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Abstract

We construct an area-preserving homeomorphism of the plane that
conjugates a conservative Hénon map to a translation.

1 Introduction and statement of the results

In this paper we consider an area-preserving map derived from the Hénon
map defined by H(x, y) = (a− x2 − y, x), where a < −1. The main result is
the following:

Theorem 1 There exists an area-preserving C0-conjugacy of the conserva-
tive Hénon map and T (x, y) = (x + 1, y).

To prove Theorem 1 we start constructing a fundamental domain of H,
D, whose saturate fills R

2 (Lemma 3.1). We consider a fundamental domain
Dc for the translation T and split D and Dc into countable bounded pieces.
Then we construct local diffeomorphisms, whose domains cover D, which
conjugate the restrictions of H and T to each piece and such that each one
preserves the area of its domain. Next, using Dacorogna-Moser Theorem
(Theorem 4.1), we get an area-preserving homeomorphism from D to Dc.
Finally, using Lemma 3.1 and the fact that H is area-preserving, we extend
these maps conservatively to R

2 to get the area-preserving homeomorphism
Ψ.
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This conservative conjugacy Ψ trivializes H which is very useful if one
aims to build perturbations and remain in the area-preserving setting.

We observe that the arguments we developed to prove Lemma 3.1 may
be used to prove that H has only a fundamental region (Definition 5.1).
Hence by using the fact, proved by Andrea ([1]), that maps with only one
fundamental region are conjugated to T , we obtain another prove that H
and T are conjugated. However this does not guarantee that there exists an
area-preserving conjugacy.

2 Some preliminary lemmas

Definition 2.1 We consider the map Ha,b with parameters a, b ∈ R :

Ha,b : R
2 −→ R

2

(x, y) −→ (a − x2 − by, x)

This is the so-called Hénon map. When we consider |b| = 1, then for all
p ∈ R

2 we have |det(DHa,1)p| = 1, so the map preserves the area and
that is why we call it conservative Hénon map. If b = 1, then, since
det(DHa,1) = 1, Ha,1 preserves also the orientation. Depending on the pa-
rameter a ∈ R, Ha,1 may have, or not, fixed points. In fact, it is easy to see
that Fix(Ha,1) = ∅ if and only if a < −1.

In what follows we deduce some properties of Ha,1, which will be denoted
by H and we consider a < −1. It is clear that H is a homeomorphism of the
plane with inverse defined by H−1

a,1((x, y)) = (y, a − y2 − x).

Remark 2.1 Let S((x, y)) = (y, x), hence

S(H−1(S(x, y))) = S(H−1(y, x)) = S(x, a−x2−y) = (a−x2−y, x) = H(x, y).

Therefore, H is topologically conjugate to its inverse by using the symmetry
on the line y = x, say H ◦ S = S ◦ H−1. In this case the conjugacy is equal
to its inverse, say S = S−1. We conclude that the action of the map H−1

may be seen as the reflection on the line y = x of the action of H itself.

We will deduce some elementary properties of the dynamics of the con-
servative Hénon map. Let us define
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I = {(x, y) : x, y ≥ 0}, II = {(x, y) : x ≤ 0, y ≥ 0}, III = {(x, y) : x, y ≤ 0}
and IV = {(x, y) : x ≥ 0, y ≤ 0}.
The subset of III defined by {(x, y) ∈ R

2 : x ≤ y} will be denoted by D+,
finally denote S(D+) by D−.

Lemma 2.1 . One has

1) H(D+) ⊆ D+ and Hn(D+) ⊆ int(D+), ∀n ≥ 2.
2) H−1(D−) ⊆ D− and H−n(D−) ⊆ int(D−), ∀n ≥ 2.

Proof: First, using Remark 2.1 and the definition of D−, note that

H−1(D−) = H−1S((D+)) = S ◦ H(D+).

Therefore 2) follows from 1).
Now fix (x, y) ∈ D+ and let (x1, y1) = H(x, y) = (a − x2 − y, x). It

is clear that y1 = x ≤ 0 and, since a − x2 − x ≤ x, ∀x ∈ R, we get
x1 = a − x2 − y ≤ a − x2 − x ≤ x = y1. Therefore (x1, y1) ∈ D+, which
implies that H(D+) ⊆ D+. Finally, to prove that Hn(D+) ⊆ int(D+),
∀n ≥ 2, we first note (0, 0) is the unique point of D+ whose image belongs
to the boundary of D+.

Since,
H2((0, 0)) = H((a, 0)) = (a − a2, a) ∈ int(D+),

we conclude that H2(D+) ⊆ int(D+) and so,

Hn(D+) = Hn−2(H2(D+)) ⊆ Hn−2(int(D+)) ⊆ int(D+),∀n ≥ 2.

⊔⊓

Lemma 2.2 Given (x, y) ∈ R
2 we have:

1) If (x, y) ∈ I, then H((x, y)) ∈ II.
2) If (x, y) ∈ II, then H((x, y)) ∈ D+.
3) If (x, y) ∈ IV , then H((x, y)) ∈ I or H((x, y)) ∈ II.
4) If (x, y) ∈ III, then H((x, y)) ∈ III or H((x, y)) ∈ IV .
5) If Hn((x, y)) ∈ III, ∀n ∈ N0, then ∃k ∈ N0 such that Hk((x, y)) ∈ D+.

3



Proof:

1) If (x, y) ∈ I then, since H((x, y)) = (a− x2 − y, x), a− x2 − y ≤ a < 0
and x ≥ 0, we get H((x, y)) ∈ II.

2) If (x, y) ∈ II, then x ≤ 0 and y ≥ 0. Since H((x, y)) = (a− x2 − y, x)
it remains to prove that a−x2 − y ≤ x. Since a < −1 for all x ∈ R it follows
that a − x2 − 2x ≤ 0, therefore a − x2 − x ≤ x and, since −y ≤ −x, we
conclude that a − x2 − y ≤ a − x2 − x ≤ x. So H((x, y)) ∈ D+.

3) If (x, y) ∈ IV , then since H((x, y)) = (a − x2 − y, x) and x ≥ 0 it is
clear that H((x, y)) belongs to I or to II.

4) If (x, y) ∈ III, then since H((x, y)) = (a−x2 − y, x), having H((x, y))
in III or in IV is equivalent to x ≤ 0, which is obvious.

5) Consider (x0, y0) ∈ III such that Hn((x0, y0)) ∈ III, ∀n ∈ N. Assume
that Hn((x0, y0)) /∈ D+, ∀n ∈ N. Denote (xn, yn) = Hn((x0, y0)) and we
have 0 ≥ xn ≥ yn = xn−1, ∀n ∈ N. So, (xn)n∈N is an increasing bounded
sequence, therefore it converges to p ∈ R

+
0 . Since yn = xn−1 it follows that

(yn)n∈N −→
n−→+∞

p. So, Hn((x0, y0)) −→
n−→+∞

(p, p) and so (p, p) is a fixed point

for H, which is a contradiction. ⊔⊓
Lemmas 2.1 and 2.2 allow us to conclude that for all (x, y) ∈ R

2 there
exists n0 ∈ N, depending on (x, y), such that Hn((x, y)) ∈ int(D+), ∀n ≥ n0.
Analogously we conclude that exists n1 ∈ N such that H−n((x, y)) ∈ int(D−),
∀n ≥ n1. It follows that we just need to know the dynamics of H inside D+

(respectively the dynamics of H−1 inside D−). Figure 1 illustrates the image
by H of the four regions.

II

III IV H(III)H(II)

H(I)

I
H(IV)

Figure 1: The dynamics of H on each region I, II, III and IV .

Lemma 2.3 Let (x0, y0) ∈ D+ and define (xn, yn) = Hn((x0, y0)). Then
∃n0 ∈ N, depending on (x0, y0), such that ∀n ∈ N with n ≥ n0 we have:
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1) xn+1 ≤ xn + a
2) yn+1 ≤ yn e yn+2 ≤ yn + a

Proof: Given (x1, y1) = (a − x2
0 − y0, x0) we have that y1 = x0 ≤ y0 and

x1 = a−x2
0−y0 ≤ a−x2

0−x0 ≤ x0, so the sequences (xn)n∈N and (yn)n∈N are
decreasing. Note that, ∀(x, y) ∈ D+, there exists n0 ∈ N such that xn0

< −2
because otherwise it implies the existence of a fixed point.
Since for x < −2 we have xn+1 = a − x2

n − yn ≤ a − x2
n − xn ≤ xn + a,

inequality 1) is proved.
To prove 2) we note that the first inequality follows from (yn)n∈N be-

ing decreasing and the second inequality follows directly from the fact that
yn+2 = xn+1 ≤ xn + a ≤ yn + a. ⊔⊓

Lemma 2.3 tell us that under only two iterates and since a < −1, points
move bellow a distance at least one and to the left a distance larger than
two. So this result together with Lemmas 2.1 and 2.2 give us a very good
description of how the orbit a point tends to infinity.

3 Construction of the conjugacy between the

T and H

First we define the fundamental domain D. Let λ = {(x, y) : y = x} and
H(λ) its image by H. Let D be the connected, unbounded region of the
plane delimited by λ and H(λ). We will see first that the saturate of D fills
the all plane.

Lemma 3.1
⋃

n∈Z

Hn(D) = R
2.

Proof: Note that it is sufficient to prove that, given (x, y) with x ≤ y,
there exists n ∈ N0 such that H−n((x, y)) ∈ D, because for the region x ≥ y
we use the fact that H−1 = S ◦H ◦S. Since H2(λ) is contained in the region
III it follows that, for (x, y) ∈ II \ D, we have that H−1((x, y)) ∈ D.
It remains to consider points (x, y) ∈ D+ \ D. So, H−1((x, y)) belongs to II
or to III. Note that, if H−1((x, y)) ∈ II or more generally there exists n ∈ N

such that H−n((x, y)) ∈ II , then H−1((x, y)) ∈ D or H−2((x, y)) ∈ D. Then,
we just have to consider the case when (x, y) ∈ D+ and H−n((x, y)) ∈ III,
∀n ∈ N. Suppose, by contradiction that H−n((x, y)) /∈ D, ∀n ∈ N; then,
since (x, y) ∈ D+ \ D we get x < a − y2 − y and so H−1((x, y)) ∈ D+.
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We obtain a sequence in D+, (x−n, y−n) = H−n((x, y)), n ∈ N, such that
x−n ≥ x−n+1 and y−n ≥ y−n+1, ∀n ∈ N. Therefore ((x−n, y−n))n∈N converges
to (x0, y0) which is a fixed point, and we get a contradiction. ⊔⊓

Remark 3.1 Clearly int(D) ∩ Hn(int(D)) = ∅, ∀n ∈ Z \ {0}.

Now we will construct the topological conjugacy, i.e. a homeomorphism
Φ : R

2 −→ R
2 such that Φ◦H = T ◦Φ, where T : R

2 −→ R
2 is the translation

T ((x, y)) = (x + 1, y). Let λc denote the line x = 0 and

Dc = {(x, y) ∈ R
2 : 0 ≤ x ≤ 1},

the idea is to construct first a homeomorphism Φ̃ : D −→ Dc such that
Φ̃(λ) = λc and Φ̃(H(x)) = T (Φ̃(x)), ∀x ∈ λ, and then extend it to R

2.
Denote by [a, b] the oriented segment from the point a through the point

b, and, for x 6= 0, let A(x) be the region bounded by the three segments
[(a − x2 − x, x), (x, x)], [(x, x), (0, 0)] and [(0, 0), (a, 0)] and by the curve
H([(0, 0), (x, x)]); for x′ 6= 0 let B(x′) be the region delimited by the quadri-
lateral with vertices (0, 0), (1, 0), (1, x′) and (0, x′).

We want a diffeomorphism Φ̃ such that, for all x 6= 0:

• Φ̃([(0, 0), (x, x)]) = [(0, 0), (0, x′)],

• Φ̃ ◦ H((x, x)) = T ◦ Φ̃((x, x)), and

• Φ̃(A(x)) = B(x′),

where x′ depends on x and will be chosen such that µ(A(x)) = µ(B(x′)),
where µ denotes the Lebesgue measure, see Figure 2.

Construction of Φ̃:

We consider the parametrized segment:

(1 − t)(x, x) + t(a − x2 − x, x), t ∈ [0, 1]

and send this segment, by the map Φ̃, into the segment:

(1 − t)(0, x′) + t(1, x′), t ∈ [0, 1],
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~

(x,x)(a−x  −x,x)2

D
D cλ

H(   )λ

~
λλ c

(0,x’)

(0,0)(a,0) (0,0) (1,0)

B(x’)
A(x)

λ cΦ(   )
~

Φ

λΦT(      )=      (H(     ))=

(1,x´)

Figure 2: Construction of the conjugacy.

where x′ will be defined bellow. We have that

µ(A(x)) =

∫ |x|

0

t − (a − t2 − t)dt = −a|x| +
|x|3

3
+ x2, x ∈ R \ {0}.

So we take

• x′ := −ax + x3

3
+ x2, if x > 0, and

• x′ := −(−a|x| + |x|3

3
+ x2) = −ax + x3

3
− x2, otherwise.

Therefore, if x ≥ 0, we define:

Φ̃(((1 − t)x + t(a − x2 − x), x)) = (t, x′) = (t,−ax +
x3

3
+ x2),

and if x ≤ 0, we define:

Φ̃(((1 − t)x + t(a − x2 − x), x)) = (t, x′) = (t,−ax +
x3

3
− x2),

Now, let (x, y) ∈ int(A(x)) and assume that y ≥ 0; this point belongs to
[(y, y), (a − y2 − y, y)], so there exists one and only one t ∈ [0, 1] such that:

(x, y) = (1 − t)(y, y) + t(a − y2 − y, y)

hence we obtain:

x = (1 − t)y + t(a − y2 − y) ⇔ x − y = t(a − y2 − 2y) ⇔ t =
x − y

a − y2 − 2y
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and since Φ̃((y, y)) = (0, y′) and Φ̃((a − y2 − y, y)) = (1, y′) we can define:

Φ̃((x, y)) = (1 − t)(0, y′) + t(1, y′) = (t, y′) = (
x − y

a − y2 − 2y
, y′).

If y ≤ 0 we can argue exactly in the same way and define:

Φ̃((x, y)) = (1 − t)(0, y′) + t(1, y′) = (t, y′) = (
x − y

a − y2 − 2y
, y′).

Using the previous definition of y′ we conclude that the homeomorphism
Φ̃ : D −→ D(c) is defined by:

Φ̃((x, y)) = (
x − y

a − y2 − 2y
,−ay +

y3

3
+ y2), if y ≥ 0, or

Φ̃((x, y)) = (
x − y

a − y2 − 2y
,−ay +

y3

3
− y2), if y ≤ 0.

Clearly µ(A(y)) = µ(B(y′)). Note that, by construction, if p ∈ λ, then
Φ̃ ◦ H(p) = T ◦ Φ̃(p).

Construction of Φ:

In order to obtain the desired conjugacy Φ we extend Φ̃ to the plane in
the standard way. Lemma 3.1 assures that, for each p ∈ R

2, there exists
np ∈ Z such that Hnp(p) ∈ D, therefore we define Φ(p) = T−np ◦ Φ̃ ◦Hnp(p).
It is easy to verify that the map Φ is well defined, that it is a homeomorphism
and that Φ ◦ H = T ◦ Φ.

4 Obtaining the area-preserving conjugacy

Write D = ∪i∈ZCi, where, for each i ∈ Z, Ci = A(i) \ A(i − 1). In order
to construct the area-preserving conjugacy Ψ we first modify Φ̃ in the in-
terior of each bounded region Ci in such way that the resulting map, say
Ψ̃i is area-preserving and coincides with Φ̃ on ∂Ci. As the maps Ψ̃i and
Ψ̃i+1 coincide on [(i, i), (a − i2 − i, i)], for all i ∈ Z, these maps define an
area-preserving map on D, say Ψ̃, such that Ψ̃(D) = Dc; as the maps Ψ̃i
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coincide with Φ̃ on λ and H(λ) one has that Ψ̃ ◦ H(p) = T ◦ Ψ̃(p), for all
p ∈ λ. Finally the area-preserving conjugacy is obtained extending the map
Ψ̃ to the plane as before.

Let us recall the following theorem due to Dacorogna and Moser (Theo-
rem 5, [2]) that will be used to obtain a conservative local change of coordi-
nates that is crucial to get the maps Ψ̃i. We point out that this version of
Dacorogna-Moser theorem consider only regularity in the interior of a set Ω,
whereas Theorem 1 of [2] requires a smooth boundary and as a consequence
they obtain a smooth change of coordinates. Since we are only interested
in homeomorphisms for the change of coordinates the following Theorem is
sufficient.

Theorem 4.1 (Dacorogna-Moser) Let Ω ⊂ R
2 be an open, bounded and

connected set. Let f, g : Ω → R be positive functions of class Cs for s ∈ N

and such that
∫
Ω

f(y)dy =
∫
Ω

g(y)dy. Then there exists ϕ : Ω → Ω of class
Cs with ϕ(x) = x for x ∈ ∂Ω and such that

∫
U

f(y)dy =
∫

ϕ(U)
g(y)dy for

every open set U ⊂ Ω.

By a straightforward use of change of variables we obtain:

∫

ϕ(U)

g(y)dy =

∫

U

g(ϕ(y))detDϕydy,

but by Theorem 4.1 we know that
∫
Ω

f(y)dy =
∫
Ω

g(y)dy so

∫

U

f(y)dy =

∫

U

g(ϕ(y))detDϕydy

and since this works for every open set U we obtain:

detDϕyg(ϕ(y)) = f(y), (1)

Now fix x = 1 and consider the associated x′ = 4
3
− a as in the previous

section. Let int(B(x′)) = Ω and we consider the functions f, g : Ω → R,
defined by f(y) = |detDΦ̃−1

y | and g = 1. We note that f ∈ C0(Ω).

Claim 4.1
∫

Ω
f(y)dy =

∫
Ω

g(y)dy.
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To see this we observe that,

∫
Ω

g(y)dy∫
Ω

f(y)dy
=

µ(Ω)∫
Ω
|detDΦ̃−1

y |dy
=

µ(Ω)

µ(Φ̃−1(Ω))
=

µ(B(x′))

µ(A(x))
= 1.

Last equality follows by construction and the claim is proved. Hence we can
apply Theorem 4.1 and we obtain a homeomorphism ϕ : Ω → Ω verifying (1).
Now we define,

Ψ̃1 : A(1) −→ Ω

p −→ ϕ ◦ Φ̃(p)

To see that Ψ̃1 is area-preserving we compute the determinant of the
Jacobian,

detDΨ̃ = detDϕ.detDΦ̃1 = detDϕ.f(y)−1.

Now the partial differential equation (1) says that detDϕ.f(y)−1 = 1, there-
fore we obtain that detDΨ̃1 = 1, that is Ψ̃1 is area-preserving.

In the same way we obtain Ψ̃−1.
The maps Ψ̃i : A(i) \ A(i − 1) → B(x′

i) \ B(x′
i−1), i ∈ Z, are obtained

by applying recursively the previous arguments to the points xi = i and the
corresponding x′

i, and to the region Ω = int(B(x′
i) \ B(x′

i−1)), thus ending
the proof of the Theorem 1.

5 Existence of a conjugacy via fundamental

regions

Let f : R
2 −→ R

2 be a free map of the plane, say a fixed point free homeo-
morphism of the plane. We define an equivalence relation by saying that x
is related with y, denoted by x ∼ y, if there exists a compact arc γ from x
through y such that given any compact K ⊆ R

2, there exists n0 ∈ N such
that for any n > n0 and n < −n0 we have Hn(γ) ∩ K = ∅.

Definition 5.1 Each element of R
2/ ∼ is called a fundamental region.

Proposition 5.1 The conservative Hénon map has only one fundamental
region.
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Proof: Let x, y ∈ R
2, γ a compact segment from x through y and K ⊆ R

2

any compact set. Clearly K ⊆ QK for some square QK centered in the origin.
Lemmas 2.1 to 2.3 are sufficient to conclude that exists nk ∈ N such that for
all n > nk, we have Hn(γ) ∩ QK = ∅. In fact, if we fix z ∈ γ, there exists
nz ∈ N such that Hnz(z) /∈ QK , Hnz(z) ∈ int(D+) and the first coordinate
of Hnz(z) is smaller than −2. Therefore, for all n > nz we have Hn(z) /∈ QK

and by continuity nz it is true also for some open neighborhood of z, Vz,
sufficiently small. Let {Vz}z∈γ be an open covering of γ, since γ is compact
{Vz}z∈γ admits a finite subcovering {Vz1

, ..., Vzs
} and, as above to each zi we

associate nzi
such that Hnzi (Vzi

) ∩ QK = ∅, Hnzi (Vzi
) ⊆ D+ and the first

coordinate of any point of Hnzi (Vzi
)is less than −2. Now, we just choose

n0 = max{nz1
, ..., nzs

} and we have that for n > n0 that Hn(γ)∩K = ∅. By
an analog procedure we prove that H−n(γ) ∩ K = ∅, by using the map S in
D−. ⊔⊓

Consider the following theorem due to Andrea (see [1]).

Theorem 5.2 A free map of the plane is equivalent to a translation if and
only if it has just one fundamental region.

Now using the Proposition 5.1 jointly with Theorem 5.2 we conclude that H
is conjugate to a translation. We note that this argument does not assure
the existence of an area-preserving conjugacy.

6 Final remarks

In the case of the conservative Hénon map with a = −1, our map is no longer
a free map, because it has a fixed point. Therefore it is not conjugate to a
translation. Nevertheless the dynamics of this new map seems to be very
similar to the case when a < −1, see Figure 3. After the bifurcation, say for
a > −1, the dynamics earn rich properties, namely horseshoes and elliptical
islands.

For the reversing-orientation conservative Hénon map without fixed points,
that is when b = −1 and a < 0 in Definition 2.1, it is straigthforward to verify
that H ◦R = R ◦H−1, where H = Ha,−1 and R(x, y) = (−y,−x). Therefore,
considering the region D bounded by the curves λ = {(x, y) ∈ R

2 : y = −x}
and H(λ), we believe that, applying the same arguments, it is possible to
prove that D is a fundamental domain and that there exists an area-pre-
serving conjugacy between H and the map Z(x, y) = (x + 1,−y).
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a<−1 a=−1 a=−1

(−1,−1)

Figure 3: The bifurcation parameter a = −1.
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