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Abstract. We give an overview of the work of Corlette, Donaldson, Hitchin and Simpson leading
to the non-abelian Hodge theory correspondence between representations of the fundamental group
of a surface (a surface group) and the moduli space of Higgs bundles. We then explain how this can
be generalized to a correspondence between character varieties for representations of surface groups
in real Lie groups G and the moduli space of G-Higgs bundles. Finally we survey recent joint work
with Bradlow, García-Prada and Mundet i Riera on the moduli space of maximal Sp(2n,R)-Higgs
bundles.
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1. INTRODUCTION

Higgs bundles are important in many areas of mathematics and mathematical physics.
For example, it was shown by Hitchin that their moduli spaces give examples of Hyper-
Kähler manifolds [1] and that they provide important algebraically integrable systems
[2]. Recently they have featured for instance in the work of Hausel–Thaddeus [3] on
mirror symmetry and in the work of Kapustin–Witten [4] giving a physical derivation of
the geometric Langlands correspondence.

In this paper we start by explaining the non-abelian Hodge theory correspondence
between representations of the fundamental group of a surface (a surface group) and
the moduli space of Higgs bundles coming from the work of Corlette [5], Donaldson
[6], Hitchin [1] and Simpson [7]. Next we explain how this theory can be generalized
in a systematic way to a theory of G-Higgs bundles for real reductive Lie groups G
(giving a correspondence with surface group representations in G); this is mainly based
on joint work with Bradlow, García-Prada and Mundet i Riera. Finally we focus on the
case of the real symplectic group G = Sp(2n,R) and survey some recent results on the
corresponding moduli space of Sp(2n,R)-Higgs bundles.
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2. HIGGS BUNDLES AND NON-ABELIAN HODGE THEORY

2.1. Higgs bundles

Let X be a closed Riemann surface of genus g and let KX = T 1,0X∗ be the canonical
bundle of X , i.e. its holomorphic cotangent bundle.

Definition 2.1. A Higgs bundle on X is a pair (E,φ), where E → X is holomorphic
vector bundle and the Higgs field φ is a holomorphic 1-form with values in End(E), i.e.,
φ ∈ H0(X ,End(E)⊗KX).

Recall that the C∞ isomorphism class of a complex vector bundle E on the surface X
is given by its first Chern class c1(E ) ∈ H2(X ,Z) or, equivalently, by its degree,

deg(E ) =
∫

X
c1(E ) ∈ Z.

Recall also that c1(E ) can be represented in de Rham cohomology by i
2π

tr(F(B)), for
any connection B on E . Thus a Higgs bundle (E,φ) has as discrete invariants its degree
deg(E) and its rank rk(E).

As a first example, a rank one Higgs bundle is a pair (L,φ), where L → X is a
line bundle and φ ∈ H0(X ,KX) is a holomorphic 1-form (see Goldman and Xia [8]
for a careful study of this case). Let Jac(X) = Pic0(X) be the Jacobian of X which
parametrizes holomorphic line bundles on X of degree zero. The tangent space to Jac(X)
at any L is just H1(X ,O), which is isomorphic to H0(X ,KX)

∗ by Serre duality. Hence
a rank 1 degree zero Higgs bundle (L,φ) corresponds to a point in the cotangent space
T ∗L Jac(X) and the set of isomorphism classes of all such (L,φ) (the moduli space) can
be identified with the cotangent bundle to the Jacobian T ∗Jac(X).

We now describe abelian Hodge theory correspondence for first cohomology in a
manner that points the way to the non-abelian generalization provided by Higgs bundle
theory. Let Y be a Kähler manifold and let H p,q(Y ) denote its Dolbeault cohomology
groups, defined as the ∂̄ -closed differential forms of type (p,q) modulo the ∂̄ -exact
ones. The abelian Hodge Theorem (see e.g. [9]) says that there is a decomposition of the
cohomology with complex coefficients Hk(Y ;C) =

⊕
p+q=k H p,q(Y ) by using harmonic

representatives of cohomology classes. In particular, for the Riemann surface X we have

H1(X ,C)∼= H1,0(X)⊕H0,1(X).

In fact, this is the infinitesimal version of an isomorphism

H1(X ,C∗)∼= T ∗Jac(X). (2.1)

To see how this comes about, note that an element of H1(X ,C∗) corresponds to a
complex line bundle L with a flat connection. The corresponding connection form
is just a closed 1-form B ∈ A1(X ,C). If we fix a Hermitian metric on L and use the
decomposition C= gl(1,C) = iR⊕R, we can write

B = A+ψ, A ∈ A1(X , iR) and ψ ∈ A1(X ,R).



Then the flatness condition dB = 0 is equivalent to saying that A and ψ are both closed
1-forms. Thus A is a flat unitary connection on L . Moreover, the Hodge Theorem says
that the cohomology class of ψ has a harmonic representative ψ +d f for some smooth
f , meaning that

d∗(ψ +d f ) = 0.

Note that ψ +d f is obtained by applying to ψ the gauge transformation χ = exp( f ) of
L . Any gauge transformation preserves the flatness condition dB = 0 and hence the pair
(A,ψ) obtained applying the above procedure to the gauge transformed χ ·B satisfies the
equations

dA = 0, (2.2)
dψ = 0, (2.3)

d∗ψ = 0. (2.4)

Now the connection A defines a holomorphic line bundle LA→ X by taking the holomor-
phic structure on L given by the associated ∂̄ -operator ∂̄A, which is just the (0,1)-part
of the covariant derivative dA. We also define

φ = ψ
1,0 ∈Ω

1,0(X).

The important point to note is now that the conditions (2.3) and (2.4) together are
equivalent to the holomorphicity condition ∂̄Aφ = 0 and hence (2.2)–(2.4) are equivalent
to the pair of equations

dA = 0,

∂̄Aφ = 0.
(2.5)

Thus φ ∈ H0(X ,KX) is holomorphic and (LA,φ) is a rank 1 Higgs bundle. This, as we
have seen, corresponds to a point in T ∗Jac(X) (the fact that deg(LA) = 0 follows from
F(A) = dA = 0).

An analogous argument shows how to recover a flat line bundle from a rank 1 Higgs
bundle (L,φ), completing the proof of (2.1).

Remark 2.2. It follows that the moduli space T ∗Jac(X) of degree zero Higgs line
bundles can be identified with the variety of complex characters of π1(X) via the
isomorphism H1(X ,C∗) ∼= Hom(π1(X),C∗). However the natural complex structures
on these spaces do not correspond under this identification.

2.2. Non-abelian Hodge Theory

In this section we explain how the abelian Hodge Theorem for first cohomology
generalizes to higher rank. Let E → X be a fixed C∞ complex vector bundle of rank
n and degree d. Let B be a connection in E with constant central curvature:

F(B) =−iµ Idω, (2.6)



where ω is the Kähler class of X , normalized so that
∫

X ω = 2π . Taking the trace and
integrating in this formula, we see that the constant µ is given by

µ =
deg(E )

rk(E )
=

n
d

;

the ratio µ(E) = deg(E )
rk(E ) is called the slope of E . In particular, if deg(E ) = 0, the

connection B has zero curvature, i.e., it is flat.
Let h be a Hermitian metric in E . We shall write Eh for the bundle E equipped

with Hermitian metric h. Splitting the associated Lie algebra valued 1-form in its skew-
Hermitian and Hermitian parts, we can write

B = A+ψ,

where A is a unitary connection on E and ψ takes values in the bundle Endherm(Eh) of
Hermitian endomorphisms of E , in other words, ψ descends to a 1-form

ψ ∈Ω
1(X ,Endherm(Eh)).

The condition (2.6) can be expressed in terms of (A,ψ) as follows:

F(A)+ 1
2 [ψ,ψ] =−iµ Idω, (2.7)

dAψ = 0. (2.8)

One may ask whether there is a preferred choice of Hermitian metric in the flat bundle
E . Since the space of metrics in Cn is GL(n,C)/U(n), a Hermitian metric h may be
viewed as a π1(X)-equivariant map

h̃ : X̃ → GL(n,C)/U(n).

Because the symmetric space GL(n,C)/U(n) is a (negatively curved) Riemannian man-
ifold and we have a conformal class of metrics on X defined by the complex structure,
it makes sense to ask for h̃ to be an equivariant harmonic2 map. The derivative of h̃ is a
section

dh̃ ∈Ω
1(X̃ , h̃∗T (GL(n,C)/U(n))).

The harmonic map equation (cf. [10]) for h̃ is

d∗
∇
(dh̃) = 0, (2.9)

where d∇ is the pull-back by h of the Levi-Civita connection on GL(n,C)/U(n)) and
d∗

∇
is its adjoint (constructed again using the conformal class of metrics on X and

the Riemannian metric on GL(n,C)/U(n))). Moreover, it can be shown that (2.9) is

2 Recall that harmonicity only depends on the conformal class of the source manifold when this is 2-
dimensional.



equivalent to the equation d∗Aψ = 0 so that the pair (A,ψ) obtained from B via a harmonic
metric satisfies the equations

F(A)+ 1
2 [ψ,ψ] =−iµ Idω, (2.10)

dAψ = 0, (2.11)
d∗Aψ = 0. (2.12)

Before we can state the main existence result for harmonic metrics we need to
introduce the notion of a reductive flat connection. A connection B on E corresponds
to a covariant derivative dB : Ω0(X ,E )→Ω1(X ,E ). We say that a subbundle F ⊂ E is
preserved by B if it satisfies dB(Ω

0(X ,F ))⊂Ω1(X ,F ).

Definition 2.3. A flat connection B on E is reductive if for any subbundle F ⊂ E
preserved by B, there is a subbundle F ′ which is also preserved by B and such that
E = F ⊕F ′.

It is not hard to show that if a bundle E with a flat connection B admits a harmonic
metric, then B is reductive. The following theorem says that the converse holds. It is due
to Donaldson [6] (in the case of rank 2 bundles on Riemann surface) and Corlette [5]
(for base manifolds of higher dimension and more general structure groups).

Theorem 2.4. Let B be a flat reductive connection in E . Then there exists a unique
harmonic metric in E .

In order to get a global statement, we introduce the moduli space of reductive connec-
tions of constant central curvature on a vector bundle E of degree d and rank n:

MdR
d (X ,GL(n,C)) = {B | F(B) =−iµ Idω and B is reductive}/G ,

where G = Aut(E ) is the complex gauge group of E .
We remark that connections of constant central curvature are related to representations

of the fundamental group of X as follows (see Atiyah–Bott [11]). There is a central
extension

0→ R→ ΓR→ π1X → 1

defined by ΓR = Γ⊗ZR, where the universal central extension Γ is defined by

Γ = 〈a1,b1, . . . ,ag,bg,J | J is central and ∏[ai,bi] = 1〉.

Define the character variety for representations of ΓR in GL(n,C) by

MB
d (X ,GL(n,C))
= {ρ : ΓR→ GL(n,C) | ρ(J) = exp(2πid/n) Id and ρ is semisimple}/GL(n,C),

where GL(n,C) acts by overall conjugation. Note that MB
0 (X ,GL(n,C)) can be naturally

identified with the character variety for representations of π1X in GL(n,C). It is now a
standard fact that there is an (analytic) isomorphism

MdR
d (X ,GL(n,C))∼= MB

d (X ,GL(n,C)) (2.13)



obtained by taking a connection B to its holonomy representation.
Now fix a reference metric h0 in E . For a reductive connection B with constant central

curvature, let h be the harmonic metric given by the Theorem, so that (Ã, ψ̃) obtained
from B using h satisfies (2.12). Let g ∈ G be an isometry between unitary bundles
g : Eh0 → Eh. Then the connection g∗B also has constant central curvature and the pair
(A,ψ) = g∗(Ã, ψ̃) obtained from g∗B using the metric h0, will also solve the equation
(2.12). In other words, the metric h0 is harmonic for g∗B. Any two choices of g differ
by a unitary gauge transformation of (E ,h0). Hence, letting U denote the unitary gauge
group, the theorem can be reformulated as follows:

Theorem 2.5. There is a bijective correspondence

MdR
d (X ,GL(n,C))∼= {(A,ψ) | satisfying (2.10)–(2.12)}/U

where A is a unitary connection on (E ,h0) and ψ ∈ Endherm(Eh0).

In order to obtain a Higgs bundle from a solution (A,ψ) to (2.10)–(2.12), we decom-
pose the covariant derivative associated to A as

dA = ∂A + ∂̄A,

and denote by EA the holomorphic vector bundle defined by ∂̄A. Similarly, one can write

ψ = φ +φ
∗

for a unique φ ∈ Ω1,0(X ,End(E )) (here φ∗ denotes the (0,1)-form obtained from φ by
combining the adjoint with respect to h0 with conjugation on the form component). Then
one easily checks that (2.10)–(2.12) are equivalent to Hitchin’s equations

F(A)+ [φ ,φ∗] =−iµ Idω,

∂̄Aφ = 0.
(2.14)

Note that the second equation says that φ is an endomorphism valued holomorphic 1-
form so (EA,φ) is a Higgs bundle. Now recall that a holomorphic vector bundle which
admits a flat unitary connection is the direct sum of stable degree zero vector bundles.
To make sense of the analogous statement for Higgs bundles, we define the following
stability notions.

Definition 2.6. A Higgs bundle (E,φ) is

• semistable if µ(F)≤ µ(E) for all subbundles F ⊂ E such that φ(F)⊂ F⊗KX .
• stable if µ(F)< µ(E) for all proper subbundles F ( E such that φ(F)⊂ F⊗KX .
• polystable if (E,φ) = (E1,φ1)⊕ ·· · ⊕ (Er,φr), where each (Ei,φi) is stable with

µ(Ei) = µ(E).

A subbundle F ⊂ E such that φ(F) ⊂ F ⊗KX is said to be a Φ-invariant subbundle.
Note that semistability is a weaker condition than polystability, which in turn is weaker
than stability.



It is easy to check that a Higgs bundle obtained from a solution to Hitchin’s equations
(2.14) is polystable. The converse is given by the following theorem, which gives a
Hitchin–Kobayashi correspondence for Higgs bundles. It is due to Hitchin [1] (for
Higgs bundles on Riemann surfaces) and Simpson [7] (for Higgs bundles over higher
dimensional manifolds).
Theorem 2.7. If (E,φ) is polystable then there exists a unique Hermitian metric in
E such that (A,φ) satisfies Hitchin’s equations (2.14), where A is the unique unitary
connection compatible with the holomorphic structure (i.e. the Chern connection).

In order to get the corresponding global statement, we introduce the moduli space

MDol
d (X ,GL(n,C))

of rank n, degree d polystable Higgs bundles. As a set, this is the set of isomorphism
classes of polystable Higgs bundles. It can be given the structure of a complex (algebraic)
variety using standard gauge theory methods (Hitchin [1]) or using Geometric Invariant
Theory3 (Nitsure [12]). Then Theorem 2.7 implies that MDol

d (X ,GL(n,C)) is in bijective
correspondence with the space of unitary gauge equivalence classes of solutions to
Hitchin’s equations (2.14). Putting this together with Theorem 2.5 and the identification
(2.13), we finally obtain the non-abelian Hodge Theorem.
Theorem 2.8. There is a homeomorphism MB

d (X ,GL(n,C))∼= MDol
d (X ,GL(n,C)).

3. G-HIGGS BUNDLES

We have seen that Higgs bundles correspond to representations ρ : π1X→GL(n,C) The
use of Higgs bundle methods for studying representations

ρ : π1X → G

for more general Lie groups G was pioneered by Hitchin [1, 13] and also, using Tan-
nakian considerations, by Simpson [14]. Subsequently a theory of G-Higgs bundles, ap-
propriate for studying representations of π1X in real a reductive Lie group G, has been
developed in a systematic way. In this section we briefly outline this theory. For more
details the reader may consult, for example, [15, 16, 17, 18].

Let G be a real reductive Lie group in the sense of Knapp [19, p. 384]. In particular this
means that we are given a maximal compact subgroup H ⊂ G. Also, there is a Cartan
decomposition

g= h⊕m,

where h is the Lie algebra of H. Moreover, restriction to H of the adjoint action of G on
its Lie algebra gives a representation

ι : H→ GL(m)

g 7→
(
x 7→ Ad(g)(x)

)
.

3 From this point of view it is better to consider MDol
d (X ,GL(n,C)) as the space of S-equivalence classes

of semistable Higgs bundles.



This representation is called the isotropy representation. We shall denote by the same
symbol its complexification ι : HC→ GL(mC) defined on the complexification HC of
H. If E is a principal HC-bundle, we thus have an associated bundle

E(mC) = E×ι m
C

with fibres mC. Note that if G is itself a complex group, the Cartan decomposition is
gC = g⊕ ig, and hence E(mC) = E(gC), the adjoint bundle of the G-bundle E.

Definition 3.1. A G-Higgs bundle is a pair (E,φ), where E → X is a holomorphic
principal HC-bundle, φ ∈ H0(X ,E(mC)⊗KX).

Example 3.2. Let G = GL(n,C). Then a G-Higgs bundle gives rise to a Higgs bundle
(E×GL(n,C)Cn,φ) as previously defined.

Example 3.3. Let G = Sp(2n,R). In this case: H = U(n) and mC = S2Cn⊕ S2(Cn)∗,
where Cn denotes the fundamental representation of HC=GL(n,C). Hence a Sp(2n,R)-
Higgs bundle is equivalent to a triple (V,β ,γ), where V is a rank n vector bundle and

β ∈ H0(X ,S2V ⊗KX), γ ∈ H0(X ,S2V ∗⊗KX).

The usual Higgs bundle given by the inclusion Sp(2n,R)⊂ Sp(2n,C)⊂ GL(2n,C) is:

(E =V ⊕V ∗,φ =

(
0 β

γ 0

)
).

Example 3.4. A GL(n,R)-Higgs bundle is given by ((W,Q),η), where (W,Q) is an
orthogonal bundle and η : W →W ⊗KX is symmetric with respect to Q.

Stability of G-Higgs bundles is in general a complicated notion, and we shall not state
it here, since we shall have no explicit need for it. The interested reader is referred to
[17]. But it is worth remarking that in all cases of interest to us here, the complexification
GC ⊂ GL(n,C) is a linear group and semi- and polystability of (E,φ) is equivalent to
semi- and polystability of the induced rank n usual Higgs bundle, respectively (cf. [15]).
On the other hand, the stability conditions are, in general, different.

When G is connected, the topological classification of G-bundles is given by a char-
acteristic class in H2(X ,π1G) ∼= π1G ∼= π1H. For a fixed topological class d ∈ π1H we
have can introduce the analogues of the moduli spaces defined above. Thus MB

d (X ,G)
denotes the character variety for representations of a suitable central extension of π1X
and MDol

d (X ,G) denotes the moduli space of polystable G-Higgs bundles. In order to
construct the latter space, the general theory of moduli of decorated bundles of Schmitt
[20] is required.

We have the following generalization of the non-abelian Hodge Theorem, proved
via an intermediate moduli space of solutions to an appropriate version of Hitchin’s
equations (2.14) for G-Higgs bundles. While Theorem 2.5 essentially applies unchanged
in this situation, the generalization of Theorem 2.7 to principal pairs of [21, 22, 17] is
required for proving this result.

Theorem 3.5. There is a homeomorphism MB
d (X ,G)∼= MDol

d (X ,G).



4. THE REAL SYMPLECTIC GROUP

In this section we mainly focus on the moduli space of Sp(2n,R)-Higgs bundles, de-
scribing some properties of their moduli spaces. Details of these results can be found in
[23, 24, 25, 26].

4.1. Stability and the Milnor–Wood inequality

Let (V,β ,γ) be a Sp(2n,R)-Higgs bundle as in Example 3.3. The topological invariant
of (V,β ,γ) is the degree d = deg(V ). If (V,β ,γ) is polystable and ρ : π1X→ Sp(2,R) is
the corresponding representation, it can be seen that d is the so-called Toledo invariant
of ρ , usually denoted by τ(ρ). The Toledo invariant is bounded by the inequality

|τ(ρ)| ≤ n(g−1), (4.1)

usually known as the Milnor–Wood inequality. This inequality is due to Milnor [27] in
the case n = 1 and to Dupont [28] and Turaev [29] in the general case, the latter giving
the sharp bound. This inequality can be proved easily using Sp(2n,R)-Higgs bundles as
follows.

For definiteness, assume that deg(V )> 0. Define subbundles N ⊂V and I ⊂V ∗ using
the subsheaves ker(γ) and im(γ)⊗K−1

X . Then

N⊕0⊂V ⊕V ∗ and V ⊕ I ⊂V ⊕V ∗

are Φ-invariant subbundles of the GL(2n,R)-Higgs bundle (E = V ⊕V ∗,Φ =
(

β 0
0 γ

)
).

If (V,β ,γ) is semistable, then so is (E,Φ). It follows that

deg(N)≤ 0, (4.2)
deg(V )+deg(I)≤ 0. (4.3)

Moreover, γ 6= 0 since otherwise V ⊂ E would be Φ-invariant and thus violate semista-
bility. Hence it induces a non-zero section

γ̄ ∈ H0(X ,det(V/N)∗⊗det(I)⊗Krk(γ)), (4.4)

so that this line bundle must have positive degree. Together with (4.2) this implies that

deg(V )≤ rk(γ)(g−1),

thus demonstrating that deg(V ) ≤ n(g− 1), which proves the Milnor–Wood inequality
(4.1) for deg(V ) = τ(ρ)> 0. An analogous argument using β proves the case deg(V )<
0.

Note that when the equality deg(V ) = rk(γ)(g− 1) holds, the line bundle in (4.4) is
forced to have degree zero. Thus the map γ̄ in (4.4) is an isomorphism. In particular, we
have the following important consequence.



Proposition 4.1. Let (V,β ,γ) be a semistable Sp(2n,R)-Higgs bundle such
that deg(V ) = n(g − 1). Then γ induces an isomorphism γ : V

∼=−→ V ⊗ K. If
deg(V ) =−n(g−1) the analogous statement holds for β .

Definition 4.2. An Sp(2n,R)-Higgs bundle (V,β ,γ) is said to be maximal if |deg(V )|=
n(g−1). Similarly, a representation ρ : π1X → Sp(2n,R) is maximal if |τ(ρ)| = n(g−
1).

The geometric importance of maximal representations is underlined by the following
theorem, due to Goldman [30].

Theorem 4.3. ρ : π1X → Sp(2,R) is maximal if and only if it is Fuchsian.

Recall that a representation ρ : π1X → SL(2,R) is called Fuchsian if it is discrete and
faithful. More generally, it was shown by Burger–Iozzi–Wienhard [31, 32] that maximal
representations are discrete, faithful and reductive.

4.2. The moduli space of maximal Sp(2n,R)-Higgs bundles

For brevity, denote by Mmax(n) the moduli space MDol
n(g−1)(X ,Sp(2n,R)) of maximal

Sp(2n,R)-Higgs bundles. In this section we shall see how Proposition 4.1 leads to the
existence of new invariants of maximal Sp(2n,R)-Higgs bundles. In particular, this
implies that Mmax(n) is disconnected and we shall also give a complete count of its
connected components.

Choose a square root K1/2
X of KX . Using the isomorphism γ : V

∼=−→ V ∗⊗KX and the
fact that γ is symmetric, we define an orthogonal holomorphic bundle (W,Q) on X as
follows:

W =V ⊗K−1/2
X and Q = γ⊗1K−1/2 : W

∼=−→W ∗.

The Stiefel–Whitney classes of (W,Q) define new invariants of the Sp(2n,R)-Higgs
bundle (V,β ,γ):

w1(V,β ,γ) ∈ H1(X ,Z/2) and w2(V,β ,γ) ∈ H2(X ,Z/2).

Remark 4.4. In the case n = 1, the invariant w2(V,β ,γ) always vanishes for obvious
reasons. The case n = 2 is also special: when w1(V,β ,γ) = 0, there is a lift of w2(V,β ,γ)
to an invariant c(V,β ,γ) ∈H2(X ,Z)∼= Z, coming from a reduction of structure group to
SO(2)⊂ O(2). This invariant satisfies |c(V,β ,γ)| ≤ 2g−2.

Remark 4.5. We can define η = (β ⊗1)◦ (γ ⊗1) : W →W ⊗K2
X . Then ((W,Q),η) is

a twisted GL(n,R)-Higgs bundle (cf. Example 3.4), the difference to a usual GL(n,R)-
Higgs bundle being the twisting by K2

X rather than KX .
This is an instance of a general phenomenon occurring for maximal G-Higgs bundles

when G is isogenous to the isometry group of Hermitian symmetric space of non-
compact type. We refer to [18] for this theory.



The connected components of Mmax(1) = MB
g−1(X ,SL(2,R)) were determined by

Goldman [33] working directly with representations of π1X :

Theorem 4.6. The connected components of Mmax(1) are the 22g subspaces Mw1 ⊂
Mmax(1) of Higgs bundles having invariant w1 ∈ H1(X ,Z/2).

Remark 4.7. These components are all homeomorphic to the Teichmüller space of
X , as also follows from results of Goldman. In particular each component Mw1 is
homeomorphic to R6g−6. This can bee easily seen from the Higgs bundle point of view
(see [1]) by noting that a maximal Sp(2,R)-Higgs bundle is isomorphic to one of the
form (L,β ,γ), where L2 = KX and γ = 1. The choice of L given by w1 and thus the
choice of β ∈ H0(X ,K2

X) gives a an identification Mw1
∼= H0(X ,K2

X).

Generalizing the parametrization by quadratic differentials of Mw1 of the preceding
remark, Hitchin [13] showed the existence of special connected Hitchin components
MH ⊂ MDol(X ,G) whenever G is a split real form of a simple complex group (the
classical examples are G = SL(n,R), Sp(2n,R), SO(n,n), SO(n+ 1,n)). The Hitchin
components are vector spaces of the form MH ∼=

⊕
H0(X ,Kmi+1

X ). In the case G =

Sp(2n,R) Hitchin components are maximal and there are 22g such components

MH
L ⊂Mmax(n)

indexed by square roots L of KX , just as in the case n = 1.
Denote by Mw1,w2 ⊂Mmax(n) the subspace of non-Hitchin Sp(2n,R)-Higgs bundles

with invariants wi ∈ H i(X ,Z/2) for i = 1,2. In the case n = 2, we additionally write
M0,c for the subspace of non-Hitchin Sp(4,R)-Higgs bundles with invariants w1 = 0 and
c ∈ H2(X ,Z)∼= Z.

The connected components of Mmax(n) were determined in [23] for n = 2 and in
[25] for n ≥ 3. We refer the interested reader to these papers for the proof of the
following theorem. For more information on maximal Sp(2n,R)-Higgs bundles and the
corresponding representations see for instance [26] and [34].

Theorem 4.8. For n = 2, the decomposition in connected components of Mmax is

Mmax =
⋃

w1 6=0,w2

Mw1,w2 ∪
⋃

0≤c<2g−2

M0,c∪
⋃

L2=KX

MH
L .

For n≥ 3, the decomposition in connected components of Mmax is

Mmax =
⋃

w1,w2

Mw1,w2 ∪
⋃

L2=KX

MH
L .

Finally, we mention that the maximal connected components has been carried our in
many cases for many non-compact groups G of Hermitian type; see [18] for a survey
of such results. On the other hand, the determination of non-maximal components is in
general a difficult problem, which in the case of G = Sp(2n,R)) has only been carried
out for n = 2 [24].
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