], to eliminate the triangulation de-

pendence of V
(n)
TV (M, ∆), we want to consider the limit

lim
|∆|→0

1

Nn
V

(n)
TV (M, ∆), (19)

in a sense that still needs to be addressed. Here N = N∆ denotes the number
of tetrahedra of a triangulation ∆ of M . The case considered in [Ba2] is the
limit when the maximal diameter of each tetrahedra of a triangulation ∆ of M
tends to zero, called there the “Dilute Gas Limit.”

5.1 Preliminary approach

Warning There exists a gap in the argument below; see Assumption 1. It
corresponds to Conjecture B in page 8 of [Ba2]. In Subsection 5.2 we explain
how we can go around it by restricting the class of triangulations with which we
work, so that all calculations are valid.

The number of n-grasping supports with K tetrahedra in a triangulated mani-
fold with N tetrahedra is given by the number of cardinality K subsets of the
set of tetrahedra of M , in other words by N !

(N−K)!K! . On the other hand:

1

Nn
V

(n)
TV (M, ∆)

=
1

4nNn

n
∑

K=1

∑

n−grasping supports T
with K tetrahedra

∑

n−graspings G of M
supported in T

X(M, ∆, K,G), (20)

where, according to equation (16),

X(M, ∆, K,G)

=
∑

colourings c of T 1
G

A(G, c) dimq(c)η
−n′

3
2 −#T 1

G
2 ZWRT

(

M#ρ(T 1
G

)M, RG
)

.

Assumption 1 Fix a 3-manifold M and a positive integer n. Suppose that
there exists a positive constant C = C(M, n) < +∞ for which we have that
|X(M, ∆, K,G)| ≤ C, for any triangulation ∆ of M , any K ∈ {1, . . . n} and
any n-grasping G of M with K tetrahedra.

The number of n-graspings that can supported in an arbitrary set with K tetra-
hedra, with 1 ≤ K ≤ n, is certainly bounded by a positive constant C′ < ∞.
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As ∆ → 0, the number of tetrahedra of M goes to infinity. Therefore if K < n
then
∣

∣

∣

∣

∣

∣

∣

∣

1

Nn

∑

n−grasping supports T
with K tetrahedra

∑

n−graspings G of M
supported in T

X(M, ∆, K,G)

∣

∣

∣

∣

∣

∣

∣

∣

≤ N !

Nn(N − K)!K!
CC′ → 0

if N → +∞.
Let us now consider n-graspings of M living in n tetrahedra. Such graspings

are called separated if the tetrahedra of its support are pairwise disjoint. It is
complicated to determine the exact number of separated n-graspings with n-
tetrahedra. This is because this is highly dependent on the local configuration
of the chosen triangulation of M .

Restriction 2 Choose a positive integer D = D(M). We consider only trian-
gulations ∆ of M such that any tetrahedra of M intersects at most D tetrahedra
of M .

As we will see below in Subsection 5.2, there exists a positive integer D for which
any 3-manifold M has a triangulation such that any tetrahedra of it intersects at
most D tetrahedra, and triangulations like this can be chosen to be arbitrarily
fine.

Restricting to this type of triangulations, the number of separated n-grasping

supports is not smaller than N(N−D)(N−2D)...(N−nD+D)
n! , whereas the number

of n-grasping supports with n-tetrahedra is N(N−1)(N−2)...(N−n+1)
n! .

Going back to equation (20), the value of

1

Nn

∑

n−grasping supports T
with n tetrahedra

∑

n−graspings G of M
supported in T

X(M, ∆, n,G)

splits into the contribution of separated and non-separated n-graspings with n
tetrahedra. Since by Assumption 1 the set of possible values of X(M, ∆, n,G)
is bounded, the contribution of non-separated configurations goes to zero as the
number N of tetrahedra of M goes to +∞. Therefore we have:

lim
N→∞

1

Nn
V

(n)
TV (M, ∆)

= lim
N→∞

1

4nNn

∑

separated n−grasping supports T
with n tetrahedra

∑

n−graspings G of M
supported in T

X(M, ∆, n,G).

(21)

Now, the value of X(M, ∆, n,G) is in fact independent of the chosen sepa-
rated n-grasping G = {Ti, γi}n

i=1 of M , supported in the set TG = {Ti}n
i=1 of
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n non-intersecting tetrahedra of M ; compare with Conjecture A on page 8 of
[Ba2]. Note that space orderings are not relevant in this case.

Let us see why it is so. By equation (16) it follows that:

X(M, ∆, n,G) =
∑

colourings c of T 1
G

A(G, c) dimq(c)η
− 7

2nZWRT

(

M#ρ(T 1
G

)M, RG
)

,

(22)
since n′

3 is the number of vertices of M which are endpoints of edges in T 1
G , and

in this case T 1
G is, topologically, the disjoint union of n Y-graphs, with a unique

vertex and three open ends.
Given that any two embeddings of a disjoint union of n Y-graphs into M

are isotopic, it thus follows that the value of X(M, ∆, n,G) is independent of
the chosen separated n-grasping G with n tetrahedra. Therefore, by the same
argument as in the proof of Theorem 4.3, and by using equation (7), it follows
that (whenever G is separated)

X(M, ∆, n,G)

= η−3n





∑

a,b,c

dimq(a) dimq(b) dimq(c)AaAbAc

〈

Ŷ; a, b, c, 1
〉





n

ZTV(M)= 0.

Here Ŷ is the graph of Figure 10.
There are exactly 4n grasping supported on a set of n non-intersecting tetra-

hedra. On the other hand, the number of separated n-graspings supports is cer-

tainly between N(N−D)(N−2D)...(N−nD+D)
n! and N(N−1)(N−2)...(N−n+1)

n! . Putting
everyting together follows that (should Assumption 1 hold true), and restricting
to triangulations satisfying Restriction 2 that

1

Nn
V

(n)
TV (M, ∆) −→ 0.

whenever the number N of tetrahedra of a triangulation ∆ of M converges to
+∞. This finishes a preliminary analysis of the Dilute Gas Limit.

5.1.1 The problem with Assumption 1

Fix a positive integer n and a 3-dimensional manifold M . We would like to
prove that there exists a positive constant C = C(M, n) < ∞ such that
|X(M, ∆, K,G)| ≤ C, for any n-grasping G of M with K tetrahedra, where
K = 1, 2, . . . n, and an arbitrary triangulation ∆ of M . This is a difficult prob-
lem.

The approach taken in [Ba2] was to conjecture that X(M, ∆, K,G) can only
take a finite number of values, for fixed M and n. However, this is very likely
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to be false in our case. Indeed, as we have seen above,

X(M, ∆, K,G)

=
∑

colourings c of T 1
G

A(G, c) dimq(c)η
−n′

3
2 −#T 1

G
2 ZWRT

(

M#ρ(T 1
G

)M, RG
)

,

where G = {(T G
i , γG

i ,OG
i )}K

i=1, T 1
G is defined in equation (13) and A(G, c) is

defined in equation (14). For fixed K and n, where K is large enough, con-
sidering the set of all triangulations ∆ of M , there can be an infinite number
of isotopy classes of sets of M that are of the form T 1

G for some n-grasping
G = {(Ti, γi,Oi)}K

i=1 with K tetrahedra.
For example, consider a triangulation of the solid torus with K tetrahedra,

with a grasping in each, so that all edges of these K tetrahedra are incident to
some grasping. Then embed the solid torus into the manifold M (there exists an
infinite number of such embeddings) and extend the triangulation of the solid
torus to a triangulation of M (this can always be done).

Therefore X(M, ∆, K,G) can almost certainly take an infinite number of
values for fixed n and M , from which we can assert that Conjecture A in page 8
of [Ba2] is probably false in our particular case2. This makes it difficult to give
an upper bound for X(M, ∆, K,G).

To fix this problem we will alter slightly the way of defining the limit (19),
by restricting the class of allowable triangulations.

5.2 Exact Calculation

Since they are easier to visualise, we will now switch to cubulations of 3-
manifolds. Fix a closed 3-manifold M . A cubulation of M is a partition of
it into 3-cubes, such that if two cubes intersect they will do it in a common
face, edge or vertex of each. Note that any 3-manifold can be cubulated.

Any cubulation � of M will give rise to a triangulation ∆� of it by taking
the cones first of each face and then of each cube of M . Given a cubulation �

of M we therefore define

V
(n)
TV (M, �) = V

(n)
TV (M, ∆�).

Here n is a positive integer.
The three dimensional cube can be naturally subdivided into 8 cubes. This

will be called the baricentric subdivision. The baricentric subdivision of a cubu-
lated manifold is obtained by doing the baricentric subdivision of each cube of
it. Denote the vth baricentric subdivision of M by �

v.
Fix a cubulation � of M . We want to consider the limit:

lim
v→+∞

1

Nn
v

V
(n)
TV (M, �v), (23)

2The number of topologically distinct possible classes for (T 1
G

, RG) is infinite; however,

there still exists the unlikely possibility that ZWRT

“

M#ρ(T 1
G

)M, RG

”

may take only a finite

number of values.
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Figure 12: Tri-valent and penta-valent cubulations of the disk D2.

where Nv is the number of tetrahedra of the triangulation ∆�v of M .
We want to use the calculation in 5.1. Therefore Assumption 1 and Restric-

tion 2 need to be addressed. Their validity is, as we have seen, highly dependent
on the local combinatorics of the chosen triangulations. Therefore, we make the
following restriction on the cubulations with which we work.

Definition 5.1 (Acceptable cubulation) The valence of an edge in a cubu-
lated 3-manifold M is given by the number of cubes in which the edge is con-
tained. A cubulation of the 3-manifold M is called acceptable if any edge of M
has valence 3, 4 or 5, and the set of edges of order 3 and of order 5 match up to
form 1-dimensional disjoint submanifolds Σ3 and Σ5 of M .

It is proved in [CT] that any closed orientable 3-manifold has an acceptable
cubulation. Note that if � is acceptable then so is the baricentric subdivision
of it; see below.

Let us try to visualise an acceptable cubulation of M . The manifolds Σ3 and
Σ5 are disjoint union of circles S1. Let Σ be a component of Σ3. The cubical
subcomplex Σ̂ of M made from the cubes of M which contain some simplex
of Σ, together with their faces, is diffeomorphic to D2 × S1. Moreover Σ̂ is
cubulated as the product of the tri-valent cubulation of the disk D2, shown in
Figure 12, with some cubulation of S1. An analogous picture holds if Σ is a
component of Σ5, by using the penta-valent cubulation of the disk D2 shown
in Figure 12. Then what is left of the cubulation of M is locally given by some
portion of the natural cubulation of the 3-space (with vertices at Z × Z × Z.)

From this picture, it is easy to see that if � is an acceptable cubulation of
M then so is the baricentric subdivision of it. Moreover, we can show that there
exists a positive integer D such that, for any 3-manifold with an acceptable
cubulation �, then any tetrahedron of ∆� intersects at most D tetrahedra of
∆�. This proves that Restriction 2 will hold if we consider triangulations coming
from taking the cone of acceptable cubulations.

Looking at Assumption 1, let us now prove that given an acceptable cubu-
lation � of M , then

X(M, ∆�v , K,G)

=
∑

colourings c of T 1
G

A(G, c) dimq(c)η
−n′

3
2 −#T 1

G
2 ZWRT

(

M#ρ(T 1
G

)M, RG
)
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can only take a finite number of values, for fixed M and n. Here v is an
arbitrary positive integer, and G = {(T G

i , γG
i ,OG

i )}K
i=1 is an n-graping of M with

K tetrahedra, thus K ∈ {1, . . . , n}. Recall also that T 1
G is given by equation

(13) and n′
3 denotes the number of vertices of the graph made out of the edges

of T 1
G , together with their endpoints. In particular η−n′

3
2 −#T 1

G
2 can only take a

finite number of values.
On the other hand, the term

∑

colourings c of T 1
G

A(G, c) dimq(c)ZWRT

(

M#ρ(T 1
G

)M, RG
)

depends only on the isotopy class of the pair (T 1
G , RG) inside M . The following

lemma shows that there exists only a finite number of possible isotopy classes
of T 1

G in M for a fixed n. There exist also a finite (and depending only on n)
number of possible configurations of the graph RG , wrapping around T 1

G .

Lemma 5.2 Let M be a 3-dimensional manifold with an acceptable cubulation
�. Let Q be a fixed positive integer. There exists a finite number of possible
isotopy classes of graphs in M which can be constructed out of Q edges of the
triangulation ∆�v of M , where v is arbitrary.

By using this lemma (proved in Subsection 5.5), the same argument as in
Subsection 5.1 shows the following theorem:

Theorem 5.3 Let M be an oriented closed 3-manifold. Let � be an acceptable
cubulation of M . Let n be a positive integer. If Nv denotes the number of
tetrahedra of the triangulation ∆�v , then:

lim
v→+∞

1

Nn
v

V
(n)
TV (M, �v) = 0 .

Therefore in the dilute gas limit with g = λN :

Z(M) =

∞
∑

n=0

(−1)nλnV
(n)
TV (M) →

∞
∑

n=0

gn

n!
zn
1 ZTV(M) = egz1ZTV(M) = ZTV(M) ,

since

z1 = −η−3
∑

a,b,c

dimq(a) dimq(b) dimq(c)AaAbAc

〈

Ŷ; a, b, c, 1
〉

= 0 ,

see the discussion in the Introduction.

5.3 Dilute gas limit for z1 = 0

The fact that z1 = 0 implies that the dilute gas limit partition function for
g = λN is the same as the unperturbed one. In order to obtain a non-trivial
partition function we need to take a different dilute gas limit.
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1
∑

r,t,s=0

r

t

s

a

b c

Figure 13: The linear combination of graphs Y2. The two Y-graphs in the
middle are coloured by the spin 1. The indices labeling the bottom Y-graph
refer to framing coefficients.

Let us now consider configurations where a single tetrahedron of the manifold
M contains a space ordered 2-grasping G. Let T ⊂ S3 be the standard tetrahe-
dron. Let ρ(T) be a regular neighbourhood of T in S3. Let also RG ⊂ ∂ρ(T)
be the associated graph with crossing information in the boundary of ρ(T); see
subsection 4.3.

In the general case when there are p graspings in a single tetrahedron T of
M one defines

zp =
1

(−4)p

∑

space ordered
p-graspings G of T

∑

colourings c of T

A(G, c) dimq(c)η
−4ZWRT

(

S3#ρ(T)S3, RG
)

; (24)

see equation (18). Note there exists a unique way to embeed an oriented tetra-
hedron in M , up to isotopy. From the proof of theorem 4.3, for p = 1 this
coincides with the previous definition of z1 = 0. For p = 2, this reduces to

z2 =
η−3

4

∑

a,b,c

dimq(a) dimq(b) dimq(c)AaAbAc〈Y2; a, b, c, 1〉

+
3η−3

8

∑

a1,a2,a3,a4,e

(

4
∏

i=1

Aai
dimq(ai)

)

A2
e dimq(e)〈H2; a, b, c, d, e, 1〉 , (25)

where Y2 is the linear combination of graphs shown in figure 13, while H2 is the
linear combination of graphs appearing in figure 14. The constants Ai are given
by equation (6). The Y2 graphs correspond to the case when both graspings are
associated with the same tetrahedron vertex, while the H2 graphs correspond to
the case when the graspings connect edges incident to two different tetrahedron
vertices.

Let us consider an even order perturbative contribution

Z2n =
1

(2n)!

(

N
∑

m=1

V̂m

)2n

Z(J)
∣

∣

∣

J=0
,
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1

1
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1
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Ω
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1

1

1

1

1

1

+

Figure 14: The combination of graphs H2.

where V̂m = ∂3
J(τm). We write it as

Z2n =
1

(2n)!

〈

(

N
∑

m=1

Vm

)2n
〉

.

Then

Z2n =
1

(2n)!

2n
∑

p=1

∑

1≤m1,··· ,mp≤N

∑

k1,··· ,kp

(2n)!

k1! · · ·kp!

〈

V k1
m1

· · ·V kp

mn

〉

.

Let N be the number of tetrahedra of M . When N → +∞ (in the sense de-
scribed in subsection 5.2), the dominant contribution comes from the graspings
supported by n non-intersecting tetrahedrons. This contribution arises from the
p = n terms in Z2n with k1 = k2 = · · · = kn = 2. By using the same technique
as in subsections 5.1 and 5.2 we can show that

∑

1≤m1,··· ,mn≤N

(2n)!

2n
〈V 2

m1
V 2

m2
· · ·V 2

mn
〉 ≈ (2n)!

2n
CN

n zn
2 Z0 ≈ (2n)!

2n

Nn

n!
zn
2 Z0 ,

where Z0 = ZTV(M). Therefore

Z2n =
1

2n

Nn

n!
zn
2 Z0 + O(Nn−1) ,

as N → ∞.
Similarly

Z2n+1 = − 1

(2n + 1)!

2n+1
∑

p=1

∑

1≤m1,··· ,mp≤N

∑

k1,··· ,kp

(2n + 1)!

k1! · · ·kp!

〈

V k1
m1

· · ·V kp

mn

〉

,
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and the dominant contribution for N large comes from the graspings supported
by n non-intersecting tetrahedrons. This contribution corresponds to p = n
terms with k1 = · · · = kn−1 = 2, kn = 3, and it is easy to show that

∑

1≤m1,··· ,mn≤N

(2n + 1)!

2n−13!
〈V 2

m1
· · ·V 2

mn−1
V 3

mn
〉 ≈ (2n + 1)!

2n−13!
nCN

n zn−1
2 z3Z0

≈ (2n + 1)!

2n−13!

Nn

(n − 1)!
zn−1
2 z3Z0 ,

where z3 is defined in equation (24). Therefore

Z2n+1 = − 1

3 · 2n

Nn

(n − 1)!
zn−1
2 z3Z0 + O(Nn−1) ,

as N → ∞.
Let g = λ2N , and Z̄N =

∑N
n=0 λnZn(M, ∆), then

Z̄N ≈
N/2
∑

n=1

gn

n!
zn
2 Z0 −

λ

3

N/2
∑

n=1

gn

(n − 1)!
zn−1
2 z3Z0

≈ egz2Z0 −
λg

3
z3e

gz2Z0

for N large. By taking the limit N → ∞, λ → 0 such that g = const, we obtain

lim
N→∞

Z̄N (∆, M) = egz2Z0(M) . (26)

One can conjecture that in the case z1 = z2 = · · · = zp−1 = 0, zp 6= 0, the
limit N → 0, λ → 0, such that λpN is a non-zero constant, gives

lim
N→∞

Z̄N(∆, M) = egzpZ0(M) , (27)

where g ∝ λpN .

5.4 Relating g and λ

Note that the perturbed partition function (27) is a function of the parameter
g, which takes values independently from the values of λ. One would like to
find a relation between λ and g such that

Z(M, λ) = egzp(r)ZTV(M, r) ,

where we have written explicitely the dependence of zp and ZTV on the integer
r. If we assume that the path integral (4) for λ = (2π/r)2 is equal to ZTV(M, r),
it is natural to consider λ̄ = λ − (2π/r)2 as the perturbative parameter. Let
g = f(λ̄), then for λ = (2π/l)2, where l is an integer different from r, we will
require that

Z
(

M, (2π/l)2
)

= ef(λ̄)zp(r)ZTV(M, r) = ZTV(M, l) . (28)
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The relation (28) implies that

f
(

(2π/l)2 − (2π/r)2
)

=
1

zp(r)
ln

ZTV(M, l)

ZTV(M, r)
. (29)

When 2π/
√

λ is not an integer, a natural generalization of the relations (28)
and (29) is

Z(M, λ) = ZTV

(

M,
2π√

λ

)

(30)

and

f
(

λ − (2π/r)2
)

=
1

zp(r)
ln

ZTV

(

M, 2π√
λ

)

ZTV(M, r)
. (31)

Although f depends on zp and the integer r, the value for Z(M, λ) given by
(30) is independent of zp and r.

5.5 Proof of Lemma 5.2

Consider the cubulations C3, C4 and C5 of R2 presented in Figures 15. These
have the property that they are invariant under baricentric subdivision; see
Figure 16. Doing the product with the cubulation of R with a vertex at each
integer, yields cubulations C′

3, C′
4 and C′

5 of R3, which stay stable under bari-
centric subdivision. These cubulations of R3 have the property that, given a
positive integer Q, then there exists a finite number of isotopy classes of graphs
in R3 which can be constructed out of Q edges of the triangulations of R3

constructed by taking the cone of them.
Let M be a 3-dimensional manifold with an acceptable cubulation �. We

can cover M with a finite number of cubical subcomplexes, say {Vi}, each of
which is isomorphic to a subcomplex of either C′

3, C′
4 or C′

5. Moreover, we can
choose each Vi so that it is diffeomorphic to the 3-ball D3. Suppose that Γ
is a graph (which we can suppose to be connected) made from Q edges of the
triangulation ∆�v of M , where v is arbitrary. By making v big enough, we can
suppose that any such graph Γ is contained in Vi for some i. This means that
Γ is isomorphic to a graph with Q edges either in C′

3, C
′
4 or C′

5, and there are
only a finite number of isotopy classes of these.

6 Conclusions

Note that

V
(n)
TV (M, ∆) =

1

4n

n
∑

K=1

∑

G
n(K,G)X(M, ∆, K,G) ,

where n(K,G) is the number of times the configuration G appears, up to isotopy,
among configurations which correspond to n-graspings distributed among K
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Figure 15: The cubulations C4, C3 and C5 of R2.

Figure 16: Baricentricaly subdividing the cubulations C3 and C5 of R
2 yields

C3 and C5.

tetrahedrons. Then

V
(n)
TV (M, ∆) =

n
∑

k=0

Nn−kv
(n)
k+1(M, ∆) ,

where the coefficients v
(n)
k are linear combinations of X(M, ∆, K,G). In general

v
(n)
k depends on the triangulation ∆, except for v

(n)
1 = 1

n!z
n
1 ZTV. For the

triangulations coming from the baricentric divisions of an acceptable cubulation,
there is only a finite number of topologically distinct grasping configurations.

Therefore the set of values of the X ’s is finite and hence limited, so that the v
(n)
k

are limited as N → ∞. In that case the dilute gas configurations which have
the dominant contributions have two graspings in a single tetrahedron instead
of one, because z1 = 0 and z2 6= 0. The corresponding difference with respect
to the Baez definition of the dilute gas limit is that the effective perturbation
parameter g changes from λN to λ2N .

We have not proved that z2, which is given by (25), is different from zero.
However, it is very unlikely that z2 vanishes, since the evaluations of Y2 and H2

graphs are not apparently zero.
The result z1 = 0 is a consequence of our choice of the volume operator V̂ .

This is a natural choice since it contains only the non-coplanar triples of the
tetrahedron edges. One can also include the coplanar triples, see [HS], and it is
possible that in that case z1 6= 0. This would then give Z = egz1Z0 in the usual
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dilute gas limit.
Note that the proposed value for Z(M, λ) when 2π/

√
λ is not an integer,

given by (30), is independent of zp. This means that it is independent of the
type of dilute gas limit used. Since the value of zp dependes on the choice of
the volume operator, this also means that the value (30) is independent of the
choice of the volume operator. Although the value (30) is independent of the
triangulation of M , it is not a new topological invariant, because it is the same
function as ZTV(M, r). The only diference is that r = 2π/

√
λ takes a noninteger

value. However, (30) gives a definition of 3d quantum gravity partition function
when the value of the cosmological constant is an arbitrary positive number.

An interesting problem is to develop the PR model perturbation theory
without using the quantum group regularization. The recent results on the PR
model regularisation by using group integrals, see [BNG], suggest that such a
perturbation theory could be developed. The corresponding perturbative series
could be then summed by using the dilute gas techniques and the cubulation
approach. The obtained result could be then compared to ZTV(M, r).

The techniques developed in this paper can be readily extended to the case
of four-dimensional Euclidean Quantum Gravity with a cosmological constant,
since then the classical action can be represented as the SO(5) BF theory action
plus a perturbation quadratic in the B field, see [M1, M2].
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