The dynamics of a conservative Hénon map

Mário Bessa * and Jorge Rocha ${ }^{\dagger}$

April 3, 2006

Abstract

We construct an area-preserving homeomorphism of the plane that conjugates a conservative Hénon map to a translation.

1 Introduction and statement of the results

In this paper we consider an area-preserving map derived from the Hénon map defined by $H(x, y)=\left(a-x^{2}-y, x\right)$, where $a<-1$. The main result is the following:

Theorem 1 There exists an area-preserving C^{0}-conjugacy of the conservative Hénon map and $T(x, y)=(x+1, y)$.

To prove Theorem 1 we start constructing a fundamental domain of H, \mathcal{D}, whose saturate fills \mathbb{R}^{2} (Lemma 3.1). We consider a fundamental domain \mathcal{D}_{c} for the translation T and split \mathcal{D} and \mathcal{D}_{c} into countable bounded pieces. Then we construct local diffeomorphisms, whose domains cover \mathcal{D}, which conjugate the restrictions of H and T to each piece and such that each one preserves the area of its domain. Next, using Dacorogna-Moser Theorem (Theorem 4.1), we get an area-preserving homeomorphism from \mathcal{D} to \mathcal{D}_{c}. Finally, using Lemma 3.1 and the fact that H is area-preserving, we extend these maps conservatively to \mathbb{R}^{2} to get the area-preserving homeomorphism Ψ.

[^0]This conservative conjugacy Ψ trivializes H which is very useful if one aims to build perturbations and remain in the area-preserving setting.

We observe that the arguments we developed to prove Lemma 3.1 may be used to prove that H has only a fundamental region (Definition 5.1). Hence by using the fact, proved by Andrea ([1]), that maps with only one fundamental region are conjugated to T, we obtain another prove that H and T are conjugated. However this does not guarantee that there exists an area-preserving conjugacy.

2 Some preliminary lemmas

Definition 2.1 We consider the map $H_{a, b}$ with parameters $a, b \in \mathbb{R}$:

$$
\begin{array}{ccc}
H_{a, b}: & \mathbb{R}^{2} & \longrightarrow \\
(x, y) & \longrightarrow\left(a-x^{2}-b y, x\right)
\end{array}
$$

This is the so-called Hénon map. When we consider $|b|=1$, then for all $p \in \mathbb{R}^{2}$ we have $\left|\operatorname{det}\left(D H_{a, 1}\right)_{p}\right|=1$, so the map preserves the area and that is why we call it conservative Hénon map. If $b=1$, then, since $\operatorname{det}\left(D H_{a, 1}\right)=1, H_{a, 1}$ preserves also the orientation. Depending on the parameter $a \in \mathbb{R}, H_{a, 1}$ may have, or not, fixed points. In fact, it is easy to see that Fix $\left(H_{a, 1}\right)=\emptyset$ if and only if $a<-1$.

In what follows we deduce some properties of $H_{a, 1}$, which will be denoted by H and we consider $a<-1$. It is clear that H is a homeomorphism of the plane with inverse defined by $H_{a, 1}^{-1}((x, y))=\left(y, a-y^{2}-x\right)$.

Remark 2.1 Let $S((x, y))=(y, x)$, hence
$S\left(H^{-1}(S(x, y))\right)=S\left(H^{-1}(y, x)\right)=S\left(x, a-x^{2}-y\right)=\left(a-x^{2}-y, x\right)=H(x, y)$.
Therefore, H is topologically conjugate to its inverse by using the symmetry on the line $y=x$, say $H \circ S=S \circ H^{-1}$. In this case the conjugacy is equal to its inverse, say $S=S^{-1}$. We conclude that the action of the map H^{-1} may be seen as the reflection on the line $y=x$ of the action of H itself.

We will deduce some elementary properties of the dynamics of the conservative Hénon map. Let us define
$I=\{(x, y): x, y \geq 0\}, I I=\{(x, y): x \leq 0, y \geq 0\}, I I I=\{(x, y): x, y \leq 0\}$ and $I V=\{(x, y): x \geq 0, y \leq 0\}$.
The subset of $I I I$ defined by $\left\{(x, y) \in \mathbb{R}^{2}: x \leq y\right\}$ will be denoted by D^{+}, finally denote $S\left(D^{+}\right)$by D^{-}.

Lemma 2.1. One has

1) $H\left(D^{+}\right) \subseteq D^{+}$and $H^{n}\left(D^{+}\right) \subseteq \operatorname{int}\left(D^{+}\right), \forall n \geq 2$.
2) $H^{-1}\left(D^{-}\right) \subseteq D^{-}$and $H^{-n}\left(D^{-}\right) \subseteq \operatorname{int}\left(D^{-}\right), \forall n \geq 2$.

Proof: First, using Remark 2.1 and the definition of D^{-}, note that

$$
H^{-1}\left(D^{-}\right)=H^{-1} S\left(\left(D^{+}\right)\right)=S \circ H\left(D^{+}\right) .
$$

Therefore 2) follows from 1).
Now fix $(x, y) \in D^{+}$and let $\left(x_{1}, y_{1}\right)=H(x, y)=\left(a-x^{2}-y, x\right)$. It is clear that $y_{1}=x \leq 0$ and, since $a-x^{2}-x \leq x, \forall x \in \mathbb{R}$, we get $x_{1}=a-x^{2}-y \leq a-x^{2}-x \leq x=y_{1}$. Therefore $\left(x_{1}, y_{1}\right) \in D^{+}$, which implies that $H\left(D^{+}\right) \subseteq D^{+}$. Finally, to prove that $H^{n}\left(D^{+}\right) \subseteq \operatorname{int}\left(D^{+}\right)$, $\forall n \geq 2$, we first note (0,0) is the unique point of D^{+}whose image belongs to the boundary of D^{+}.

Since,

$$
H^{2}((0,0))=H((a, 0))=\left(a-a^{2}, a\right) \in \operatorname{int}\left(D^{+}\right)
$$

we conclude that $H^{2}\left(D^{+}\right) \subseteq \operatorname{int}\left(D^{+}\right)$and so,

$$
H^{n}\left(D^{+}\right)=H^{n-2}\left(H^{2}\left(D^{+}\right)\right) \subseteq H^{n-2}\left(\operatorname{int}\left(D^{+}\right)\right) \subseteq \operatorname{int}\left(D^{+}\right), \forall n \geq 2
$$

Lemma 2.2 Given $(x, y) \in \mathbb{R}^{2}$ we have:

1) If $(x, y) \in I$, then $H((x, y)) \in I I$.
2) If $(x, y) \in I I$, then $H((x, y)) \in D^{+}$.
3) If $(x, y) \in I V$, then $H((x, y)) \in I$ or $H((x, y)) \in I I$.
4) If $(x, y) \in I I I$, then $H((x, y)) \in I I I$ or $H((x, y)) \in I V$.
5) If $H^{n}((x, y)) \in I I I, \forall n \in \mathbb{N}_{0}$, then $\exists k \in \mathbb{N}_{0}$ such that $H^{k}((x, y)) \in D^{+}$.

Proof:

1) If $(x, y) \in I$ then, since $H((x, y))=\left(a-x^{2}-y, x\right), a-x^{2}-y \leq a<0$ and $x \geq 0$, we get $H((x, y)) \in I I$.
2) If $(x, y) \in I I$, then $x \leq 0$ and $y \geq 0$. Since $H((x, y))=\left(a-x^{2}-y, x\right)$ it remains to prove that $a-x^{2}-y \leq x$. Since $a<-1$ for all $x \in \mathbb{R}$ it follows that $a-x^{2}-2 x \leq 0$, therefore $a-x^{2}-x \leq x$ and, since $-y \leq-x$, we conclude that $a-x^{2}-y \leq a-x^{2}-x \leq x$. So $H((x, y)) \in D^{+}$.
3) If $(x, y) \in I V$, then since $H((x, y))=\left(a-x^{2}-y, x\right)$ and $x \geq 0$ it is clear that $H((x, y))$ belongs to I or to $I I$.
4) If $(x, y) \in I I I$, then since $H((x, y))=\left(a-x^{2}-y, x\right)$, having $H((x, y))$ in $I I I$ or in $I V$ is equivalent to $x \leq 0$, which is obvious.
5) Consider $\left(x_{0}, y_{0}\right) \in I I I$ such that $H^{n}\left(\left(x_{0}, y_{0}\right)\right) \in I I I, \forall n \in \mathbb{N}$. Assume that $H^{n}\left(\left(x_{0}, y_{0}\right)\right) \notin D^{+}, \forall n \in \mathbb{N}$. Denote $\left(x_{n}, y_{n}\right)=H^{n}\left(\left(x_{0}, y_{0}\right)\right)$ and we have $0 \geq x_{n} \geq y_{n}=x_{n-1}, \forall n \in \mathbb{N}$. So, $\left(x_{n}\right)_{n \in \mathbb{N}}$ is an increasing bounded sequence, therefore it converges to $p \in \mathbb{R}_{0}^{+}$. Since $y_{n}=x_{n-1}$ it follows that $\left(y_{n}\right)_{n \in \mathbb{N}} \underset{n}{\longrightarrow+\infty} p$. So, $H^{n}\left(\left(x_{0}, y_{0}\right)\right) \underset{n \longrightarrow+\infty}{\longrightarrow}(p, p)$ and so (p, p) is a fixed point for H, which is a contradiction.

Lemmas 2.1 and 2.2 allow us to conclude that for all $(x, y) \in \mathbb{R}^{2}$ there exists $n_{0} \in \mathbb{N}$, depending on (x, y), such that $H^{n}((x, y)) \in \operatorname{int}\left(D^{+}\right), \forall n \geq n_{0}$. Analogously we conclude that exists $n_{1} \in \mathbb{N}$ such that $H^{-n}((x, y)) \in \operatorname{int}\left(D^{-}\right)$, $\forall n \geq n_{1}$. It follows that we just need to know the dynamics of H inside D^{+} (respectively the dynamics of H^{-1} inside D^{-}). Figure 1 illustrates the image by H of the four regions.

Figure 1: The dynamics of H on each region $I, I I, I I I$ and $I V$.

Lemma 2.3 Let $\left(x_{0}, y_{0}\right) \in D^{+}$and define $\left(x_{n}, y_{n}\right)=H^{n}\left(\left(x_{0}, y_{0}\right)\right)$. Then $\exists n_{0} \in \mathbb{N}$, depending on $\left(x_{0}, y_{0}\right)$, such that $\forall n \in \mathbb{N}$ with $n \geq n_{0}$ we have:

1) $x_{n+1} \leq x_{n}+a$
2) $y_{n+1} \leq y_{n}$ e $y_{n+2} \leq y_{n}+a$

Proof: Given $\left(x_{1}, y_{1}\right)=\left(a-x_{0}^{2}-y_{0}, x_{0}\right)$ we have that $y_{1}=x_{0} \leq y_{0}$ and $x_{1}=a-x_{0}^{2}-y_{0} \leq a-x_{0}^{2}-x_{0} \leq x_{0}$, so the sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ are decreasing. Note that, $\forall(x, y) \in D^{+}$, there exists $n_{0} \in \mathbb{N}$ such that $x_{n_{0}}<-2$ because otherwise it implies the existence of a fixed point.
Since for $x<-2$ we have $x_{n+1}=a-x_{n}^{2}-y_{n} \leq a-x_{n}^{2}-x_{n} \leq x_{n}+a$, inequality 1) is proved.

To prove 2) we note that the first inequality follows from $\left(y_{n}\right)_{n \in \mathbb{N}}$ being decreasing and the second inequality follows directly from the fact that $y_{n+2}=x_{n+1} \leq x_{n}+a \leq y_{n}+a$.

Lemma 2.3 tell us that under only two iterates and since $a<-1$, points move bellow a distance at least one and to the left a distance larger than two. So this result together with Lemmas 2.1 and 2.2 give us a very good description of how the orbit a point tends to infinity.

3 Construction of the conjugacy between the T and H

First we define the fundamental domain \mathcal{D}. Let $\lambda=\{(x, y): y=x\}$ and $H(\lambda)$ its image by H. Let \mathcal{D} be the connected, unbounded region of the plane delimited by λ and $H(\lambda)$. We will see first that the saturate of \mathcal{D} fills the all plane.

Lemma $3.1 \bigcup_{n \in \mathbb{Z}} H^{n}(\mathcal{D})=\mathbb{R}^{2}$.
Proof: Note that it is sufficient to prove that, given (x, y) with $x \leq y$, there exists $n \in \mathbb{N}_{0}$ such that $H^{-n}((x, y)) \in \mathcal{D}$, because for the region $x \geq y$ we use the fact that $H^{-1}=S \circ H \circ S$. Since $H^{2}(\lambda)$ is contained in the region $I I I$ it follows that, for $(x, y) \in I I \backslash \mathcal{D}$, we have that $H^{-1}((x, y)) \in \mathcal{D}$.
It remains to consider points $(x, y) \in D^{+} \backslash \mathcal{D}$. So, $H^{-1}((x, y))$ belongs to $I I$ or to $I I I$. Note that, if $H^{-1}((x, y)) \in I I$ or more generally there exists $n \in \mathbb{N}$ such that $H^{-n}((x, y)) \in I I$, then $H^{-1}((x, y)) \in \mathcal{D}$ or $H^{-2}((x, y)) \in \mathcal{D}$. Then, we just have to consider the case when $(x, y) \in D^{+}$and $H^{-n}((x, y)) \in I I I$, $\forall n \in \mathbb{N}$. Suppose, by contradiction that $H^{-n}((x, y)) \notin \mathcal{D}, \forall n \in \mathbb{N}$; then, since $(x, y) \in D^{+} \backslash \mathcal{D}$ we get $x<a-y^{2}-y$ and so $H^{-1}((x, y)) \in D^{+}$.

We obtain a sequence in $D^{+},\left(x_{-n}, y_{-n}\right)=H^{-n}((x, y)), n \in \mathbb{N}$, such that $x_{-n} \geq x_{-n+1}$ and $y_{-n} \geq y_{-n+1}, \forall n \in \mathbb{N}$. Therefore $\left(\left(x_{-n}, y_{-n}\right)\right)_{n \in \mathbb{N}}$ converges to (x_{0}, y_{0}) which is a fixed point, and we get a contradiction.

Remark 3.1 Clearly $\operatorname{int}(\mathcal{D}) \cap H^{n}(\operatorname{int}(\mathcal{D}))=\emptyset, \forall n \in \mathbb{Z} \backslash\{0\}$.
Now we will construct the topological conjugacy, i.e. a homeomorphism $\Phi: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ such that $\Phi \circ H=T \circ \Phi$, where $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is the translation $T((x, y))=(x+1, y)$. Let λ_{c} denote the line $x=0$ and

$$
\mathcal{D}_{c}=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 1\right\}
$$

the idea is to construct first a homeomorphism $\widetilde{\Phi}: \mathcal{D} \longrightarrow \mathcal{D}_{c}$ such that $\widetilde{\Phi}(\lambda)=\lambda_{c}$ and $\widetilde{\Phi}(H(x))=T(\widetilde{\Phi}(x)), \forall x \in \lambda$, and then extend it to \mathbb{R}^{2}.

Denote by $[a, b]$ the oriented segment from the point a through the point b, and, for $x \neq 0$, let $\mathcal{A}(x)$ be the region bounded by the three segments $\left[\left(a-x^{2}-x, x\right),(x, x)\right],[(x, x),(0,0)]$ and $[(0,0),(a, 0)]$ and by the curve $H([(0,0),(x, x)])$; for $x^{\prime} \neq 0$ let $\mathcal{B}\left(x^{\prime}\right)$ be the region delimited by the quadrilateral with vertices $(0,0),(1,0),\left(1, x^{\prime}\right)$ and $\left(0, x^{\prime}\right)$.

We want a diffeomorphism $\tilde{\Phi}$ such that, for all $x \neq 0$:

- $\tilde{\Phi}([(0,0),(x, x)])=\left[(0,0),\left(0, x^{\prime}\right)\right]$,
- $\tilde{\Phi} \circ H((x, x))=T \circ \tilde{\Phi}((x, x))$, and
- $\tilde{\Phi}(\mathcal{A}(x))=\mathcal{B}\left(x^{\prime}\right)$,
where x^{\prime} depends on x and will be chosen such that $\mu(\mathcal{A}(x))=\mu\left(\mathcal{B}\left(x^{\prime}\right)\right)$, where μ denotes the Lebesgue measure, see Figure 2.

Construction of $\tilde{\Phi}$:

We consider the parametrized segment:

$$
(1-t)(x, x)+t\left(a-x^{2}-x, x\right), t \in[0,1]
$$

and send this segment, by the map $\widetilde{\Phi}$, into the segment:

$$
(1-t)\left(0, x^{\prime}\right)+t\left(1, x^{\prime}\right), t \in[0,1]
$$

Figure 2: Construction of the conjugacy.
where x^{\prime} will be defined bellow. We have that

$$
\mu(\mathcal{A}(x))=\int_{0}^{|x|} t-\left(a-t^{2}-t\right) d t=-a|x|+\frac{|x|^{3}}{3}+x^{2}, \quad x \in \mathbb{R} \backslash\{0\} .
$$

So we take

- $x^{\prime}:=-a x+\frac{x^{3}}{3}+x^{2}$, if $x>0$, and
- $x^{\prime}:=-\left(-a|x|+\frac{|x|^{3}}{3}+x^{2}\right)=-a x+\frac{x^{3}}{3}-x^{2}$, otherwise.

Therefore, if $x \geq 0$, we define:

$$
\widetilde{\Phi}\left(\left((1-t) x+t\left(a-x^{2}-x\right), x\right)\right)=\left(t, x^{\prime}\right)=\left(t,-a x+\frac{x^{3}}{3}+x^{2}\right)
$$

and if $x \leq 0$, we define:

$$
\widetilde{\Phi}\left(\left((1-t) x+t\left(a-x^{2}-x\right), x\right)\right)=\left(t, x^{\prime}\right)=\left(t,-a x+\frac{x^{3}}{3}-x^{2}\right),
$$

Now, let $(x, y) \in \operatorname{int}(\mathcal{A}(x))$ and assume that $y \geq 0$; this point belongs to $\left[(y, y),\left(a-y^{2}-y, y\right)\right]$, so there exists one and only one $t \in[0,1]$ such that:

$$
(x, y)=(1-t)(y, y)+t\left(a-y^{2}-y, y\right)
$$

hence we obtain:

$$
x=(1-t) y+t\left(a-y^{2}-y\right) \Leftrightarrow x-y=t\left(a-y^{2}-2 y\right) \Leftrightarrow t=\frac{x-y}{a-y^{2}-2 y}
$$

and since $\widetilde{\Phi}((y, y))=\left(0, y^{\prime}\right)$ and $\widetilde{\Phi}\left(\left(a-y^{2}-y, y\right)\right)=\left(1, y^{\prime}\right)$ we can define:

$$
\widetilde{\Phi}((x, y))=(1-t)\left(0, y^{\prime}\right)+t\left(1, y^{\prime}\right)=\left(t, y^{\prime}\right)=\left(\frac{x-y}{a-y^{2}-2 y}, y^{\prime}\right)
$$

If $y \leq 0$ we can argue exactly in the same way and define:

$$
\widetilde{\Phi}((x, y))=(1-t)\left(0, y^{\prime}\right)+t\left(1, y^{\prime}\right)=\left(t, y^{\prime}\right)=\left(\frac{x-y}{a-y^{2}-2 y}, y^{\prime}\right)
$$

Using the previous definition of y^{\prime} we conclude that the homeomorphism $\widetilde{\Phi}: \mathcal{D} \longrightarrow \mathcal{D}_{(c)}$ is defined by:

$$
\begin{gathered}
\widetilde{\Phi}((x, y))=\left(\frac{x-y}{a-y^{2}-2 y},-a y+\frac{y^{3}}{3}+y^{2}\right), \text { if } y \geq 0, \text { or } \\
\widetilde{\Phi}((x, y))=\left(\frac{x-y}{a-y^{2}-2 y},-a y+\frac{y^{3}}{3}-y^{2}\right), \text { if } y \leq 0 .
\end{gathered}
$$

Clearly $\mu(\mathcal{A}(y))=\mu\left(\mathcal{B}\left(y^{\prime}\right)\right)$. Note that, by construction, if $p \in \lambda$, then $\tilde{\Phi} \circ H(p)=T \circ \tilde{\Phi}(p)$.

Construction of Φ :

In order to obtain the desired conjugacy Φ we extend $\widetilde{\Phi}$ to the plane in the standard way. Lemma 3.1 assures that, for each $p \in \mathbb{R}^{2}$, there exists $n_{p} \in \mathbb{Z}$ such that $H^{n_{p}}(p) \in \mathcal{D}$, therefore we define $\Phi(p)=T^{-n_{p}} \circ \widetilde{\Phi} \circ H^{n_{p}}(p)$. It is easy to verify that the map Φ is well defined, that it is a homeomorphism and that $\Phi \circ H=T \circ \Phi$.

4 Obtaining the area-preserving conjugacy

Write $\mathcal{D}=\cup_{i \in \mathbb{Z}} C_{i}$, where, for each $i \in \mathbb{Z}, C_{i}=\mathcal{A}(i) \backslash \mathcal{A}(i-1)$. In order to construct the area-preserving conjugacy Ψ we first modify $\tilde{\Phi}$ in the interior of each bounded region C_{i} in such way that the resulting map, say $\tilde{\Psi}_{i}$ is area-preserving and coincides with $\tilde{\Phi}$ on ∂C_{i}. As the maps $\tilde{\Psi}_{i}$ and $\tilde{\Psi}_{i+1}$ coincide on $\left[(i, i),\left(a-i^{2}-i, i\right)\right]$, for all $i \in \mathbb{Z}$, these maps define an area-preserving map on \mathcal{D}, say $\tilde{\Psi}$, such that $\tilde{\Psi}(\mathcal{D})=\mathcal{D}_{c}$; as the maps $\tilde{\Psi}_{i}$
coincide with $\tilde{\Phi}$ on λ and $H(\lambda)$ one has that $\tilde{\Psi} \circ H(p)=T \circ \tilde{\Psi}(p)$, for all $p \in \lambda$. Finally the area-preserving conjugacy is obtained extending the map $\tilde{\Psi}$ to the plane as before.

Let us recall the following theorem due to Dacorogna and Moser (Theorem 5, [2]) that will be used to obtain a conservative local change of coordinates that is crucial to get the maps $\tilde{\Psi}_{i}$. We point out that this version of Dacorogna-Moser theorem consider only regularity in the interior of a set Ω, whereas Theorem 1 of [2] requires a smooth boundary and as a consequence they obtain a smooth change of coordinates. Since we are only interested in homeomorphisms for the change of coordinates the following Theorem is sufficient.

Theorem 4.1 (Dacorogna-Moser) Let $\Omega \subset \mathbb{R}^{2}$ be an open, bounded and connected set. Let $f, g: \bar{\Omega} \rightarrow \mathbb{R}$ be positive functions of class C^{s} for $s \in \mathbb{N}$ and such that $\int_{\Omega} f(y) d y=\int_{\Omega} g(y) d y$. Then there exists $\varphi: \bar{\Omega} \rightarrow \bar{\Omega}$ of class C^{s} with $\varphi(x)=x$ for $x \in \partial \Omega$ and such that $\int_{U} f(y) d y=\int_{\varphi(U)} g(y) d y$ for every open set $U \subset \Omega$.

By a straightforward use of change of variables we obtain:

$$
\int_{\varphi(U)} g(y) d y=\int_{U} g(\varphi(y)) \operatorname{det} D \varphi_{y} d y
$$

but by Theorem 4.1 we know that $\int_{\Omega} f(y) d y=\int_{\Omega} g(y) d y$ so

$$
\int_{U} f(y) d y=\int_{U} g(\varphi(y)) \operatorname{det} D \varphi_{y} d y
$$

and since this works for every open set U we obtain:

$$
\begin{equation*}
\operatorname{det} D \varphi_{y} g(\varphi(y))=f(y) \tag{1}
\end{equation*}
$$

Now fix $x=1$ and consider the associated $x^{\prime}=\frac{4}{3}-a$ as in the previous section. Let $\operatorname{int}\left(\mathcal{B}\left(x^{\prime}\right)\right)=\Omega$ and we consider the functions $f, g: \bar{\Omega} \rightarrow \mathbb{R}$, defined by $f(y)=\left|\operatorname{det} D \tilde{\Phi}_{y}^{-1}\right|$ and $g=1$. We note that $f \in C^{0}(\bar{\Omega})$.

Claim 4.1 $\int_{\Omega} f(y) d y=\int_{\Omega} g(y) d y$.

To see this we observe that,

$$
\frac{\int_{\Omega} g(y) d y}{\int_{\Omega} f(y) d y}=\frac{\mu(\Omega)}{\int_{\Omega}\left|\operatorname{det} D \tilde{\Phi}_{y}^{-1}\right| d y}=\frac{\mu(\Omega)}{\mu\left(\tilde{\Phi}^{-1}(\Omega)\right)}=\frac{\mu\left(\mathcal{B}\left(x^{\prime}\right)\right)}{\mu(\mathcal{A}(x))}=1
$$

Last equality follows by construction and the claim is proved. Hence we can apply Theorem 4.1 and we obtain a homeomorphism $\varphi: \bar{\Omega} \rightarrow \bar{\Omega}$ verifying (1). Now we define,

$$
\begin{aligned}
\tilde{\Psi}_{1}: \mathcal{A}(1) & \longrightarrow \\
p & \longrightarrow
\end{aligned}{ }^{\longrightarrow} \circ \tilde{\Phi}(p)
$$

To see that $\tilde{\Psi}_{1}$ is area-preserving we compute the determinant of the Jacobian,

$$
\operatorname{det} D \tilde{\Psi}=\operatorname{det} D \varphi \cdot \operatorname{det} D \tilde{\Phi}_{1}=\operatorname{det} D \varphi \cdot f(y)^{-1}
$$

Now the partial differential equation (1) says that $\operatorname{det} D \varphi \cdot f(y)^{-1}=1$, therefore we obtain that $\operatorname{det} D \tilde{\Psi}_{1}=1$, that is $\tilde{\Psi}_{1}$ is area-preserving.

In the same way we obtain $\tilde{\Psi}_{-1}$.
The maps $\tilde{\Psi}_{i}: \mathcal{A}(i) \backslash \mathcal{A}(i-1) \rightarrow \mathcal{B}\left(x_{i}^{\prime}\right) \backslash \mathcal{B}\left(x_{i-1}^{\prime}\right), i \in \mathbb{Z}$, are obtained by applying recursively the previous arguments to the points $x_{i}=i$ and the corresponding x_{i}^{\prime}, and to the region $\Omega=\operatorname{int}\left(\mathcal{B}\left(x_{i}^{\prime}\right) \backslash \mathcal{B}\left(x_{i-1}^{\prime}\right)\right)$, thus ending the proof of the Theorem 1.

5 Existence of a conjugacy via fundamental regions

Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a free map of the plane, say a fixed point free homeomorphism of the plane. We define an equivalence relation by saying that x is related with y, denoted by $x \sim y$, if there exists a compact arc γ from x through y such that given any compact $K \subseteq \mathbb{R}^{2}$, there exists $n_{0} \in \mathbb{N}$ such that for any $n>n_{0}$ and $n<-n_{0}$ we have $H^{n}(\gamma) \cap K=\emptyset$.

Definition 5.1 Each element of \mathbb{R}^{2} / \sim is called a fundamental region.
Proposition 5.1 The conservative Hénon map has only one fundamental region.

Proof: Let $x, y \in \mathbb{R}^{2}, \gamma$ a compact segment from x through y and $K \subseteq \mathbb{R}^{2}$ any compact set. Clearly $K \subseteq Q_{K}$ for some square Q_{K} centered in the origin. Lemmas 2.1 to 2.3 are sufficient to conclude that exists $n_{k} \in \mathbb{N}$ such that for all $n>n_{k}$, we have $H^{n}(\gamma) \cap Q_{K}=\emptyset$. In fact, if we fix $z \in \gamma$, there exists $n_{z} \in \mathbb{N}$ such that $H^{n_{z}}(z) \notin Q_{K}, H^{n_{z}}(z) \in \operatorname{int}\left(D^{+}\right)$and the first coordinate of $H^{n_{z}}(z)$ is smaller than -2 . Therefore, for all $n>n_{z}$ we have $H^{n}(z) \notin Q_{K}$ and by continuity n_{z} it is true also for some open neighborhood of z, V_{z}, sufficiently small. Let $\left\{V_{z}\right\}_{z \in \gamma}$ be an open covering of γ, since γ is compact $\left\{V_{z}\right\}_{z \in \gamma}$ admits a finite subcovering $\left\{V_{z_{1}}, \ldots, V_{z_{s}}\right\}$ and, as above to each z_{i} we associate $n_{z_{i}}$ such that $H^{n_{z_{i}}}\left(V_{z_{i}}\right) \cap Q_{K}=\emptyset, H^{n_{z_{i}}}\left(V_{z_{i}}\right) \subseteq D^{+}$and the first coordinate of any point of $H^{n_{z_{i}}}\left(V_{z_{i}}\right)$ is less than -2 . Now, we just choose $n_{0}=\max \left\{n_{z_{1}}, \ldots, n_{z_{s}}\right\}$ and we have that for $n>n_{0}$ that $H^{n}(\gamma) \cap K=\emptyset$. By an analog procedure we prove that $H^{-n}(\gamma) \cap K=\emptyset$, by using the map S in D^{-}.

Consider the following theorem due to Andrea (see [1]).
Theorem 5.2 A free map of the plane is equivalent to a translation if and only if it has just one fundamental region.

Now using the Proposition 5.1 jointly with Theorem 5.2 we conclude that H is conjugate to a translation. We note that this argument does not assure the existence of an area-preserving conjugacy.

6 Final remarks

In the case of the conservative Hénon map with $a=-1$, our map is no longer a free map, because it has a fixed point. Therefore it is not conjugate to a translation. Nevertheless the dynamics of this new map seems to be very similar to the case when $a<-1$, see Figure 3. After the bifurcation, say for $a>-1$, the dynamics earn rich properties, namely horseshoes and elliptical islands.

For the reversing-orientation conservative Hénon map without fixed points, that is when $b=-1$ and $a<0$ in Definition 2.1, it is straigthforward to verify that $H \circ R=R \circ H^{-1}$, where $H=H_{a,-1}$ and $R(x, y)=(-y,-x)$. Therefore, considering the region \mathcal{D} bounded by the curves $\lambda=\left\{(x, y) \in \mathbb{R}^{2}: y=-x\right\}$ and $H(\lambda)$, we believe that, applying the same arguments, it is possible to prove that \mathcal{D} is a fundamental domain and that there exists an area-preserving conjugacy between H and the map $Z(x, y)=(x+1,-y)$.

Figure 3: The bifurcation parameter $a=-1$.

References

[1] S. Andrea, On Homeomorphisms on the Plane which have no Fixed Points, Abh. Math. Semin. Univ. Hamb. 30, pp.61-74, 1967
[2] Dacorogna, B., Moser, J. On a partial differential equation involving the Jacobian determinant. Ann. Inst. Henri Poincaré, vol. 7, n1, pp-1-26, 1990

Mário Bessa (bessa@impa.br)
CMUP, Rua do Campo Alegre, 687
4169-007 Porto
Portugal

Jorge Rocha (jrocha@fc.up.pt)
DMP-FCUP, Rua do Campo Alegre, 687
4169-007 Porto
Portugal

[^0]: *Partially supported by FCT-FSE, SFRH/BPD/20890/2004
 ${ }^{\dagger}$ Partially supported by FCT-POCTI/MAT/61237/2004

