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Abstract

We construct an area-preserving homeomorphism of the plane that
conjugates a conservative Hénon map to a translation.

1 Introduction and statement of the results

In this paper we consider an area-preserving map derived from the Hénon
map defined by H(z,y) = (a — 2* — y, x), where a < —1. The main result is
the following:

Theorem 1 There exists an area-preserving C°-conjugacy of the conserva-
tive Hénon map and T'(z,y) = (z + 1,y).

To prove Theorem 1 we start constructing a fundamental domain of H,
D, whose saturate fills R? (Lemma 3.1). We consider a fundamental domain
D, for the translation 7" and split D and D. into countable bounded pieces.
Then we construct local diffeomorphisms, whose domains cover D, which
conjugate the restrictions of H and T to each piece and such that each one
preserves the area of its domain. Next, using Dacorogna-Moser Theorem
(Theorem 4.1), we get an area-preserving homeomorphism from D to D..
Finally, using Lemma 3.1 and the fact that H is area-preserving, we extend

these maps conservatively to R? to get the area-preserving homeomorphism
v,
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This conservative conjugacy V¥ trivializes H which is very useful if one
aims to build perturbations and remain in the area-preserving setting.

We observe that the arguments we developed to prove Lemma 3.1 may
be used to prove that H has only a fundamental region (Definition 5.1).
Hence by using the fact, proved by Andrea ([1]), that maps with only one
fundamental region are conjugated to 7', we obtain another prove that H
and 71" are conjugated. However this does not guarantee that there exists an
area-preserving conjugacy.

2 Some preliminary lemmas

Definition 2.1 We consider the map H,p with parameters a,b € R :

H,,: R* — R?
(SL’,y) - (CL—LEQ—by,JJ)
This is the so-called Hénon map. When we consider |b| = 1, then for all
p € R? we have |det(DH,1),| = 1, so the map preserves the area and

that is why we call it conservative Hénon map. If b = 1, then, since
det(DH,1) = 1, H, 1 preserves also the orientation. Depending on the pa-
rameter a € R, H,1 may have, or not, fized points. In fact, it is easy to see
that Fix(H,1) =0 if and only if a < —1.

In what follows we deduce some properties of H, 1, which will be denoted
by H and we consider a < —1. It is clear that H is a homeomorphism of the
plane with inverse defined by H,((z,9)) = (y,a — y* — ).

Remark 2.1 Let S((x,y)) = (y,x), hence
S(H(S(z,y))) = S(H (y,2)) = S(z,a—2"~y) = (a—2"~y, ) = H(z,y).

Therefore, H is topologically conjugate to its inverse by using the symmetry
on the liney =z, say Ho S = S o H™'. In this case the conjugacy is equal
to its inverse, say S = S~'. We conclude that the action of the map H™*
may be seen as the reflection on the line y = x of the action of H itself.

We will deduce some elementary properties of the dynamics of the con-
servative Hénon map. Let us define



I'={(z,y) 12,y >0}, 1T ={(x,y) : 2 <0,y > 0}, [I] = {(x,y) : x,y < 0}
and IV = {(z,y) : x > 0,y < 0}.

The subset of I11 defined by {(z,y) € R? : x < y} will be denoted by D,
finally denote S(D*) by D~.

Lemma 2.1 . One has

1) H(D") C Dt and H"(D*) Cint(D%), Vn > 2.
2) HY(D")C D™ and H™(D~) Cint(D), Vn > 2.

Proof: First, using Remark 2.1 and the definition of D™, note that
H (D) = H'S((D")) = S o H(D").

Therefore 2) follows from 1).

Now fix (z,y) € DT and let (z1,51) = H(z,y) = (a — 2® —y,z). Tt
is clear that y; = = < 0 and, since a — 2> — 2 < z, Vo € R, we get
rp=a—12>—y < a—2>—x <z =1y. Therefore (z1,41) € DT, which
implies that H(D") C D*. Finally, to prove that H*(D*%) C int(D"),
Vn > 2, we first note (0,0) is the unique point of DT whose image belongs
to the boundary of DT.

Since,

H?*((0,0)) = H((a,0)) = (a — a* a) € int(D"),
we conclude that H2(D™) C int(D™) and so,

H"(D%) = H" ?(H*(D")) C H" *(int(D")) C int(D*),Vn > 2.

Lemma 2.2 Given (z,y) € R?* we have:
1) If (z,y) € I, then H((x,y)) € I1.
2) If (x,y) € I1, then H((z,y)) € D*.
3) If (z,y) € IV, then H((x,y)) € I or H((x,y)) € I1.
4) If (x,y) € 111, then H((x,y)) € 111 or H((z,y)) € IV.
5)If H'((x,y)) € I11,Vn € Ny, then 3k € Ny such that H*((x,y)) € D*.



Proof:

1) If (x,y) € I then, since H((z,y)) = (a—2* —y,z),a—2*—y <a <0
and > 0, we get H((z,y)) € I1.

2) If (x,y) € I, then x < 0 and y > 0. Since H((z,y)) = (a — 2*> —y, x)
it remains to prove that a — 22 —y < x. Since a < —1 for all x € R it follows
that a — 22 — 22 < 0, therefore a — 22> — 2 < x and, since —y < —z, we
conclude that a — 2> —y < a—2* —z < x. So H((z,y)) € D*.

3) If (z,y) € IV, then since H((z,y)) = (a —2? —y,x) and = > 0 it is
clear that H((z,y)) belongs to I or to I1.

4) If (z,y) € I11, then since H((z,y)) = (a —2? —y, x), having H((z,y))
in I11 or in IV is equivalent to x < 0, which is obvious.

5) Consider (xq,yo) € I11 such that H"((xg,v0)) € I11,Vn € N. Assume
that H"((xo,y0)) ¢ DT, Vn € N. Denote (x,y,) = H"((z0,%0)) and we
have 0 > x, > y, = ©,_1, Vn € N. So, (z,)nen is an increasing bounded
sequence, therefore it converges to p € Ry . Since y,, = z,,_; it follows that

(Yn)new  — . So, H*((20,90)) —> (p,p) and so (p, p) is a fixed point

for H, which is a contradiction. O

Lemmas 2.1 and 2.2 allow us to conclude that for all (x,y) € R? there
exists ng € N, depending on (z,y), such that H"((x,y)) € int(DY), Yn > nq.
Analogously we conclude that exists n; € N such that H"((z,y)) € int(D~),
Vn > n;. It follows that we just need to know the dynamics of H inside D
(respectively the dynamics of H~! inside D™). Figure 1 illustrates the image
by H of the four regions.

[ \ L)
H(1)

n i H(Il) A(l1)

Figure 1: The dynamics of H on each region I, II, II] and IV.

Lemma 2.3 Let (z9,y0) € D and define (x,,y,) = H"((x0,y0)). Then
dng € N, depending on (xo,vo), such that ¥n € N with n > ny we have:



1) pp1 < an+a
2) Yni1 < Yn € Yni2 < Yn+a

Proof: Given (z1,y1) = (a — 22 — yo, o) we have that y; = z¢ < yo and
T =a—x3—yo < a—x3—1x0 < T0, S0 the sequences (T, )nen and (yp )nen are
decreasing. Note that, V(z,y) € DT, there exists ny € N such that x,, < —2
because otherwise it implies the existence of a fixed point.

Since for * < —2 we have 7,41 = a — 22 —y, < a— 22 -1, < 7, + a,
inequality 1) is proved.

To prove 2) we note that the first inequality follows from (y,)nen be-
ing decreasing and the second inequality follows directly from the fact that
Yni2 = Tpy1 S Tpta<y,+a O

Lemma 2.3 tell us that under only two iterates and since a < —1, points
move bellow a distance at least one and to the left a distance larger than
two. So this result together with Lemmas 2.1 and 2.2 give us a very good
description of how the orbit a point tends to infinity.

3 Construction of the conjugacy between the
T and H

First we define the fundamental domain D. Let A = {(z,y) : y = =} and
H(\) its image by H. Let D be the connected, unbounded region of the
plane delimited by A and H(A). We will see first that the saturate of D fills
the all plane.

Lemma 3.1 |J H"(D) = R?.

nez

Proof: Note that it is sufficient to prove that, given (x,y) with z < y,
there exists n € Ny such that H"((x,y)) € D, because for the region x >y
we use the fact that H~' = So Ho S. Since H?()) is contained in the region
II1 it follows that, for (z,y) € I\ D, we have that H'((z,y)) € D.

It remains to consider points (x,y) € DT\ D. So, H !((x,y)) belongs to IT
or to IT1. Note that, if H'((x,y)) € II or more generally there exists n € N
such that H~"((z,y)) € I , then H '((x,y)) € D or H *((x,y)) € D. Then,
we just have to consider the case when (z,y) € D' and H"((z,y)) € 111,
Vn € N. Suppose, by contradiction that H "((z,y)) ¢ D, Vn € N; then,
since (z,y) € DY\ D we get z < a —y*> —y and so H '((z,y)) € D*.
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We obtain a sequence in DV, (z_,,y_,) = H "((z,y)), n € N, such that
Top > X _pyrand Yy, > Y i1, ¥n € N. Therefore ((x_p,, y_pn))nen converges
to (xo, yo) which is a fixed point, and we get a contradiction. O

Remark 3.1 Clearly int(D) N H"(int(D)) =0, Yn € Z \ {0}.

Now we will construct the topological conjugacy, i.e. a homeomorphism
® : R? — R? such that PoH = T'o®, where T : R? — R? is the translation
T((xz,y)) = (x + 1,y). Let A\, denote the line x = 0 and

D.={(z,y) eR*:0< x < 1},

the idea is to construct first a homeomorphism d:D — D. such that
®(\) = A\, and ®(H(x)) = T(®(x)), Vo € A, and then extend it to R

Denote by [a, b] the oriented segment from the point a through the point
b, and, for z # 0, let A(z) be the region bounded by the three segments
[(a — 2% — z,2), (z,7)], [(z,),(0,0)] and [(0,0), (a,0)] and by the curve
H([(0,0), (z,x)]); for ' # 0 let B(z') be the region delimited by the quadri-
lateral with vertices (0,0), (1,0), (1,2") and (0, z’).

We want a diffeomorphism @ such that, for all z # 0:

o ©([(0,0), (z,2)]) = [(0,0), (0,2")],

o H((z,z)) =T o ®((x,x)), and

KA

o ®(A(x)) = B('),

where 2/ depends on x and will be chosen such that u(A(z)) = u(B(x)),
where 1 denotes the Lebesgue measure, see Figure 2.

Construction of ®:

We consider the parametrized segment:
(1—t)(x,2) +t(a—2®>—mz,2), t €[0,1]
and send this segment, by the map (AI/), into the segment:

(1—1)(0,2') + t(1,2'), t € [0, 1],



Figure 2: Construction of the conjugacy.

where 2/ will be defined bellow. We have that

o e
pu(Ax)) = /0 t—(a—t*—t)dt = —alx| + % + 2%, z e R\ {0}.

So we take
oa:’::—ax+%3+x2,ifx>0,and
e (_ |z 2y 23 2 .
o 7' := —(—alz|+ F- +2°) = —ax + T — 2°, otherwise.

Therefore, if x > 0, we define:

(1 —t)z +t(a— 2% —x),x) = (t,2') = (t, —azx + z? + 2?),

3
and if z < 0, we define:
. 23
(1 —t)x +tla—2*—2),7)) = (t,2) = (t,—ax + 3 7?),

Now, let (x,y) € int(A(x)) and assume that y > 0; this point belongs to
[(y,9), (a — y? — y,y)], so there exists one and only one ¢ € [0, 1] such that:
(z,y) =1 =t)(y,y) +tla—y* —y,y)

hence we obtain:

r—y

=(1—t tla—y -y or—y=tla—y* -2y &t=——"—
r=(1-ty+tla—y —y)er—y=tla—-y —2y) PR



and since ®((y,y)) = (0,4') and ®((a — y> — y,y)) = (1,7/) we can define:

r—y
(———5:¥)-

O((z,y)) = (1 —1)(0,y") + t(1,5) = (t,9/) PR

If y <0 we can argue exactly in the same way and define:

() = (1= )(0.9) +1(0Ly) = (1y) = (= 3750

Using the previous definition of 3’ we conclude that the homeomorphism
®:D— Dc) is defined by:

3

~ r—y Yy .

O((z,y)) = (m, —ay+ +y°), if y >0, or
= r—Y Y 2\
®((z,y)) = (m’_ay+§_y ), ify <0.

~ Clearly u(A(y)) = n(B(y')). Note that, by construction, if p € A, then
®o H(p)=Tod(p).

Construction of o:

In order to obtain the desired conjugacy ® we extend d to the plane in
the standard way. Lemma 3.1 assures that, for each p € R?, there exists
n, € Z such that H"(p) € D, therefore we define ®(p) =T o ® o H"*(p).
It is easy to verify that the map ® is well defined, that it is a homeomorphism
and that o H =T o ®.

4 Obtaining the area-preserving conjugacy

Write D = U;ezC, where, for each ¢ € Z, C; = A(i) \ A(i — 1). In order
to construct the area-preserving conjugacy ¥ we first modify @ in the in-
terior of each bounded region Cj; in such way that the resulting map, say
U, is area-preserving and com(:ldes with ® on dC;. As the maps ¥; and
W, 1 coincide on [(i,1), (a — 2 — 4,14)], for all i € Z, these maps define an

area-preserving map on D, say W, such that ¥ (D) = D,; as the maps ¥,
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coincide with ® on A and H(\) one has that ¥ o H(p) = T o ¥(p), for all
p € A. Finally the area-preserving conjugacy is obtained extending the map
¥ to the plane as before.

Let us recall the following theorem due to Dacorogna and Moser (Theo-
rem 5, [2]) that will be used to obtain a conservative local change of coordi-
nates that is crucial to get the maps ;. We point out that this version of
Dacorogna-Moser theorem consider only regularity in the interior of a set €2,
whereas Theorem 1 of [2] requires a smooth boundary and as a consequence
they obtain a smooth change of coordinates. Since we are only interested
in homeomorphisms for the change of coordinates the following Theorem is
sufficient.

Theorem 4.1 (Dacorogna-Moser) Let @ C R? be an open, bounded and
connected set. Let f,g Q — R be positive functions of class C* for s € N
and such that [, f(y)dy = [, 9(y)dy. Then there exists ¢ : @ — Q of class
C* with p(x) = x for z € 00 and such that [, f(y)dy = f( )g(y)dy for
every open set U C €.

By a straightforward use of change of variables we obtain:

/ mw@:/mwM®w%@,
»(U) U

but by Theorem 4.1 we know that [, f(y)dy = [, 9(y)dy so

[ s = [ gtetw)detnioyy
U U
and since this works for every open set U we obtain:

det Dy g(p(y) = f(y), (1)

Now fix z = 1 and consider the associated 2’ = % — a as in the previous

section. Let int(B(z')) = Q and we consider the functions f,g : Q — R,
defined by f(y) = [detD®, | and g = 1. We note that f € C°(Q).

Claim 4.1 [, f(y)dy = [, 9(y)dy



To see this we observe that,

Jo9(y)dy () Q) p(B(x'))

Jo fW)dy ~ Jo[detDdldy  p(@ () wlA@)

Last equality follows by construction and the claim is proved. Hence we can
apply Theorem 4.1 and we obtain a homeomorphism ¢ : € —  verifying (1).
Now we define, .
‘Ijl : A(l) — Q
p — @o®(p)

To see that ¥, is area-preserving we compute the determinant of the
Jacobian, . .
det DV = det Dp.det D®; = detDop. f(y) ™.

Now the partial differential equation (1) says that detDe.f(y)~' = 1, there-
fore we obtain that detDW; = 1, that is Uy is area-preserving.

In the same way we obtain U_.

The maps ¥; : A(i) \ A(i — 1) — B(z)) \ B(z}_,), i € Z, are obtained
by applying recursively the previous arguments to the points x; = ¢ and the
corresponding z}, and to the region = int(B(x}) \ B(z;_,)), thus ending
the proof of the Theorem 1.

5 Existence of a conjugacy via fundamental
regions

Let f:R? — R? be a free map of the plane, say a fixed point free homeo-

morphism of the plane. We define an equivalence relation by saying that x

is related with y, denoted by = ~ v, if there exists a compact arc v from x

through y such that given any compact K C R?, there exists ny € N such
that for any n > ng and n < —ng we have H"(y) N K = ().

Definition 5.1 Each element of R?/ ~ is called a fundamental region.

Proposition 5.1 The conservative Hénon map has only one fundamental
TeGION.
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Proof: Let z,y € R?, v a compact segment from x through y and K C R?
any compact set. Clearly K C @)k for some square )k centered in the origin.
Lemmas 2.1 to 2.3 are sufficient to conclude that exists n;, € N such that for
all n > ny, we have H"(7) N Qg = (. In fact, if we fix z € v, there exists
n, € N such that H"(z) ¢ Qk, H"(z) € int(D™) and the first coordinate
of H"(z) is smaller than —2. Therefore, for all n > n, we have H"(z) ¢ Qx
and by continuity n, it is true also for some open neighborhood of z, V,
sufficiently small. Let {V.}.c, be an open covering of v, since 7 is compact
{V.}:e, admits a finite subcovering {V,,, ..., V., } and, as above to each z; we
associate n,, such that H"(V,)) N Qg = 0, H™i(V,,) C DT and the first

coordinate of any point of H"#(V,,)is less than —2. Now, we just choose
nog = mazx{n,,,...,n,, } and we have that for n > ny that H"(y) N K = ). By
an analog procedure we prove that H~"(v) N K = (), by using the map S in
D-. O

Consider the following theorem due to Andrea (see [1]).

Theorem 5.2 A free map of the plane is equivalent to a translation if and
only if it has just one fundamental region.

Now using the Proposition 5.1 jointly with Theorem 5.2 we conclude that H
is conjugate to a translation. We note that this argument does not assure
the existence of an area-preserving conjugacy.

6 Final remarks

In the case of the conservative Hénon map with a = —1, our map is no longer
a free map, because it has a fixed point. Therefore it is not conjugate to a
translation. Nevertheless the dynamics of this new map seems to be very
similar to the case when a < —1, see Figure 3. After the bifurcation, say for
a > —1, the dynamics earn rich properties, namely horseshoes and elliptical
islands.

For the reversing-orientation conservative Hénon map without fixed points,
that is when b = —1 and a < 0 in Definition 2.1, it is straigthforward to verify
that Ho R = Ro H™', where H = H, _; and R(z,y) = (—y, —z). Therefore,
considering the region D bounded by the curves A = {(z,y) € R?: y = —x}
and H(\), we believe that, applying the same arguments, it is possible to
prove that D is a fundamental domain and that there exists an area-pre-
serving conjugacy between H and the map Z(x,y) = (x + 1, —y).
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a<-1 a=-1

Figure 3: The bifurcation parameter a = —1.
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