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Abstract
We introduce a notion of the heat kernel related to the familiar Kontorovich-

Lebedev transform. We study differential and semigroup properties of this kernel
and construct fundamental solutions of a generalized diffusion equation. An integral
transformation with the heat kernel is considered. By using the Plancherel L2-theory
for the Kontorovich-Lebedev transform and norm estimates for its convolution we
establish analogs of the classical Heisenberg inequality and uncertainty principle for
this transformation. The proof is also based on the norm inequalities for the Mellin
transform of the heat kernel.
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1 Introduction and preliminary results

As it is known (see [6,7,8,9]), the Kontorovich-Lebedev transform

Kiτ : L2(R+; xdx) ↔ L2(R+; τ sinh πτdτ)
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given by the formula

Kiτ [f ] =

∫ ∞

0

Kiτ (x)f(x)dx, (1.1)

where the integral in (1.1) converges with respect to the norm in L2(R+; τ sinh πτdτ),
is an isometric isomorphism between these Hilbert spaces. The corresponding Parseval
identity holds ∫ ∞

0

τ sinh πτ |Kiτ [f ]|2dτ =
π2

2

∫ ∞

0

x|f(x)|2dx (1.2)

as well as the inversion formula

f(x) =
2

xπ2

∫ ∞

0

τ sinh πτKiτ (x)Kiτ [f ]dτ, (1.3)

where the convergence of the integral (1.3) is understood with respect to the norm of the
space L2(R+; xdx).

In this paper we will study differential and semigroup properties of the heat kernel
related to the Kontorovich-Lebedev transform, which we will introduce below. This kernel
and its relationship with the Mellin transform will be applied to deduce analogs of the
Heisenberg inequality and its direct consequence, which is called the uncertainty principle
for the Kontorovich-Lebedev transform. Similar problems related to the Jacobi-Olevskii
transform were considered recently in [2]. Other uncertainty principles for the transform
(1.1) were proved by the author in [15, 17].

The kernel of the Kontorovich-Lebedev transform is the modified Bessel function
Kiτ (x), which is an eigenfunction of the following second order differential operator

Ax ≡ x2 − x
d

dx
x

d

dx
, (1.4)

i.e. we have
Ax Kiτ (x) = τ 2Kiτ (x). (1.5)

It has the asymptotic behaviour (cf. [1] relations (9.6.8), (9.6.9), (9.7.2))

Kν(z) =
( π

2z

)1/2

e−z[1 + O(1/z)], z →∞, (1.6)

and near the origin
Kν(z) = O

(
z−|Reν|) , z → 0, (1.7)

K0(z) = − log z + O(1), z → 0. (1.8)

When |τ | → ∞ and x > 0, γ ∈ R are fixed, the kernel Kγ+iτ (x) behaves as (cf. [8, Ch.
1])

Kγ+iτ (x) =

√
2π eγπi

|τ |γ+1/2

(x

2

)γ

e−π|τ |/2 sin

(
τ

(
log

2|τ |
x
− 1

)
+

(
γ +

1

2

)
π

2
+

x2

4|τ |

)
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×
(

1 + O

(
1

|τ |

))
. (1.9)

Moreover it can be defined by the following integral representations [6, (6-1-2)], [5], Vol.
I, relation (2.4.18.4)

Kν(x) =

∫ ∞

0

e−x cosh u cosh νudu, x > 0, (1.10)

Kν(x) =
1

2

(x

2

)ν
∫ ∞

0

e−t−x2

4t t−ν−1dt, x > 0. (1.11)

Hence we easily find that Kν(x) is a real-valued positive function when ν ∈ R and an even
function with respect to the index ν. We note here the Mellin transform of the modified
Bessel function [7]∫ ∞

0

Kiτ (x)xs−1dx = 2s−2Γ

(
s

2
+

iτ

2

)
Γ

(
s

2
+

iτ

2

)
, Re s > 0, (1.12)

where Γ(z) is Euler’s gamma-function.
The convolution operator for the Kontorovich-Lebedev transform is defined as follows

[7, 8]

(f ∗ h)(x) =
1

2x

∫ ∞

0

∫ ∞

0

e
− 1

2

(
x u2+y2

uy
+ yu

x

)
f(u)h(y)dudy, x > 0. (1.13)

It is well defined in the Banach ring Lα(R+) ≡ L1(R+; Kα(x)dx), α ∈ R, i.e. the space of
all summable functions f : R+ → C with respect to the measure Kα(x)dx for which

||f ||Lα(R+) =

∫ ∞

0

|f(x)|Kα(x)dx (1.14)

is finite. The following embeddings take place

Lα(R+) ≡ L−α(R+), Lα(R+) ⊆ Lβ(R+), |α| ≥ |β| ≥ 0, α, β ∈ R, (1.15)

Lα(R) ⊃ Lp(R+; xdx), 2 < p ≤ ∞, |α| < 1− 2

p
, (1.16)

where Lp(R+; xdx) is a weighted Banach space with the norm

||f ||Lp(R+;xdx) =

(∫ ∞

0

|f(x)|pxdx

)1/p

, 1 ≤ p < ∞, (1.17)

||f ||L∞(R+;xdx) = ess supx∈R+
|f(x)|. (1.18)

The factorization property is true for the convolution (1.13) in terms of the Kontorovich-
Lebedev transform (1.2) in the space Lα(R+), namely

Kiτ [f ∗ h] = Kiτ [f ]Kiτ [h], τ ∈ R+. (1.19)
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This property is based on the Macdonald formula [1]

Kν(x)Kν(y) =
1

2

∫ ∞

0

e
− 1

2

(
t x2+y2

xy
+xy

t

)
Kν(t)

dt

t
. (1.20)

It is also proved (see [7], [8]) that the Kontorovich-Lebedev transform is a bounded
operator from Lα(R+) into the space of bounded continuous functions on R+ vanishing
at infinity. Furthermore, the convolution (1.13) of two functions f, h ∈ Lα(R+) exists as
a Lebesgue integral and belongs to Lα(R+). It satisfies the Young -type inequality

||f ∗ h||Lα(R+) ≤ ||f ||Lα(R+)||h||Lα(R+). (1.21)

Another type of a sharp Young inequality for convolution (1.13) was established in
[12]. Precisely, we have

Theorem 1. Let 1 < p ≤ ∞, f ∈ Lp(R+; xdx) and h ∈ L
p−2
p−1 (R+). Then convolution

(1.13) exists as a Lebesgue integral for all x > 0 and belongs to the space Lp(R+; xdx).
Moreover, it satisfies the following inequality

||f ∗ h||Lp(R+;xdx) ≤ ||f ||Lp(R+;xdx)||h||
L

p−2
p−1 (R+)

. (1.22)

In particular, for p = 2 we get (see [10, 11])

||f ∗ h||L2(R+;xdx) ≤ ||f ||L2(R+;xdx)||h||L0(R+). (1.23)

2 The heat kernel and its properties

We begin with
Definition 1. Let t > 0, (x, y) ∈ R+. The following integral

h(t, x, y) ≡ ht(x, y) =
2

xπ2

∫ ∞

0

e−tτ2

τ sinh πτ Kiτ (x)Kiτ (y)dτ, (2.1)

is called the heat kernel for the Kontorovich-Lebedev transform.
Lemma 1. The function h(t, x, y) is infinitely differentiable of (x, y) ∈ R+ × R+ and

t > 0 satisfying the estimate∣∣∣∣∂mh(t, x, y)

∂tm

∣∣∣∣ ≤ Γ1/4
(
4m + 3

2

)
2m+1π7/8

e
π2

4t

x tm+1/2
K

1/2
0

(
2
√

x2 + y2
)

. (2.2)

Moreover, the Kontorovich-Lebedev transform (1.1) by x of the heat kernel is equal to

Kiτ [h] =

∫ ∞

0

Kiτ (x)h(t, x, y)dx = e−tτ2

Kiτ (y), (2.3)
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and by y correspondingly,

Kiτ

[
h

y

]
=

∫ ∞

0

Kiτ (y)h(t, x, y)
dy

y
= e−tτ2 Kiτ (x)

x
. (2.4)

Finally h(t, x, y) is a solution of generalized diffusion equations (u = u(t, x, y))

∂u

∂t
= x2∂2u

∂x2
+ 3x

∂u

∂x
− (x2 − 1)u (2.5)

for each fixed y ∈ R+,
∂u

∂t
= y2∂2u

∂y2
+ y

∂u

∂y
− y2u (2.6)

for each fixed x ∈ R+ under the initial condition in the sense of distributions

lim
t→0

h(t, x, y) = δ(x− y), (2.7)

where δ is Dirac’s delta-function.
Proof. Appealing to the following inequality (see [16]) for derivatives of the modified

Bessel function with respect to x∣∣∣∣∂mKiτ (x)

∂xm

∣∣∣∣ ≤ e−δτKm(x cos δ), x > 0, τ > 0, δ ∈
[
0;

π

2

)
, m = 0, 1, . . .

it is not difficult to verify that for t > 0 integral (2.1) and its derivatives of any order with
respect to x and y converge absolutely and uniformly by x ≥ x0 > 0, and y ≥ y0 > 0.
Therefore the heat kernel (2.1) is infinitely differentiable of (x, y) ∈ R+ × R+. Similar
motivation can be done for the derivatives of the order m ∈ N0 with respect to t > 0 and
it gives the expression

∂mh(t, x, y)

∂tm
=

2(−1)m

xπ2

∫ ∞

0

e−tτ2

τ 2m+1 sinh πτ Kiτ (x)Kiτ (y)dτ, m = 0, 1, . . . . (2.8)

Hence the Schwarz inequality yields∣∣∣∣∂mh(t, x, y)

∂tm

∣∣∣∣ ≤ 2

xπ2

(∫ ∞

0

e−2tτ2

τ 4m+1 sinh πτdτ

)1/2

×
(∫ ∞

0

τ sinh πτ |Kiτ (x)Kiτ (y)|2 dτ

)1/2

. (2.9)

Meanwhile, using (1.1), (1.2), (1.20) and relation (2.3.16.1) in [5], Vol.1 we find∫ ∞

0

τ sinh πτ |Kiτ (x)Kiτ (y)|2 dτ =
π2

8

∫ ∞

0

e
−

(
u x2+y2

xy
+xy

u

)
du

u
=

π2

4
K0

(
2
√

x2 + y2
)

.
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Further,∫ ∞

0

e−2tτ2

τ 4m+1 sinh πτdτ ≤ 1

2

(∫ ∞

−∞
e2(πτ−tτ2)dτ

)1/2(∫ ∞

0

e−2tτ2

τ 8m+1dτ 2

)1/2

=
π1/4

2
Γ1/2

(
4m +

3

2

)
eπ2/(2t)(2t)−(2m+1).

Therefore, substituting these values into (2.9) we deduce∣∣∣∣∂mh(t, x, y)

∂tm

∣∣∣∣ ≤ Γ1/4
(
4m + 3

2

)
2m+1π7/8

e
π2

4t

x tm+1/2
K

1/2
0

(
2
√

x2 + y2
)

,

which drives us to the estimate (2.2). As it follows from (1.5) and absolute and uniform
convergence by x and y of the corresponding integrals on any compact set of R+ × R+,
formula (2.8) can be written as the following differential equations

∂mh(t, x, y)

∂tm
= (−1)mAm

y h(t, x, y), (2.10)

∂mh(t, x, y)

∂tm
=

(−1)m

x
Am

x [x h(t, x, y)] , (2.11)

where m = 0, 1, . . . and Am
x , Am

y are m-th iterates of the operator (1.4). In particular,
letting m = 1 we obtain that the heat kernel satisfies the generalized diffusion equations
(2.5), (2.6).

In order to establish equalities (2.3), (2.4) we easily observe that for fixed positive t, x, y
the corresponding right-hand sides belong to the space L2(R+; τ sinh πτdτ). Therefore
the validity of (2.3), (2.4) follows immediately from reciprocities (1.1), (1.3) with the
convergence of integrals in L2-sense. Nevertheless, via the estimate (2.2) and asymptotic
formulas (1.6), (1.7), (1.8) for the modified Bessel functions we get that integral (2.4)
converges absolutely and clearly to the same limit. The absolute convergence of the
integral (2.3) is based on (2.2) and on the asymptotic behavior of the heat kernel h(t, x, y)
when x → 0. We deduce the mentioned asymptotic expression writing the heat kernel
(2.1) in the equivalent form. In fact, appealing to the relation formulas for the modified
Bessel functions [1] we find

h(t, x, y) =
1

xπi

∫ ∞

−∞
e−tτ2

τ I−iτ (x)Kiτ (y)dτ, (2.12)

where Iν(z) is the modified Bessel function of the first kind represented by the series [1]

Iν(z) =
∞∑

k=0

(z/2)2k+ν

k!Γ(k + ν + 1)
.
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Hence substituting this series into (2.12) separating its first term we have for x → 0

h(t, x, y) =
1

xπi

∫ ∞

−∞
e−tτ2

τKiτ (y)e−iτ log(x/2) dτ

Γ(1− iτ)

+
1

πi

∫ ∞

−∞
e−tτ2

τKiτ (y)
∞∑

k=1

(x/2)2k−iτ−1

k!Γ(k + 1− iτ)
dτ. (2.13)

By straightforward estimates we see that the second term in (2.13) is O(x), x → 0 for
any fixed t, y > 0. The first term can be treated carrying out the integration by parts
and eliminating the corresponding boundary terms. Hence making use this procedure n
times we derive the estimate

1

xπi

∫ ∞

−∞
e−tτ2

τKiτ (y)e−iτ log(x/2) dτ

Γ(1− iτ)
= O

(
1

x logn x

)
, x → 0, n ∈ N.

Consequently, via the inequality |Kiτ (x)| ≤ K0(x) and asymptotic formula (1.8) we take
n = 3, 4, . . . and establish the absolute convergence of the integral (2.3) to the same limit.

Finally we prove (2.7). Indeed, for any ϕ from the testing space D(R+) we understand
the limit (2.7) as follows (cf. [7], [18])

lim
t→0

〈h(t, x, ·), ϕ(·)〉 = lim
t→0

2

xπ2

∫ ∞

0

e−tτ2

τ sinh πτ Kiτ (x)Kiτ [ϕ] dτ. (2.14)

Meanwhile, employing relation (2.16.14.1) in [5], Vol. II and Parseval’s equality for the
cosine Fourier transform we deduce

2

xπ2

∫ ∞

0

e−tτ2

τ sinh πτ Kiτ (x)Kiτ [ϕ] dτ =

√
2

xπ
√

π

∫ ∞

0

e−tτ2

τ sinh
(πτ

2

)
Kiτ (x)

×
∫ ∞

0

cos τu Fc [ϕ; sinh u] du dτ, (2.15)

where by Fc [ϕ; v] we denote the cosine Fourier transform of ϕ ∈ D(R+)

Fc [ϕ; v] =

√
2

π

∫ ∞

0

ϕ(y) cos yv dy.

The right-hand side of (2.15) can be treated, in turn, with the use of the differentia-
tion under the integral sign, integration by parts, convolution properties and Parseval’s
equality for the Fourier transform. So we have

√
2

xπ
√

π

∫ ∞

0

e−tτ2

τ sinh
(πτ

2

)
Kiτ (x)
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×
∫ ∞

0

cos τu Fc [ϕ; sinh u] du dτ = −
√

2

xπ
√

π

∫ ∞

0

e−tτ2

sinh
(πτ

2

)
Kiτ (x)

×
∫ ∞

0

sin τu
d

du
[Fc [ϕ; sinh u] ] du dτ

= − 1

i2xπ
√

2π

∫ ∞

−∞
e−tτ2

sinh
(πτ

2

)
Kiτ (x)

∫ ∞

−∞
eiτu d

du
[Fc [ϕ; sinh u] ] du dτ. (2.16)

In the meantime, due to relations (2.5.36.1) and (2.5.54.6) in [5], Vol. I the product
e−tτ2

sinh
(

πτ
2

)
Kiτ (x) can be represented as the Fourier transform of a convolution, namely

e−tτ2

sinh
(πτ

2

)
Kiτ (x) =

i

4t
√

πt

∫ ∞

−∞
ye−y2/(4t) eiyτdy

∫ ∞

−∞
eiyτdy

∫ ∞

y

sin(x sinh v) dv

=
i

4t
√

πt

∫ ∞

−∞
eiyτdy

∫ ∞

−∞
u e−u2/(4t)

∫ ∞

y−u

sin(x sinh v) dv du

=
i

2
√

πt

∫ ∞

−∞
eiyτdy

∫ ∞

−∞
e−u2/(4t) sin(x sinh(y − u)) du.

Substituting the latter expression into (2.16), taking into account (2.15) and the Parseval
equality for the Fourier transform we derive the representation

2

xπ2

∫ ∞

0

e−tτ2

τ sinh πτ Kiτ (x)Kiτ [ϕ] dτ

= − 1

2xπ
√

2t

∫ ∞

−∞

d

dy
[Fc [ϕ; sinh y] ] dy

∫ ∞

−∞
e−u2/(4t) sin(x sinh(y − u)) du

=
1

π 2
√

2t

∫ ∞

−∞
Fc [ϕ; sinh y] dy

∫ ∞

−∞
e−u2/(4t) cos(x sinh(y − u)) cosh(y − u) du

=
1

π
√

2

∫ ∞

−∞
Fc [ϕ; sinh y] dy

∫ ∞

−∞
e−u2

cos
(
x sinh

(
y − 2u

√
t
))

× cosh
(
y − 2u

√
t
)

du. (2.17)

Hence it is not difficult to verify that the passage to the limit when t → 0 under integral
signs in the latter iterated integral of (2.17) is allowed via the dominated convergence
theorem. Then by elementary substitutions and straightforward calculations appealing to
the asymptotic and inversion properties of the cosine Fourier transform of test functions,
we return to (2.14) and finally derive

lim
t→0

〈h(t, x, ·), ϕ(·)〉 =
1

π
√

2

∫ ∞

−∞
Fc [ϕ; sinh y] dy
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×
∫ ∞

−∞
e−u2

cos(x sinh y) cosh y du =

√
2

π

∫ ∞

0

cos(xλ) Fc [ϕ; λ] dλ = ϕ(x).

This proves (2.7) and completes the proof of Lemma 1.
Following to [13] (see also in [14]) we define the space S2(R+), which we are going to

use below.
Definition 2. A function f : R+ → C is said to be in S2(R+) if f ∈ L2

(
R+; dx

x

)
and

Axf ∈ L2

(
R+; dx

x

)
, where the operator Ax is defined by (1.4).

Recall from [13, 16] that the k-th iterate of the operator Ax Ak
xf ∈ L2

(
R+; dx

x

)
, k ∈

N0 means that there exists a function v(x) in L2

(
R+; dx

x

)
denoted by Ak

xf such that for
all ϕ ∈ D(R+) ∫ ∞

0

f(x)Ak
xϕ

dx

x
=

∫ ∞

0

v(x)ϕ(x)
dx

x
.

It is proved that S2(R+) is a Banach space which can be endowed with the norm

||f ||S2(R+) =

(∫ ∞

0

|f(x)|2dx

x
+

∫ ∞

0

|Axf |2
dx

x

)1/2

.

A characterization of S2(R+) can be given in terms of the Kontorovich- Lebedev trans-

form (1.1) (cf. [13]). First we observe that f ∈ L2

(
R+; dx

x

)
means f(x)

x
∈ L2 (R+; xdx).

We have
Theorem 1. [13]. Let f ∈ L2

(
R+; dx

x

)
with the Kontorovich-Lebedev transform

Kiτ

[
f(x)

x

]
. Then f ∈ S2(R+) (i.e. Axf ∈ L2

(
R+; dx

x

)
) if and only if the function

τ → τ 2Kiτ

[
f(x)

x

]
is in L2(R+; τ sinh πτ dτ). Moreover, Kiτ

[Axf
x

]
= τ 2 Kiτ

[
f(x)

x

]
and

therefore

||f ||2S2(R+) =
2

π2

∫ ∞

0

τ sinh πτ

∣∣∣∣Kiτ

[
f(x)

x

]∣∣∣∣2 (1 + τ 4)dτ. (2.18)

We define here the Weierstrass type integral transformation in S2(R+) as the action
of the heat kernel (2.1) on functions f(y)

(gtf)(x) =

∫ ∞

0

h(t, y, x)f(y)dy. (2.19)

This integral is absolutely convergent via Schwarz’s inequality, i.e. it exists as a Lebesgue
integral. Moreover, by Lemma 1 (see (2.4)) and Theorem 1 one can prove that

Kiτ

[
(gtf)(x)

x

]
= e−tτ2

Kiτ

[
f(x)

x

]
(2.20)

and therefore we can denote the heat kernel (2.1) by e−tA(x, y) and (gtf)(x) = e−tAf .
So the action of A on the Kontorovich-Lebedev transforms is multiplication by τ 2 while
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the heat kernel is multiplication by e−tτ2
. Furthermore, from Lemma 1 and the Schwarz

inequality it follows that (gtf)(x) is an infinitely differentiable function of x, t > 0. It
satisfies the generalized diffusion equation (see (2.10))

∂(gtf)(x)

∂t
= −Axgtf

classically for t > 0 with the initial condition

lim
t→0

(gtf)(x) = f(x)

as a strong limit in f ∈ L2

(
R+; dx

x

)
.

Lemma 2. For each t > 0 the Weierstrass type transform (2.19) is a bounded operator
in S2(R+) and the following norm estimate takes place

||gtf ||S2(R+) ≤ ||f ||S2(R+). (2.21)

Proof. From the generalized Parseval equality for the Kontorovich-Lebedev transform
(see (1.2)) and (2.3) we have

(gtf)(x) =
2

π2

∫ ∞

0

τ sinh πτKiτ [h(t, ·, x)] Kiτ

[
f(·)
·

]
dτ

=
2

π2

∫ ∞

0

τ sinh πτ e−tτ2

Kiτ (x)Kiτ

[
f(·)
·

]
dτ.

As in Lemma 1 we easily verify the absolute and uniform convergence by x ≥ x0 > 0 of
the latter integral and its derivatives with respect to x. Therefore, via (1.5) we obtain

Axgtf =
2

π2

∫ ∞

0

τ 3 sinh πτ e−tτ2

Kiτ (x)Kiτ

[
f(·)
·

]
dτ

and

||Axgtf ||2L2(R+; dx
x

)
=

2

π2

∫ ∞

0

τ sinh πτ e−2tτ2

∣∣∣∣Kiτ

[
A·f

·

]∣∣∣∣2 dτ ≤ ||f ||2S2(R+) < ∞.

At the same time, plainly

||gtf ||2L2(R+; dx
x

)
=

2

π2

∫ ∞

0

τ sinh πτ e−2tτ2

∣∣∣∣Kiτ

[
f(·)
·

]∣∣∣∣2 dτ ≤ ||f ||2S2(R+) < ∞.

Therefore taking into account (2.18) we get the inequality

||gtf ||2S2(R+; dx
x

)
=

2

π2

∫ ∞

0

τ sinh πτ e−2tτ2

∣∣∣∣Kiτ

[
f(·)
·

]∣∣∣∣2 (1 + τ 4)dτ ≤ ||f ||2S2(R+),
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which yields (2.21) and completes the proof of Lemma 2.
One can extend Theorem 1 for the iterates Ak, k ∈ N0. Indeed, we have
Theorem 2. [13]. The iterate Ak

xf ∈ L2

(
R+; dx

x

)
, k ∈ N0 if and only if the function

τ → τ 2kKiτ

[
f(x)

x

]
is in L2(R+; τ sinh πτ dτ). Moreover,

Kiτ

[
Ak

xf

x

]
= τ 2k Kiτ

[
f(x)

x

]
. (2.22)

Using this result we find a reciprocal inversion formula of the Weierstrass type trans-
form (2.19). In fact, returning to (2.20) we derive

Kiτ

[
f(x)

x

]
= etτ2

Kiτ

[
(gtf)(x)

x

]
, t > 0. (2.23)

Since the left-hand side of (2.23) is from L2(R+; τ sinh πτ dτ) for any f ∈ L2

(
R+; dx

x

)
so

the right-hand side possesses the same property. Consequently,

τ 2kKiτ

[
(gtf)(x)

x

]
∈ L2(R+; τ sinh πτ dτ) (2.24)

for any k ∈ N0. Therefore, due to (2.22)

Fn(t, τ) =
n∑

m=0

tm

m!
τ 2mKiτ

[
(gtf)(x)

x

]
=

n∑
m=0

tm

m!
Kiτ

[
Am

x gtf

x

]
= Kiτ

[
Pn(tAx)gtf

x

]
,

where Pn(z) is the nth Taylor’s polynomial of the exponential function ez. Hence from
(1.3) we obtain

Pn(tAx)gtf =
2

π2

∫ ∞

0

τ sinh πτKiτ (x)Pn(tτ 2)Kiτ

[
(gtf)(x)

x

]
dτ, n ∈ N0

where the latter integral converges absolutely since

etτ2

Kiτ

[
(gtf)(x)

x

]
∈ L2(R+; τ sinh πτ dτ). (2.25)

On the other hand we get from (2.23)

f(x) = l.i.mT→∞
2

π2

∫ T

0

τ sinh πτKiτ (x)etτ2

Kiτ

[
(gtf)(x)

x

]
dτ

and the Parseval equality (1.2) yields∫ ∞

0

|f(x)− Pn(tAx)gtf |2
dx

x
=

2

π2

∫ ∞

0

τ sinh πτ
∣∣∣1− Pn(tτ 2)e−tτ2

∣∣∣2
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×e2tτ2

∣∣∣∣Kiτ

[
(gtf)(·)

·

]∣∣∣∣2 dτ. (2.26)

Since 1−Pn(tτ 2)e−tτ2
< 1 and tends to zero when n →∞ for each t > 0, by the Lebesgue

dominated convergence theorem we obtain that the left-hand side of (2.26) tends to zero as
well. Therefore with a convergence by the norm in L2

(
R+; dx

x

)
we arrive at the inversion

formula of the transformation (2.19) which can be written in the symbolic form

f(x) = etAxgt, t > 0. (2.27)

However, since (2.26) is true also for some subsequence Pnk
when the convergence is point-

wise, we have the equality (2.27) for almost all x > 0. Similarly, we can get reciprocally
(2.19) starting from (2.27). Finally, we summarize our results in

Theorem 3. Let t > 0. For any f ∈ L2

(
R+; dx

x

)
, formula (2.19) defines for all x > 0

an infinitely differentiable function h(x) = (gtf)(x) satisfying condition (2.24). Moreover,
for almost all x > 0 the reciprocal inversion formula (2.27) holds. Conversely, for any
h, which satisfies (2.24) formula (2.27) with the convergence in mean square defines for
almost all x > 0 a function f ∈ L2

(
R+; dx

x

)
and the reciprocal formula (2.19) takes place.

Let us prove now that A2
x is the infinitesimal generator of the heat kernel (2.1).

Theorem 4. A function f(x) is in S2(R+) if and only if it is in L2

(
R+; dx

x

)
and

I t(f) =
1

t

[
〈f, f〉 − 〈f, e−tA2

· f〉
]

is uniformly bounded in t. (Here we mean 〈·, ·〉 is the L2

(
R+; dx

x

)
, not S2(R+), inner

product. ) In that case

supt>0I
t(f) = lim

t→0
I t(f) = ||A·f ||2L2(R+; dx

x ).

Proof. By Theorem 1 it is sufficient to show that f(x) ∈ L2

(
R+; dx

x

)
and I t(f) is

uniformly bounded if and only if∫ ∞

0

τ sinh πτ

∣∣∣∣Kiτ

[
f(x)

x

]∣∣∣∣2 (1 + τ 4)dτ < ∞.

First we note by the Parseval identity (1.2) and relation (2.22) for k = 2

I t(f) =
2

π2t

∫ ∞

0

τ sinh πτ
[
1− e−tτ4

] ∣∣∣∣Kiτ

[
f(·)
·

]∣∣∣∣2 dτ. (2.28)

Meanwhile, since y−1(1− e−y) is a decreasing function of y > 0 and hence 1/t times the
factor 1− e−tτ4

converges monotonically to τ 4 as t → 0. Thus if f ∈ S2(R+) (see (2.18)),
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I t(f) is uniformly bounded. Conversely, if I t(f) is uniformly bounded, the monotone
convergence theorem implies that

supt>0I
t(f) = lim

t→0
I t(f) =

2

π2

∫ ∞

0

τ 5 sinh πτ

∣∣∣∣Kiτ

[
f(·)
·

]∣∣∣∣2 dτ

= ||A·f ||2L2(R+; dx
x ) < ∞.

Theorem 4 is proved.

3 Heisenberg’s type inequalities

The classical Heisenberg inequality for the Fourier transform states that for f ∈ L2(R; dx)∫
R

x2|f(x)|2dx

∫
R

ξ2|f(ξ)|2dξ ≥ 1

4
||f ||4, (3.1)

where

f̂(ξ) =
1√
2π

∫
R

f(x)e−ixixdx.

In this section we will establish some analogs of the Heisenberg inequality (3.1) for the
Kontorovich-Lebedev transform (1.1). To proceed this we call the Parseval identity (1.2).
We have

Theorem 5. Let f ∈ L2(R+; xdx). Then∫ ∞

0

|f(x)|2 dx

∫ ∞

0

τ 2 sinh2
(πτ

2

)
|Kiτ [f ]|2 dτ ≥ π2

4
||f ||4L2(R+;xdx), (3.2)

∫ ∞

0

|f(x)|2dx

(∫ ∞

0

τ sinh
(πτ

2

)
|Kiτ [f ]| dτ

)2

≥ π2

4
||f ||4L2(R+;xdx), (3.3)∫ ∞

0

|f(x)|p dx

∫ ∞

0

τ p sinhp
(πτ

2

)
|Kiτ [f ]|p dτ

≥ π1+ p
2

2p

 Γ
(

p−1
2(2−p)

)
Γ ((2(2− p))−1)

p−2

||f ||2p
L2(R+;xdx), 1 < p < 2. (3.4)

Proof. In fact, writing (1.2) in the form

||f ||2L2(R+;xdx) =
4

π2

∫ ∞

0

τ sinh
(πτ

2

)
cosh

(πτ

2

)
|Kiτ [f ]|2 dτ,
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we appeal to the Schwarz inequality to get

||f ||2L2(R+;xdx) ≤
4

π2

(∫ ∞

0

τ 2 sinh2
(πτ

2

)
|Kiτ [f ]|2 dτ

)1/2

(∫ ∞

0

∣∣∣cosh
(πτ

2

)
Kiτ [f ]

∣∣∣2 dτ

)1/2

. (3.5)

On the other hand by relation (2.16.14.1) from [5], Vol.2, the Parseval equality for
the cosine Fourier transform and an elementary substitution we find in the case f ∈
L2(R+; xdx) ∩ L2(R+; dx)

cosh
(πτ

2

)
Kiτ [f ] =

√
π

2

∫ ∞

0

Fc[f ; sinh u] cos τu du.

Substituting in (3.5) we obtain

||f ||2L2(R+;xdx) ≤
2

π

(∫ ∞

0

τ 2 sinh2
(πτ

2

)
|Kiτ [f ]|2 dτ

)1/2(∫ ∞

0

|Fc[Fc[f ; sinh u]; τ ]|2 dτ

)1/2

=
2

π

(∫ ∞

0

τ 2 sinh2
(πτ

2

)
|Kiτ [f ]|2 dτ

)1/2(∫ ∞

0

|Fc[f ; sinh u]|2 du

)1/2

≤ 2

π

(∫ ∞

0

τ 2 sinh2
(πτ

2

)
|Kiτ [f ]|2 dτ

)1/2(∫ ∞

0

|Fc[f ; u]|2 du

)1/2

=
2

π

(∫ ∞

0

τ 2 sinh2
(πτ

2

)
|Kiτ [f ]|2 dτ

)1/2(∫ ∞

0

|f(x)|2 dx

)1/2

,

which implies (3.2). In order to prove (3.3) we use the limit case of the Hölder inequality
to find

||f ||2L2(R+;xdx) ≤
4

π2

∫ ∞

0

τ sinh
(πτ

2

)
|Kiτ [f ]| dτ

×supτ>0

∣∣∣cosh
(πτ

2

)
Kiτ [f ]

∣∣∣ ≤ 2
√

2

π
√

π

∫ ∞

0

τ sinh
(πτ

2

)
|Kiτ [f ]| dτ

×
∫ ∞

0

|Fc[f ; u]| du√
u2 + 1

≤ 2

π

∫ ∞

0

τ sinh
(πτ

2

)
|Kiτ [f ]| dτ

×
(∫ ∞

0

|Fc[f ; u]|2 du

)1/2

=
2

π

∫ ∞

0

τ sinh
(πτ

2

)
|Kiτ [f ]| dτ

(∫ ∞

0

|f(x)|2dx

)1/2

.

Thus we arrive at the inequality (3.3).
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Generally, assuming 1 < p < 2 we appeal to the Hölder inequality to deduce

||f ||2L2(R+;xdx) ≤
4

π2

(∫ ∞

0

τ p sinhp
(πτ

2

)
|Kiτ [f ]|p dτ

)1/p

×
(∫ ∞

0

∣∣∣cosh
(πτ

2

)
Kiτ [f ]

∣∣∣q dτ

)1/q

, q =
p

p− 1
. (3.6)

The latter q-norm can be estimated by the familiar Hausdorff-Young inequality [8], [12]
together with the Hölder inequality. Thus we obtain(∫ ∞

0

∣∣∣cosh
(πτ

2

)
Kiτ [f ]

∣∣∣q dτ

)1/q

≤
(π

2

) 1
q
+ 1

2

(∫ ∞

0

|Fc[f ; sinh u]|pdu

)1/p

=
(π

2

) 1
q
+ 1

2

(∫ ∞

0

|Fc[f ; u]|p du√
u2 + 1

)1/p

≤
(π

2

) 1
q
+ 1

2

(∫ ∞

0

|Fc[f ; u]|qdu

)1/q

×
(∫ ∞

0

(u2 + 1)−(2(2−p))−1

du

) 2−p
p

= π 2−( 1
p
+ 1

2)

 Γ
(

p−1
2(2−p)

)
Γ ((2(2− p))−1)


2−p

p

×
(∫ ∞

0

|Fc[f ; u]|qdu

)1/q

≤ π
3
2
− 1

p

2

 Γ
(

p−1
2(2−p)

)
Γ ((2(2− p))−1)


2−p

p (∫ ∞

0

|f(x)|pdu

)1/p

.

Hence combining with (3.6) we easily come out with final inequality (3.4). Theorem 5 is
proved.

Corollary 1. Letting p → 2− in (3.4) we get (3.2). Putting p = 3
2

in (3.4) we come
out immediately with the following Heisenberg inequality∫ ∞

0

|f(x)|3/2 dx

∫ ∞

0

τ 3/2 sinh3/2
(πτ

2

)
|Kiτ [f ]|3/2 dτ ≥

(π

2

)3/2

||f ||3L2(R+;xdx).

Another type of Heisenberg inequalities for the Kontorovich-Lebedev transform are
based on the Mellin transform of the heat kernel (2.1) by y. These inequalities will give
estimates of the convolution (1.13) xµ−1 ∗ f, µ > 0 in the space L2(R+; xdx). In fact,
using the Mellin transform (1.13) of the modified Bessel function we apply it to the heat
kernel (2.1) and we find

h∗t (x, µ) ≡
∫ ∞

0

h(t, x, y)yµ−1dy

=
2µ−1

xπ2

∫ ∞

0

e−tv2

v sinh πv

∣∣∣∣Γ(µ

2
+

iv

2

)∣∣∣∣2 Kiv(x)dv. (3.7)
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Hence via (1.1), (1.3) we derive

Kiτ [h
∗
t (·, µ)] = 2µ−2e−tτ2

∣∣∣∣Γ(µ

2
+

iτ

2

)∣∣∣∣2 , t, µ > 0. (3.8)

Function (3.7) has an independent interest and was employed in various applications (see,
for instance, in [4]).

In order to proceed to our goals we will first estimate the norm ||h∗t ||L2(R+;xdx). To do
this we call the Parseval equality (1.2). Hence by virtue of (3.8)

||h∗t ||2L2(R+;xdx) =
22µ−3

π2

∫ ∞

0

e−2tτ2

τ sinh πτ

∣∣∣∣Γ(µ

2
+

iτ

2

)∣∣∣∣4 dτ. (3.9)

In the meantime to estimate the modulus of the gamma-function we will appeal to the
following inequality, which is a direct consequence of Stirling’s formula

|Γ(x + iy)| ≤
√

2π|z|x−1/2e−π|y|/2e1/(6|z|), z = x + iy, x > 0.

Therefore, for t > 0

||h∗t ||2L2(R+;xdx) ≤ 2e4/(3µ)

∫ ∞

0

e−πτ−2tτ2

τ sinh πτ |µ + iτ |2(µ−1) dτ

≤ e4/(3µ)

∫ ∞

0

e−2ty
(
µ2 + y

)µ−1
dy

≤ (2t)−1µ2(µ−1)e4/(3µ), µ ∈ (0, 1],

and

||h∗t ||2L2(R+;xdx) ≤ e4/(3µ)

∫ ∞

0

e−2ty
(
µ2 + y

)µ−1
dy

= µ2µe4/(3µ)

(∫ 1

0

+

∫ ∞

1

)
e−2tµ2y (1 + y)µ−1 dy < 2µ−2µ2(µ−1)e4/(3µ)t−1

+2µ−1µ2µe4/(3µ)

∫ ∞

0

e−2tµ2yyµ−1dy

=
e4/(3µ)

2

[
(2µ2)µ−1 t−1 + Γ(µ)t−µ

]
, µ > 1.

Hence, it has the estimates

||h∗t ||L2(R+;xdx) ≤ (2t)−1/2µµ−1e2/(3µ), t > 0, µ ∈ (0, 1], (3.10)

||h∗t ||L2(R+;xdx) ≤
e2/(3µ)

√
2

[
(2µ2)µ−1 t−1 + Γ(µ)t−µ

]1/2
, t > 0, µ > 1. (3.11)
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Further, from the Parseval equality (1.2) taking into account (1.12), (1.13), (1.19), (1.22),
(3.8) and the inequality |Γ(z)| ≤ Γ(Rez), Rez > 0 for the Euler gamma-function we
obtain

||xµ−1 ∗ f ||L2(R+;xdx) =
2µ−3/2

π

(∫ ∞

0

τ sinh πτ

∣∣∣∣Γ(µ

2
+

iτ

2

)∣∣∣∣4 |Kiτ [f ]|2dτ

)1/2

=

√
2

π

(∫ ∞

0

τ sinh πτ
∣∣Kiτ

[
xµ−1 ∗ f

]∣∣2 dτ

)1/2

≤
√

2

π

∣∣∣∣∣∣(1− e−tτ2
)

Kiτ [x
µ−1 ∗ f ]

∣∣∣∣∣∣
L2(R+;τ sinh πτdτ)

+

√
2

π

∣∣∣∣∣∣e−tτ2

Kiτ [x
µ−1 ∗ f ]

∣∣∣∣∣∣
L2(R+;τ sinh πτdτ)

≤ t
√

2

π

∣∣∣∣τ 2Kiτ [x
µ−1 ∗ f ]

∣∣∣∣
L2(R+;τ sinh πτdτ)

+

√
2

π
||h∗t ∗ f ||L2(R+;xdx)

≤ 2µ−3/2 t

π
Γ2(µ/2)

∣∣∣∣τ 2Kiτ [f ]
∣∣∣∣

L2(R+;τ sinh πτdτ)
+

√
2

π
||h∗t ||L2(R+;xdx) ||f ||L0(R+). (3.12)

But,

||f ||L0(R+) =

∫ ∞

0

K0(x)|f(x)|dx ≤ ||f ||L2(R+;dx)

(∫ ∞

0

K2
0(x)dx

)1/2

=
π

2
||f ||L2(R+;dx).

Hence using (3.10) we obtain from (3.12) for all t > 0 and µ ∈ (0, 1] the inequality

||xµ−1 ∗ f ||L2(R+;xdx) ≤
2µ−3/2 t

π
Γ2(µ/2)

∣∣∣∣τ 2Kiτ [f ]
∣∣∣∣

L2(R+;τ sinh πτdτ)

+
µµ−1e2/(3µ)

2
√

t
||f ||L2(R+;dx). (3.13)

However, when µ = 1 we can get more sharp estimate. In fact, equality (3.9) becomes

||h∗t ||2L2(R+;xdx) =

∫ ∞

0

e−2tτ2

τ tanh
(πτ

2

)
dτ.

Hence

||h∗t ||2L2(R+;xdx) ≤
∫ ∞

0

e−2tτ2

τdτ =
1

2t
.

Analogously, using this estimate in (3.12) we come out with the inequality

||1 ∗ f ||L2(R+;xdx) ≤
t√
2

∣∣∣∣τ 2Kiτ [f ]
∣∣∣∣

L2(R+;τ sinh πτdτ)
+

1

2
√

t
||f ||L2(R+;dx). (3.14)
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Estimates (3.13), (3.14) are key relations to prove the Heisenberg inequalities for the
Kontorovich-Lebedev transform. Letting in (3.14), for instance,

t =

(
||f ||L2(R+;dx)√

2 ||τ 2Kiτ [f ]||L2(R+;τ sinh πτdτ)

)2/3

we arrive at the following inequality∫ ∞

0

|f(x)|2dx

(∫ ∞

0

τ 5 sinh πτ |Kiτ [f ]|2dτ

)1/2

≥ 1√
2
||1 ∗ f ||3L2(R+;xdx).

Generally, when

t =

(
||f ||L2(R+;dx)π

√
2(µ/2)µe2/(3µ)

||τ 2Kiτ [f ]||L2(R+;τ sinh πτdτ) µ Γ2(µ/2)

)2/3

then from (3.13) we deduce∫ ∞

0

|f(x)|2dx

(∫ ∞

0

τ 5 sinh πτ |Kiτ [f ]|2dτ

)1/2

≥ 2−µ−5/2 π e−4/(3µ)

µ2(µ−1) Γ2(µ/2)
||xµ−1 ∗ f ||3L2(R+;xdx), µ ∈ (0, 1].

Remark 1. Analogously one can prove Heisenberg’s inequalities employing the esti-
mate (3.11).

References

1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover, New
York, 1972.

2. R. Ma, Heisenberg inequalities for Jacobi transforms, J. Math. Anal. Appl. 332
(2007), 155- 163.

3. E.H. Lieb, M. Loss, Analysis, Graduate Studies in Math., Vol. 14, American Math.
Soc., Providence, Rhode Island, 2001.

4. C. Monthus and A. Comtet, On the flux distribution in a one dimensional disordered
system, J. Phys. I France 4 (1994), 635-653.

5. A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and Series. Vol. I:
Elementary Functions, Vol. II: Special Functions, Gordon and Breach, New York
and London, 1986.



KONTOROVICH-LEBEDEV TRANSFORM 19

6. I.N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972.

7. S.B. Yakubovich and Yu.F. Luchko, The Hypergeometric Approach to Integral Trans-
forms and Convolutions, (Kluwers Ser. Math. and Appl.: Vol. 287), Dordrecht,
Boston, London, 1994.

8. S.B. Yakubovich, Index Transforms, World Scientific Publishing Company, Singa-
pore, New Jersey, London and Hong Kong, 1996.

9. S.B. Yakubovich, On the Kontorovich-Lebedev transformation, J. of Integral Equa-
tions and Appl. 15 (2003), N 1, 95-112.

10. S.B. Yakubovich, Integral transforms of the Kontorovich-Lebedev convolution type,
Collect. Math. 54 (2003), N 2, 99-110.

11. S.B. Yakubovich, Boundedness and inversion properties of certain convolution trans-
forms, J. Korean Math. Soc. 40 (2003), N 6, 999-1014.

12. S.B. Yakubovich, On the least values of Lp-norms for the Kontorovich-Lebedev
transform and its convolution, J. of Approximation Theory 131 (2004), 231- 242.

13. S.B. Yakubovich, The Kontorovich-Lebedev transformation on Sobolev type spaces,
Sarajevo J. of Mathematics 1 (14) (2005), 211- 234.

14. S.B. Yakubovich, On a testing -function space for distributions associated with the
Kontorovich-Lebedev transform, Collect. Math. 57 (2006), 3, 279-293.

15. S.B. Yakubovich, Uncertainty principles for the Kontorovich-Lebedev transform,
Math. Modelling and Analysis 13 (2008), 2, 289- 302.

16. S.B. Yakubovich, A class of polynomials and discrete transformations associated
with the Kontorovich-Lebedev operators, Integral Transforms and Special Functions
20 (2009), 7, 551- 567.

17. S.B. Yakubovich and R. Daher, An analog of Morgan’s theorem for the Kontorovich-
Lebedev transform, Adv. in Pure and Apll. Math. 1 (2010) (to appear).

18. A.H. Zemanian, The Kontorovich-Lebedev transformation on distributions of com-
pact support and its inversion, Math. Proc. Cambridge Philos. Soc., 77 (1975),
139-143.


