The Kontorovich - Lebedev transformation on the Sobolev type spaces

Semyon B. Yakubovich *

December 23, 2004

Abstract

The Kontorovich-Lebedev transformation $$
(K L f)(x)=\int_{0}^{\infty} K_{i \tau}(x) f(\tau) d \tau, x \in \mathbf{R}_{+}
$$

is considered as an operator, which maps the weighted space $L_{p}\left(\mathbf{R}_{+} ; \omega(\tau) d \tau\right), 2 \leq$ $p \leq \infty$ into the Sobolev type space $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)$with the finite norm

$$
\|u\|_{S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)}=\left(\sum_{k=0}^{N} \int_{0}^{\infty}\left|A_{x}^{k} u\right|^{p} x^{\alpha_{k} p-1} d x\right)^{1 / p}<\infty
$$

where $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N}\right), \alpha_{k} \in \mathbf{R}, k=0, \ldots, N$, and A_{x} is the differential operator of the form

$$
A_{x} u=x^{2} u(x)-x \frac{d}{d x}\left[x \frac{d u}{d x}\right]
$$

and A_{x}^{k} means k-th iterate of $A_{x}, A_{x}^{0} u=u$. Elementary properties for the space $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)$are derived. Boundedness and inversion properties for the KontorovichLebedev transform are studied. In the Hilbert case ($p=2$) the isomorphism between these spaces is established for the special type of weights and Plancherel's type theorem is proved.

Keywords: Kontorovich-Lebedev transform, Modified Bessel function, Sobolev spaces, Hardy inequality, Plancherel theorem, Imbedding theorem

AMS subject classification: 44A15, 46E35, 26D10

[^0]
1 Introduction

The object of the present paper is to extend the theory of the important KontorovichLebedev transformation [8], [11]

$$
\begin{equation*}
(K L f)(x)=\int_{0}^{\infty} K_{i \tau}(x) f(\tau) d \tau \tag{1.1}
\end{equation*}
$$

on the so-called Sobolev type spaces, which will be defined below. In the following, $x \in \mathbf{R}_{+} \equiv(0, \infty), K_{i \tau}(x)$ is the modified Bessel function or the Macdonald function (cf. [1], [8, p. 355]), and the pure imaginary subscript (an index) $i \tau$ is such that τ is restricted to \mathbf{R}_{+}. The function $K_{\nu}(z)$ satisfies the differential equation

$$
\begin{equation*}
z^{2} \frac{d^{2} u}{d z^{2}}+z \frac{d u}{d z}-\left(z^{2}+\nu^{2}\right) u=0 \tag{1.2}
\end{equation*}
$$

for which it is the solution that remains bounded as z tends to infinity on the real line. The modified Bessel function has the asymptotic behaviour (cf. [1], relations (9.6.8), (9.6.9), (9.7.2))

$$
\begin{equation*}
K_{\nu}(z)=\left(\frac{\pi}{2 z}\right)^{1 / 2} e^{-z}[1+O(1 / z)], \quad z \rightarrow \infty \tag{1.3}
\end{equation*}
$$

and near the origin

$$
\begin{gather*}
K_{\nu}(z)=O\left(z^{-|\operatorname{Re} \nu|}\right), z \rightarrow 0, \tag{1.4}\\
K_{0}(z)=O(\log z), z \rightarrow 0 . \tag{1.5}
\end{gather*}
$$

Meanwhile, when x is restricted to any compact subset of \mathbf{R}_{+}and τ tends to infinity we have the following asymptotic [11, p. 20]

$$
\begin{equation*}
K_{i \tau}(x)=\left(\frac{2 \pi}{\tau}\right)^{1 / 2} e^{-\pi \tau / 2} \sin \left(\frac{\pi}{4}+\tau \log \frac{2 \tau}{x}-\tau\right)[1+O(1 / \tau)], \quad \tau \rightarrow \infty \tag{1.6}
\end{equation*}
$$

The modified Bessel function can be represented by the integrals of the Fourier and Mellin types [1], [8], [11]

$$
\begin{gather*}
K_{\nu}(x)=\int_{0}^{\infty} e^{-x \cosh u} \cosh \nu u d u, \tag{1.7}\\
K_{\nu}(x)=\frac{1}{2}\left(\frac{x}{2}\right)^{\nu} \int_{0}^{\infty} e^{-t-\frac{x^{2}}{4 t}} t^{-\nu-1} d t . \tag{1.8}
\end{gather*}
$$

Hence it is not difficult to show that $K_{i \tau}(x)$ is infinitely differentiable with respect to x and τ on \mathbf{R}_{+}real-valued funtion. We also note that the product of the modified Bessel functions of different arguments can be represented by the Macdonald formula [1], [6], [11]

$$
\begin{equation*}
K_{i \tau}(x) K_{i \tau}(y)=\frac{1}{2} \int_{0}^{\infty} e^{-\frac{1}{2}\left(u \frac{x^{2}+y^{2}}{x y}+\frac{x y}{u}\right)} K_{i \tau}(u) \frac{d u}{u} . \tag{1.9}
\end{equation*}
$$

In this paper we deal with the Lebesgue weighted $L_{p}\left(\mathbf{R}_{+} ; \omega(x) d x\right)$ spaces over the measure $\omega(x) d x$ with the norm

$$
\begin{gather*}
\|f\|_{p}=\left(\int_{0}^{\infty}|f(x)|^{p} \omega(x) d x\right)^{1 / p}, 1 \leq p<\infty \tag{1.10}\\
\|f\|_{\infty}=\operatorname{ess} \sup |f(x)| \tag{1.11}
\end{gather*}
$$

In particular, we will use the spaces $L_{\nu, p} \equiv L_{p}\left(\mathbf{R}_{+} ; x^{\nu p-1} d x\right), 1 \leq p \leq \infty, \nu \in \mathbf{R}$, which are related to the Mellin transforms pair [7], [8], [9]

$$
\begin{gather*}
f^{\mathcal{M}}(s)=\int_{0}^{\infty} f(x) x^{s-1} d x \tag{1.12}\\
f(x)=\frac{1}{2 \pi i} \int_{\nu-i \infty}^{\nu+i \infty} f^{\mathcal{M}}(s) x^{-s} d s, s=\nu+i t, x>0 \tag{1.13}
\end{gather*}
$$

The integrals (1.13)- (1.14) are convergent, in particular, in mean with respect to the norm of the spaces $L_{2}(\nu-i \infty, \nu+i \infty ; d s)$ and $L_{2}\left(\mathbf{R}_{+} ; x^{2 \nu-1} d x\right)$, respectively. In addition, the Parseval equality of the form

$$
\begin{equation*}
\int_{0}^{\infty}|f(x)|^{2} x^{2 \nu-1} d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|f^{\mathcal{M}}(\nu+i t)\right|^{2} d t \tag{1.15}
\end{equation*}
$$

holds true.
As it is proved in [12], [13], the Kontorovich-Lebedev operator (1.1) is an isomorphism between the spaces $L_{2}\left(\mathbf{R}_{+} ;[\tau \sinh \pi \tau]^{-1} d \tau\right)$ and $L_{2}\left(\mathbf{R}_{+} ; x^{-1} d x\right)$ with the identity for the square of norms

$$
\begin{equation*}
\int_{0}^{\infty}|(K L f)(x)|^{2} \frac{d x}{x}=\frac{\pi^{2}}{2} \int_{0}^{\infty}|f(\tau)|^{2} \frac{d \tau}{\tau \sinh \pi \tau} \tag{1.16}
\end{equation*}
$$

and the Parseval equality of type

$$
\begin{equation*}
\int_{0}^{\infty}(K L f)(x) \overline{(K L g(x)} \frac{d x}{x}=\frac{\pi^{2}}{2} \int_{0}^{\infty} f(\tau) \overline{g(\tau)} \frac{d \tau}{\tau \sinh \pi \tau} \tag{1.17}
\end{equation*}
$$

where $f, g \in L_{2}\left(\mathbf{R}_{+} ;[\tau \sinh \pi \tau]^{-1} d \tau\right)$. We note that the convergence of the integral (1.1) in this case is with respect to the norm (1.10) for the space $L_{2}\left(\mathbf{R}_{+} ; x^{-1} d x\right)$.

However, our goal is to study the Kontorovich-Lebedev transformation in the space $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right), 1 \leq p<\infty$, which we call the Sobolev type space with the finite norm

$$
\begin{equation*}
\|u\|_{S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)}=\left(\sum_{k=0}^{N} \int_{0}^{\infty}\left|A_{x}^{k} u\right|^{p} x^{\alpha_{k} p-1} d x\right)^{1 / p}<\infty \tag{1.18}
\end{equation*}
$$

Here $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N}\right), \alpha_{k} \in \mathbf{R}, k=0, \ldots, N$, and A_{x} is the differential operator (1.2), which is written in the form

$$
\begin{equation*}
A_{x} u=x^{2} u(x)-x \frac{d}{d x}\left[x \frac{d u}{d x}\right] . \tag{1.19}
\end{equation*}
$$

As usual we denote by A_{x}^{k} the k-th iterate of $A_{x}, A_{x}^{0} u=u$. The differential operator (1.19) was used for instance in [4], [16] in order to construct the spaces of testing functions to consider the Kontorovich-Lebedev transform on distributions (see also in [10]). Recently (see [15]) it is involved to investigate the corresponding class of the Kontorovich-Lebedev convolution integral equations.

In the sequel we will derive imbedding properties for the spaces $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)$and we will find integral representations for the functions from $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)$. Finally we will study the boundedness and inversion properties for the Kontorovich-Lebedev transformation as an operator from the weighted L_{p}-space $L_{p}\left(\mathbf{R}_{+} ; \omega(x) d x\right)$ into the space $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)$. When $p=2, \alpha=0$ we will prove the Plancherel type theorem and we will establish an isomorphism for the special type of weights between these spaces.

2 Elementary properties for the space $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)$

Let $\varphi(x)$ belong to the space $C_{0}^{\infty}\left(\mathbf{R}_{+}\right)$of infinitely differentiable functions with a compact support on \mathbf{R}_{+}. Hence taking (1.19), we integrate by parts for any twice continuously differentiable function $u \in C^{2}\left(\mathbf{R}_{+}\right)$and we derive the following equality

$$
\begin{equation*}
\int_{0}^{\infty} u(x) A_{x} \varphi \frac{d x}{x}=\int_{0}^{\infty} A_{x} u \varphi(x) \frac{d x}{x} . \tag{2.1}
\end{equation*}
$$

Now if furthermore we suppose, that for any $\varphi \in C_{0}^{\infty}\left(\mathbf{R}_{+}\right)$and some locally integrable function $v \in L_{l o c}\left(\mathbf{R}_{+}\right)$it satisfies

$$
\int_{0}^{\infty} u(x) A_{x} \varphi \frac{d x}{x}=\int_{0}^{\infty} v(x) \varphi(x) \frac{d x}{x}
$$

then subtracting these equalities we immediately obtain

$$
\begin{equation*}
\int_{0}^{\infty}\left[A_{x} u-v(x)\right] \varphi(x) \frac{d x}{x}=0 \tag{2.2}
\end{equation*}
$$

Consequently, via Du Bois-Reymond lemma we find that $v(x)=A_{x} u$ almost everywhere in \mathbf{R}_{+}. Thus we use (2.2) to define the so-called generalized derivative $v(x)$ for the function $u(x)$ in terms of the operator A_{x}. A k-th generalized derivative can be easily
defined from (2.1). Indeed, for any $\varphi \in C_{0}^{\infty}\left(\mathbf{R}_{+}\right)$we have that $A_{x} \varphi \in C_{0}^{\infty}\left(\mathbf{R}_{+}\right)$and we will call $v_{k}(x) \in L_{l o c}\left(\mathbf{R}_{+}\right)$a k-th generalized derivative for $u \in L_{l o c}\left(\mathbf{R}_{+}\right)\left(v_{k}(x) \equiv A_{x}^{k} u\right)$ if it satisfies the equality

$$
\begin{equation*}
\int_{0}^{\infty} u(x) A_{x}^{k} \varphi \frac{d x}{x}=\int_{0}^{\infty} v_{k}(x) \varphi(x) \frac{d x}{x} . \tag{2.3}
\end{equation*}
$$

Further, from the norm definition (1.18) and elementary inequalities it follows that there are positive constants C_{1}, C_{2} such that

$$
\begin{gather*}
C_{1} \sum_{k=0}^{n}\left(\int_{0}^{\infty}\left|A_{x}^{k} u\right|^{p} x^{\alpha_{k} p-1} d x\right)^{1 / p} \leq\left(\sum_{k=0}^{N} \int_{0}^{\infty}\left|A_{x}^{k} u\right|^{p} x^{\alpha_{k} p-1} d x\right)^{1 / p} \\
\leq C_{2} \sum_{k=0}^{N}\left(\int_{0}^{\infty}\left|A_{x}^{k} u\right|^{p} x^{\alpha_{k} p-1} d x\right)^{1 / p} \tag{2.4}
\end{gather*}
$$

Hence by (1.10) we have the equivalence of norms

$$
\begin{equation*}
C_{1} \sum_{k=0}^{N}\left\|A_{x}^{k} u\right\|_{L_{p}\left(\mathbf{R}_{+} ; x^{\alpha_{k} p-1} d x\right)} \leq\|u\|_{S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)} \leq C_{2} \sum_{k=0}^{N}\left\|A_{x}^{k} u\right\|_{L_{p}\left(\mathbf{R}_{+} ; x^{\alpha} k^{p-1} d x\right)} . \tag{2.5}
\end{equation*}
$$

In order to show that $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right), 1 \leq p<\infty$ is a Banach space we take a fundamental sequence $u_{n}(x)$, i.e. $\left\|u_{n}-u_{m}\right\|_{S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)} \rightarrow 0, m, n \rightarrow \infty$. This will immediately imply that

$$
\begin{gathered}
\left\|u_{n}-u_{m}\right\|_{L_{\alpha_{0}, p}} \rightarrow 0 \\
\left\|A_{x}^{k} u_{n}-A_{x}^{k} u_{m}\right\|_{L_{\alpha_{k}, p}} \rightarrow 0, k=1, \ldots, N
\end{gathered}
$$

when $m, n \rightarrow \infty$. Since spaces $L_{\alpha, p}, k=0,1, \ldots, N$ are complete, there are functions $v_{0} \in L_{\alpha_{0}, p}, v_{k} \in L_{\alpha_{k}, p}$ such that

$$
\begin{gather*}
\left\|u_{n}-v_{0}\right\|_{L_{\alpha_{0}, p}} \rightarrow 0 \tag{2.6}\\
\left\|A_{x}^{k} u_{n}-v_{k}\right\|_{L_{\alpha_{k}, p}} \rightarrow 0, k=1, \ldots, N, \tag{2.7}
\end{gather*}
$$

when $n \rightarrow \infty$. If we show that v_{k} is a k-th generalized derivative of v_{0} then we prove that the sequence u_{n} converges to $v_{0} \in S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)$with respect to the norm (1.18). In fact, from (2.6), (2.7) for any $\varphi \in C_{0}^{\infty}\left(\mathbf{R}_{+}\right)$we have the limit equalities

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{0}^{\infty} u_{n}(x) \varphi(x) \frac{d x}{x}=\int_{0}^{\infty} v_{0}(x) \varphi(x) \frac{d x}{x}, \\
& \lim _{n \rightarrow \infty} \int_{0}^{\infty} A_{x}^{k} u_{n} \varphi(x) \frac{d x}{x}=\int_{0}^{\infty} v_{k}(x) \varphi(x) \frac{d x}{x} .
\end{aligned}
$$

But on the other hand,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \int_{0}^{\infty} A_{x}^{k} u_{n} \varphi(x) \frac{d x}{x}=\lim _{n \rightarrow \infty} \int_{0}^{\infty} u_{n}(x) A_{x}^{k} \varphi \frac{d x}{x} \\
=\int_{0}^{\infty} v_{0}(x) A_{x}^{k} \varphi \frac{d x}{x}
\end{gathered}
$$

Therefore invoking (2.3) we get $v_{k}(x)=A_{x}^{k} v_{0}$ and we prove that $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)$is a Banach space.

For the space $S_{p}^{1, \alpha}\left(\mathbf{R}_{+}\right)$we establish an imbedding theorem into Sobolev's weighted space ${ }_{0} W_{p}^{1}\left(\mathbf{R}_{+} ; x^{\gamma p-1} d x\right)$ with the norm

$$
\|u\|_{0 W_{p}^{1}\left(\mathbf{R}_{+} ; x^{\gamma p-1} d x\right)}=\left(\int_{0}^{\infty}\left|u^{\prime}(x)\right|^{p} x^{\gamma p-1} d x\right)^{1 / p}
$$

Indeed, we have the following result.
Theorem 1.Let $1<p<\infty, \alpha=(2-\beta,-\beta), \beta>0$. The imbedding

$$
S_{p}^{1, \alpha}\left(\mathbf{R}_{+}\right) \subseteq{ }_{0} W_{p}^{1}\left(\mathbf{R}_{+} ; x^{(1-\beta) p-1} d x\right)
$$

is true.
Proof. Appealing to the classical Hardy's inequality [2]

$$
\begin{equation*}
\int_{0}^{\infty} x^{-r}\left|\int_{0}^{x} f(t) d t\right|^{p} d x \leq \text { const. } \int_{0}^{\infty} x^{p-r}|f(x)|^{p} d x \tag{2.8}
\end{equation*}
$$

where $1<p<\infty, r>1$ we put $f(x)=A_{x} u / x, r=\beta p+1, \beta>0$ and we have the estimate

$$
\begin{gathered}
\quad\left(\int_{0}^{\infty}\left|A_{x} u\right|^{p} x^{-\beta p-1} d x\right)^{1 / p} \geq \text { const. }\left(\int_{0}^{\infty} x^{-\beta p-1}\left|\int_{0}^{x} \frac{A_{t} u}{t} d t\right|^{p} d x\right)^{1 / p} \\
=\text { const. }\left(\int_{0}^{\infty} x^{-\beta p-1}\left|\int_{0}^{x} t u(t) d t-x u^{\prime}(x)\right|^{p} d x\right)^{1 / p} \geq \text { const. }\left[\left(\int_{0}^{\infty} x^{p(1-\beta)-1}\left|u^{\prime}(x)\right|^{p} d x\right)^{1 / p}\right. \\
\left.-\left(\int_{0}^{\infty} x^{-\beta p-1}\left|\int_{0}^{x} t u(t) d t\right|^{p} d x\right)^{1 / p}\right]
\end{gathered}
$$

Thus we get

$$
\left(\int_{0}^{\infty} x^{p(1-\beta)-1}\left|u^{\prime}(x)\right|^{p} d x\right)^{1 / p} \leq \text { const. }\left[\left(\int_{0}^{\infty}\left|A_{x} u\right|^{p} x^{-\beta p-1} d x\right)^{1 / p}\right.
$$

$$
\begin{equation*}
\left.+\left(\int_{0}^{\infty} x^{-\beta p-1}\left|\int_{0}^{x} t u(t) d t\right|^{p} d x\right)^{1 / p}\right] . \tag{2.9}
\end{equation*}
$$

Invoking again Hardy's inequality (2.8) to estimate the latter term in (2.9) it becomes

$$
\left(\int_{0}^{\infty} x^{-\beta p-1}\left|\int_{0}^{x} t u(t) d t\right|^{p} d x\right)^{1 / p} \leq \operatorname{const} .\left(\int_{0}^{\infty} x^{p(2-\beta)-1}|u(x)|^{p} d x\right)^{1 / p}
$$

Combining with (2.9) and (1.18) we obtain

$$
\begin{gathered}
\quad\left(\int_{0}^{\infty} x^{p(1-\beta)-1}\left|u^{\prime}(x)\right|^{p} d x\right)^{1 / p} \leq \text { const. }\left[\left(\int_{0}^{\infty}\left|A_{x} u\right|^{p} x^{-\beta p-1} d x\right)^{1 / p}\right. \\
\left.+\left(\int_{0}^{\infty} x^{p(2-\beta)-1}|u(x)|^{p} d x\right)^{1 / p}\right] \leq \text { const. }\|u\|_{S_{p}^{1, \alpha}\left(\mathbf{R}_{+}\right)}, \alpha=(2-\beta,-\beta), \beta>0 .
\end{gathered}
$$

Theorem 1 is proved.
Our goal now is to derive integral representations for functions from the space $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)$. For this we will use a technique from [14]. Precisely, let us introduce for any $u(x) \in$ $L_{\nu, p}, \nu \in \mathbf{R}$ and $\varepsilon \in(0, \pi)$ the following regularization operator

$$
\begin{equation*}
u_{\varepsilon}(x)=\frac{x \sin \varepsilon}{\pi} \int_{0}^{\infty} \frac{K_{1}\left(\left(x^{2}+y^{2}-2 x y \cos \varepsilon\right)^{1 / 2}\right)}{\left(x^{2}+y^{2}-2 x y \cos \varepsilon\right)^{1 / 2}} u(y) d y, x>0 . \tag{2.10}
\end{equation*}
$$

We are ready to prove the Bochner type representation theorem.
We have
Theorem 2. Let $u(x) \in L_{\nu, p}, 0<\nu<1,1 \leq p<\infty$. Then

$$
\begin{equation*}
u(x)=\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}(x) \tag{2.11}
\end{equation*}
$$

with respect to the norm in $L_{\nu, p}$. Besides, for $1<p<\infty$ the limit (2.11) exists for almost all $x>0$.

Proof. We first show that (2.10) is a bounded operator in $L_{\nu, p}$ under conditions of the theorem. To do this we make the substitution $y=x(\cos \varepsilon+t \sin \varepsilon)$ in the corresponding integral and it becomes

$$
\begin{equation*}
u_{\varepsilon}(x)=\frac{x \sin \varepsilon}{\pi} \int_{-\cot \varepsilon}^{\infty} \frac{K_{1}\left(x \sin \varepsilon \sqrt{t^{2}+1}\right)}{\sqrt{t^{2}+1}} u(x(\cos \varepsilon+t \sin \varepsilon)) d t . \tag{2.12}
\end{equation*}
$$

Hence owing to the generalized Minkowski inequality and elementary inequality for the modified Bessel function $x K_{1}(x) \leq 1, x \geq 0$ (see (1.7)) we estimate the norm of the integral (2.12) as follows

$$
\left\|u_{\varepsilon}\right\|_{L_{\nu, p}} \leq \frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty} \frac{d t}{t^{2}+1}\|u(x(\cos \varepsilon+t \sin \varepsilon))\|_{L_{\nu, p}}
$$

$$
\begin{gathered}
=\frac{1}{\pi}\|u\|_{L_{\nu, p}} \int_{-\cot \varepsilon}^{\infty} \frac{(\cos \varepsilon+t \sin \varepsilon)^{-\nu}}{t^{2}+1} d t=\|u\|_{L_{\nu, p}} \\
\times \frac{\sin \varepsilon}{\pi} \int_{0}^{\infty} \frac{\cosh \nu \xi}{\cosh \xi-\cos \varepsilon} d \xi, 0<\nu<1
\end{gathered}
$$

where we have made the substitution $e^{\xi}=\cos \varepsilon+t \sin \varepsilon$ in the latter integral. However, via formula (2.4.6.6) in [5] we find accordingly,

$$
\begin{gathered}
\frac{\sin \varepsilon}{\pi} \int_{0}^{\infty} \frac{\cosh \nu \xi}{\cosh \xi-\cos \varepsilon} d \xi=\frac{\sin (\nu(\pi-\varepsilon))}{\sin \nu \pi} \leq 1+\frac{\sin \nu \varepsilon}{\sin \nu \pi} \\
\leq 1+\frac{\pi \nu}{\sin \nu \pi}=C_{\nu}, 0<\nu<1
\end{gathered}
$$

Thus for all $\varepsilon \in(0, \pi)$ we get

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{L_{\nu, p}} \leq C_{\nu}\|u\|_{L_{\nu, p}} . \tag{2.13}
\end{equation*}
$$

Further, by using the identity

$$
\frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty} \frac{d t}{t^{2}+1}=1-\frac{\varepsilon}{\pi}
$$

and denoting by

$$
\begin{equation*}
R(x, t, \varepsilon)=x \sin \varepsilon \sqrt{t^{2}+1} K_{1}\left(x \sin \varepsilon \sqrt{t^{2}+1}\right) \tag{2.14}
\end{equation*}
$$

we find that

$$
\begin{gathered}
\left\|u_{\varepsilon}-u\right\|_{L_{\nu, p}} \leq \frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty} \frac{d t}{t^{2}+1} \| u(x(\cos \varepsilon+t \sin \varepsilon)) R(x, t, \varepsilon) \\
-\left(1-\frac{\varepsilon}{\pi}\right)^{-1} u(x)\left\|_{L_{\nu, p}} \leq \frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty} \frac{d t}{t^{2}+1}\right\|[u(x(\cos \varepsilon+t \sin \varepsilon)) \\
\left.-\left(1-\frac{\varepsilon}{\pi}\right)^{-1} u(x)\right] R(x, t, \varepsilon)\left\|_{L_{\nu, p}}+\frac{1}{\pi-\varepsilon} \int_{-\cot \varepsilon}^{\infty} \frac{d t}{t^{2}+1}\right\| u(x)[R(x, t, \varepsilon) \\
-1] \|_{L_{\nu, p}}=I_{1}(\varepsilon)+I_{2}(\varepsilon) .
\end{gathered}
$$

But since [1]

$$
\frac{d}{d x}\left[x K_{1}(x)\right]=-x K_{0}(x)
$$

and $x K_{1}(x) \rightarrow 1, x \rightarrow 0$ we obtain the following representation

$$
R(x, t, \varepsilon)-1=-\int_{0}^{x \sin \varepsilon\left(t^{2}+1\right)^{1 / 2}} y K_{0}(y) d y .
$$

Hence appealing again to the generalized Minkowski inequality we deduce

$$
\begin{aligned}
& I_{2}(\varepsilon)= \frac{1}{\pi-\varepsilon} \int_{-\cot \varepsilon}^{\infty} \frac{d t}{t^{2}+1}\left(\int_{0}^{\infty} x^{\nu p-1}\left(\int_{0}^{x \sin \varepsilon\left(t^{2}+1\right)^{1 / 2}} y K_{0}(y) d y\right)^{p}|u(x)|^{p} d x\right)^{1 / p} \\
& \leq \frac{1}{\pi-\varepsilon} \int_{-\cot \varepsilon}^{\infty} \frac{d t}{t^{2}+1} \int_{0}^{\infty} y K_{0}(y)\left(\int_{y /\left(\sin \varepsilon\left(t^{2}+1\right)^{1 / 2}\right)}^{\infty} x^{\nu p-1}|u(x)|^{p} d x\right)^{1 / p} d y \\
& \leq \frac{1}{\pi-\varepsilon} \int_{-\cot \varepsilon}^{\infty} d t \int_{0}^{\infty} \xi K_{0}\left(\xi \sqrt{t^{2}+1}\right)\left(\int_{\frac{\xi}{\sin \varepsilon}}^{\infty} x^{\nu p-1}|u(x)|^{p} d x\right)^{1 / p} d \xi \\
&=\frac{1}{\pi-\varepsilon} \int_{-\cot \varepsilon}^{\infty} d t\left(\int_{0}^{\sqrt{\varepsilon}}+\int_{\sqrt{\varepsilon}}^{\infty}\right) \xi K_{0}\left(\xi \sqrt{t^{2}+1}\right)\left(\int_{\frac{\xi}{\sin \varepsilon}}^{\infty} x^{\nu p-1}|u(x)|^{p} d x\right)^{1 / p} d \xi \\
& \leq \frac{1}{\pi-\varepsilon} \int_{-\cot \varepsilon}^{\infty} d t \int_{0}^{\sqrt{\varepsilon}} \xi K_{0}\left(\xi \sqrt{t^{2}+1}\right)\left(\int_{\frac{\xi}{\sin \varepsilon}}^{\infty} x^{\nu p-1}|u(x)|^{p} d x\right)^{1 / p} d \xi \\
&+\frac{1}{\pi-\varepsilon} \int_{-\cot \varepsilon}^{\infty} \frac{d t}{t^{2}+1} \int_{0}^{\infty} \xi K_{0}(\xi) d \xi\left(\int_{\frac{1}{\sqrt{\varepsilon}}}^{\infty} x^{\nu p-1}|u(x)|^{p} d x\right)^{1 / p} \\
& \quad \leq \frac{\varepsilon^{\nu / 2}}{\pi-\varepsilon}\|u\|_{L_{\nu, p}} \int_{-\infty}^{\infty}\left(t^{2}+1\right)^{\frac{\nu}{2}-1} d t \int_{0}^{\infty} \xi^{1-\nu} K_{0}(\xi) d \xi \\
&+\frac{\pi}{\pi-\varepsilon}\left(\int_{\frac{1}{\sqrt{\varepsilon}}}^{\infty} x^{\nu p-1}|u(x)|^{p} d x\right)^{1 / p}=\frac{\pi}{\pi-\varepsilon}\left(\varepsilon^{\nu / 2} \Gamma(1-\nu)\|u\|_{L_{\nu, p}}\right. \\
&\left.+\left(\int_{\frac{1}{\sqrt{\varepsilon}}}^{\infty} x^{\nu p-1}|u(x)|^{p} d x\right)^{1 / p}\right) \rightarrow 0, \varepsilon \rightarrow 0,0<\nu<1 .
\end{aligned}
$$

Concerning the integral I_{1} we first approximate $u \in L_{\nu, p}\left(\mathbf{R}_{+}\right)$by a smooth function $\varphi \in C_{0}^{\infty}\left(\mathbf{R}_{+}\right)$. This implies that there exists a function $\varphi \in C_{0}^{\infty}\left(\mathbf{R}_{+}\right)$such that $\| f-$ $\varphi \|_{L_{\nu, p}} \leq \varepsilon$ for any $\varepsilon>0$. Hence since the kernel (2.14) $R(x, t, \varepsilon) \leq 1$ then in view of the representation

$$
\begin{gathered}
\varphi(x(\cos \varepsilon+t \sin \varepsilon))-\varphi(x)=\int_{1}^{\cos \varepsilon+t \sin \varepsilon} \frac{d}{d y}[\varphi(x y)] d y \\
=\int_{1}^{\cos \varepsilon+t \sin \varepsilon} x \varphi^{\prime}(x y) d y
\end{gathered}
$$

In a similar manner we have

$$
\begin{gathered}
I_{1}(\varepsilon) \leq \frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty} \frac{d t}{t^{2}+1}\|u(x(\cos \varepsilon+t \sin \varepsilon))-\varphi(x(\cos \varepsilon+t \sin \varepsilon))\|_{L_{\nu, p}} \\
+\frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty} \frac{d t}{t^{2}+1}\left\|\varphi(x(\cos \varepsilon+t \sin \varepsilon))-\left(1-\frac{\varepsilon}{\pi}\right)^{-1} u(x)\right\|_{L_{\nu, p}} \\
\leq\|u-\varphi\|_{L_{\nu, p}} \frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty} \frac{(\cos \varepsilon+t \sin \varepsilon)^{-\nu} d t}{t^{2}+1}+\frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty} \frac{d t}{t^{2}+1}\left\|\varphi(x)-\frac{\pi}{\pi-\varepsilon} u(x)\right\|_{L_{\nu, p}} \\
+\left\|\varphi^{\prime}\right\|_{L_{1+\nu, p}} \frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty} \frac{d t}{t^{2}+1}\left|\int_{1}^{\cos \varepsilon+t \sin \varepsilon} y^{-\nu-1} d y\right| \leq\left(C_{\nu}+1\right)\|u-\varphi\|_{L_{\nu, p}} \\
+\frac{\varepsilon}{\pi}\|u\|_{\nu, p}+\frac{\left\|\varphi^{\prime}\right\|_{L_{1+\nu, p}}}{\pi \nu} \int_{-\cot \varepsilon}^{\infty} \frac{\left|1-(\cos \varepsilon+t \sin \varepsilon)^{-\nu}\right|}{t^{2}+1} d t .
\end{gathered}
$$

The latter integral we treat by making the substitution $e^{\xi}=\cos \varepsilon+t \sin \varepsilon$. Then it takes the form

$$
\begin{gathered}
\int_{-\cot \varepsilon}^{\infty} \frac{\left|1-(\cos \varepsilon+t \sin \varepsilon)^{-\nu}\right|}{t^{2}+1} d t=\sin \varepsilon \int_{0}^{\infty} \frac{\sinh \nu \xi}{\cosh \xi-\cos \varepsilon} d \xi \\
=\sin \varepsilon\left(\int_{0}^{1}+\int_{1}^{\infty}\right) \frac{\sinh \nu \xi}{\cosh \xi-\cos \varepsilon} d \xi \leq \sin \varepsilon\left(\left.\log (\cosh \xi-\cos \varepsilon)\right|_{0} ^{1}\right. \\
\left.\quad+\int_{1}^{\infty} \frac{\sinh \nu \xi}{\cosh \xi-1} d \xi\right) \leq \sin \varepsilon\left[\log \left(2^{-1} \sin ^{-2} \frac{\varepsilon}{2}\right)+A_{\nu}\right]
\end{gathered}
$$

where

$$
A_{\nu}=1+\int_{1}^{\infty} \frac{\sinh \nu \xi}{\cosh \xi-1} d \xi, 0<\nu<1
$$

Thus we immediately obtain that $\lim _{\varepsilon \rightarrow 0} I_{1}(\varepsilon)=0$. Therefore by virtue of the above estimates $\lim _{\varepsilon \rightarrow 0}\left\|u_{\varepsilon}-u\right\|_{L_{\nu, p}}=0$ and relation (2.11) is proved.

In order to verify the convergence almost everywhere we use the fact that any sequence of functions $\left\{\varphi_{n}\right\} \in C_{0}^{\infty}\left(\mathbf{R}_{+}\right)$which converges to u in $L_{\nu, p}$-norm contains a subsequence $\left\{\varphi_{n_{k}}\right\}$ convergent almost everywhere, i.e. $\lim _{k \rightarrow \infty} \varphi_{n_{k}}(x)=u(x)$ for almost all $x>0$. Then we find

$$
\begin{gathered}
\left.\left|u_{\varepsilon}(x)-u(x)\right| \leq \frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty} \right\rvert\, u(x(\cos \varepsilon+t \sin \varepsilon)) R(x, t, \varepsilon) \\
-\left(1-\frac{\varepsilon}{\pi}\right)^{-1} u(x)\left|\frac{d t}{t^{2}+1} \leq \frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty}\right| u\left(x(\cos \varepsilon+t \sin \varepsilon)-\varphi_{n_{k}}(x(\cos \varepsilon+t \sin \varepsilon)) \left\lvert\, \frac{d t}{t^{2}+1}\right.\right. \\
+\frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty} \left\lvert\, \varphi_{n_{k}}\left(x(\cos \varepsilon+t \sin \varepsilon)-\varphi_{n_{k}}(x) \left\lvert\, \frac{d t}{t^{2}+1}\right.\right.\right.
\end{gathered}
$$

$$
+\frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty}\left|\varphi_{n_{k}}(x) R(x, t, \varepsilon)-\left(1-\frac{\varepsilon}{\pi}\right)^{-1} u(x)\right| \frac{d t}{t^{2}+1}=J_{1 \varepsilon}(x)+J_{2 \varepsilon}(x)+J_{3 \varepsilon}(x) .
$$

But,

$$
\begin{aligned}
J_{3 \varepsilon}(x) & \leq \frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty}\left|\varphi_{n_{k}}(x)-\left(1-\frac{\varepsilon}{\pi}\right)^{-1} u(x)\right| \frac{d t}{t^{2}+1}+\frac{1}{\pi-\varepsilon} \int_{-\cot \varepsilon}^{\infty}|u(x)[R(x, t, \varepsilon)-1]| \frac{d t}{t^{2}+1} \\
\leq & \left|\varphi_{n_{k}}(x)-u(x)\right|+\frac{\varepsilon}{\pi}|u(x)|+\frac{|u(x)|}{\pi-\varepsilon} \int_{-\cot \varepsilon}^{\infty}\left|\int_{0}^{x \sin \varepsilon\left(t^{2}+1\right)^{1 / 2}} y K_{0}(y) d y\right| \frac{d t}{t^{2}+1} \\
\leq & \left|\varphi_{n_{k}}(x)-u(x)\right|+\frac{\varepsilon}{\pi}|u(x)|+\frac{|u(x)| \varepsilon^{\nu} x^{\nu}}{\pi-\varepsilon} \int_{-\infty}^{\infty}\left(t^{2}+1\right)^{\nu / 2-1} d t \int_{0}^{\infty} y^{1-\nu} K_{0}(y) d y \\
& =\left|\varphi_{n_{k}}(x)-u(x)\right|+\frac{\varepsilon}{\pi}|u(x)|+\frac{\pi \Gamma(1-\nu) \varepsilon^{\nu} x^{\nu}}{\pi-\varepsilon}|u(x)| \rightarrow 0,0<\nu<1,
\end{aligned}
$$

when $\varepsilon \rightarrow 0, k>k_{0}$ for almost all $x>0$. Similarly,

$$
\begin{gathered}
J_{2 \varepsilon}(x)=\frac{1}{\pi} \int_{-\cot \varepsilon}^{\infty}\left|\int_{1}^{\cos \varepsilon+t \sin \varepsilon} x \varphi_{n_{k}}^{\prime}(x y) d y\right| \frac{d t}{t^{2}+1} \leq \frac{x}{\pi \nu} \sup _{y \geq 0} y^{1+\nu}\left|\varphi_{n_{k}}^{\prime}(x y)\right| \\
\times \int_{-\cot \varepsilon}^{\infty}\left|1-(\cos \varepsilon+t \sin \varepsilon)^{-\nu}\right| \frac{d t}{t^{2}+1} \leq \sin \varepsilon\left[\log \left(2^{-1} \sin ^{-2} \frac{\varepsilon}{2}\right)+A_{\nu}\right] \frac{x}{\pi \nu} \sup _{y \geq 0} y^{1+\nu}\left|\varphi_{n_{k}}^{\prime}(x y)\right|,
\end{gathered}
$$

which tends to zero almost for all $x>0$ when $\varepsilon \rightarrow 0$. Meantime, by taking $1<p<$ $\infty, q=\frac{p}{p-1}$ for any $\varepsilon>0$ such that $\left\|u-\varphi_{n_{k}}\right\|_{L_{\nu, p}}<\varepsilon$ for $k>k_{0}$ we have

$$
\begin{gathered}
J_{1 \varepsilon}(x) \leq \frac{x^{-\nu}| | u-\varphi_{n_{k}} \|_{L_{\nu, p}}}{\pi \sin ^{1 / p} \varepsilon}\left(\int_{-\cot \varepsilon}^{\infty} \frac{(\cos \varepsilon+t \sin \varepsilon)^{q(1-\nu)-1} d t}{\left(t^{2}+1\right)^{q}}\right)^{1 / q} \\
<x^{-\nu} \varepsilon \sin \varepsilon\left(\int_{0}^{\infty} \frac{\xi^{q(1-\nu)-1} d \xi}{\left(\xi^{2}-2 \xi \cos \varepsilon+1\right)^{q}}\right)^{1 / q}
\end{gathered}
$$

But the latter integral can be treated in terms of the Legendre functions [1] appealing to relation (2.2.9.7) from [5]. This gives the value

$$
\int_{0}^{\infty} \frac{\xi^{q(1-\nu)-1} d \xi}{\left(\xi^{2}-2 \xi \cos \varepsilon+1\right)^{q}}=\left(\frac{\sin \varepsilon}{2}\right)^{1 / 2-q} \Gamma(q+1 / 2) \frac{\Gamma(q(1-\nu)) \Gamma(q(1+\nu))}{\Gamma(2 q)} P_{-1 / 2-q \nu}^{1 / 2-q}(-\cos \varepsilon)
$$

When $\varepsilon \rightarrow 0+$ we have

$$
\int_{0}^{\infty} \frac{\xi^{q(1-\nu)-1} d \xi}{\left(\xi^{2}-2 \xi \cos \varepsilon+1\right)^{q}} \sim \sqrt{\pi} \frac{\Gamma(q-1 / 2)}{\Gamma(q)} \varepsilon^{1-2 q}
$$

Thus

$$
J_{1 \varepsilon}(x)<\text { const. } x^{-\nu} \varepsilon^{1 / q} \rightarrow 0, \varepsilon \rightarrow 0, x>0
$$

and we prove Theorem 2.
Appealing to Theorem 2 we will approximate functions from $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)$by singular integral (2.10). Indeed we have

Corollary 1. Singular integral (2.10) is defined on functions from $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right), \alpha=$ $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N}\right), 0<\alpha_{k}<1, k=0,1, \ldots, N$ and $1 \leq p<\infty$. Besides

$$
\begin{equation*}
u(x)=\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}(x), \tag{2.15}
\end{equation*}
$$

with respect to the norm in $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)$.
Proof. Indeed, choosing a fundamental sequence $\left\{\varphi_{n}\right\}$ of $C_{0}^{\infty}\left(\mathbf{R}_{+}\right)$- functions, which belongs to $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)$we get that it converges to some function $u \in S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)$. This means (see (2.6), (2.8)) that $A_{x}^{k} \varphi_{n} \rightarrow A_{x}^{k} u, n \rightarrow \infty$ with respect to the norm in $L_{\alpha_{k}, p}, k=$ $0,1, \ldots, N$, respectively.

Defining by

$$
\begin{equation*}
\varphi_{\varepsilon, n}(x)=\frac{x \sin \varepsilon}{\pi} \int_{0}^{\infty} \frac{K_{1}\left(\left(x^{2}+y^{2}-2 x y \cos \varepsilon\right)^{1 / 2}\right)}{\left(x^{2}+y^{2}-2 x y \cos \varepsilon\right)^{1 / 2}} \varphi_{n}(y) d y, x>0 \tag{2.16}
\end{equation*}
$$

we employ the relation (2.16.51.8) in [6]

$$
\begin{gathered}
\int_{0}^{\infty} \tau \sinh ((\pi-\varepsilon) \tau) K_{i \tau}(x) K_{i \tau}(y) d \tau \\
=\frac{\pi}{2} x y \sin \varepsilon \frac{K_{1}\left(\left(x^{2}+y^{2}-2 x y \cos \varepsilon\right)^{1 / 2}\right)}{\left(x^{2}+y^{2}-2 x y \cos \varepsilon\right)^{1 / 2}}, x, y>0,0<\varepsilon \leq \pi
\end{gathered}
$$

and we substitute it in (2.16). Changing the order of integration by the Fubini theorem we find

$$
\varphi_{\varepsilon, n}(x)=\frac{2}{\pi^{2}} \int_{0}^{\infty} \tau \sinh ((\pi-\varepsilon) \tau) K_{i \tau}(x) \int_{0}^{\infty} K_{i \tau}(y) \varphi_{n}(y) \frac{d y}{y} .
$$

Meantime, we apply the operator $A_{x}^{k}, k=0,1 \ldots, N$ (1.19) through both sides of the latter integral. Then via its uniform convergence with respect to $x \in\left(x_{0}, X_{0}\right) \subset \mathbf{R}_{+}$and by using the equalities (see (1.2)) $A_{x}^{k} K_{i \tau}(x)=\tau^{2 k} K_{i \tau}(x)$, (2.1) we come out with

$$
\begin{gathered}
A_{x}^{k} \varphi_{\varepsilon, n}=\frac{2}{\pi^{2}} \int_{0}^{\infty} \tau \sinh ((\pi-\varepsilon) \tau) K_{i \tau}(x) \int_{0}^{\infty} \tau^{2 k} K_{i \tau}(y) \varphi_{n}(y) \frac{d y}{y} \\
\quad=\frac{2}{\pi^{2}} \int_{0}^{\infty} \tau \sinh ((\pi-\varepsilon) \tau) K_{i \tau}(x) \int_{0}^{\infty} K_{i \tau}(y) A_{y}^{k} \varphi_{n} \frac{d y}{y}
\end{gathered}
$$

This is equivalent to

$$
\begin{equation*}
A_{x}^{k} \varphi_{\varepsilon, n}=\frac{x \sin \varepsilon}{\pi} \int_{0}^{\infty} \frac{K_{1}\left(\left(x^{2}+y^{2}-2 x y \cos \varepsilon\right)^{1 / 2}\right)}{\left(x^{2}+y^{2}-2 x y \cos \varepsilon\right)^{1 / 2}} A_{y}^{k} \varphi_{n} d y \tag{2.16}
\end{equation*}
$$

Hence

$$
A_{x}^{k} \varphi_{\varepsilon, n}-\left(A_{x}^{k} u\right)_{\varepsilon}=\frac{x \sin \varepsilon}{\pi} \int_{0}^{\infty} \frac{K_{1}\left(\left(x^{2}+y^{2}-2 x y \cos \varepsilon\right)^{1 / 2}\right)}{\left(x^{2}+y^{2}-2 x y \cos \varepsilon\right)^{1 / 2}}\left[A_{y}^{k} \varphi_{n}-A_{y}^{k} u\right] d y
$$

and due to (2.13) we have that $\lim _{n \rightarrow \infty} A_{x}^{k} \varphi_{\varepsilon, n}=\left(A_{x}^{k} u\right)_{\varepsilon}$ with respect to the norm in $L_{\alpha_{k}, p}$ for each $\varepsilon \in(0, \pi)$. By Theorem 2 we derive that

$$
\left\|\left(A_{x}^{k} u\right)_{\varepsilon}-A_{x}^{k} u\right\|_{L_{\alpha_{k}, p}} \rightarrow 0, \varepsilon \rightarrow 0, k=0,1, \ldots, N
$$

If we show that almost for all $x>0\left(A_{x}^{k} u\right)_{\varepsilon}=A_{x}^{k} u_{\varepsilon}, k=0,1,2, \ldots, N$ then via (2.5) we complete the proof of Corollary 1. When $k=0$ it is defined by (2.10). At the same time according to Du Bois-Reymond lemma it is sufficient to show that for any $\psi \in C_{0}^{\infty}\left(\mathbf{R}_{+}\right)$

$$
\begin{equation*}
\int_{0}^{\infty}\left[\left(A_{x}^{k} u\right)_{\varepsilon}-A_{x}^{k} u_{\varepsilon}\right] \frac{\psi(x)}{x} d x=0 \tag{2.17}
\end{equation*}
$$

We have

$$
\begin{gathered}
\int_{0}^{\infty}\left[\left(A_{x}^{k} u\right)_{\varepsilon}-A_{x}^{k} u_{\varepsilon}\right] \frac{\psi(x)}{x} d x=\int_{0}^{\infty}\left[\left(A_{x}^{k} u\right)_{\varepsilon}-A_{x}^{k} \varphi_{\varepsilon, n}\right] \frac{\psi(x)}{x} d x \\
+\int_{0}^{\infty}\left[A_{x}^{k} \varphi_{\varepsilon, n}-A_{x}^{k} u_{\varepsilon}\right] \frac{\psi(x)}{x} d x=\int_{0}^{\infty}\left[\left(A_{x}^{k} u\right)_{\varepsilon}-A_{x}^{k} \varphi_{\varepsilon, n}\right] \frac{\psi(x)}{x} d x \\
+\int_{0}^{\infty}\left[\varphi_{\varepsilon, n}-u_{\varepsilon}\right] \frac{A_{x}^{k} \psi}{x} d x
\end{gathered}
$$

Now as it is easily seen the right-hand side of the last equality is less than an arbitrary $\delta>0$ when $n \rightarrow \infty$. Thus we prove (2.17) and we complete the proof of Corollary 1.

3 The Kontorovich - Lebedev transformation in $S_{2}^{N, \alpha}\left(\mathbf{R}_{+}\right)$

Our goal in this section is to establish the boundedness of the Kontorovich-Lebedev transformation (1.1) as an operator $K L: L_{2}\left(\mathbf{R}_{+} ; \omega_{\alpha}(\tau) d \tau\right) \rightarrow S_{2}^{N, \alpha}\left(\mathbf{R}_{+}\right)$, where the measure $\omega \alpha(\tau) d \tau$ will be defined below. Finally, we will prove the Plancherel theorem and an analog of the Parseval equality (1.17) when $\alpha_{k}=0, k=0,1, \ldots, N$.

We begin with the use of the following inequality for the transformation (1.1), which is proved in [13]

$$
\begin{equation*}
\int_{0}^{\infty}|(K L f)(x)|^{2} x^{2 \nu-1} d x \leq \frac{\pi^{3 / 2} 2^{-2 \nu-1}}{\Gamma(2 \nu+1 / 2)} \int_{0}^{\infty}|f(\tau)|^{2}|\Gamma(2 \nu+i \tau)|^{2} d \tau, \nu>0 . \tag{3.1}
\end{equation*}
$$

It gives the boundedness for the Kontorovich-Lebedev transformation as an operator $K L: L_{2}\left(\mathbf{R}_{+} ;|\Gamma(2 \nu+i \tau)|^{2} d \tau\right) \rightarrow L_{\nu, 2}$. Moreover, when $\nu \rightarrow 0+$ it attains equality (1.16) where the measure (see in $[1])|\Gamma(i \tau)|^{2}=\pi[\tau \sinh \pi \tau]^{-1}$.

Let $f \in C_{0}^{\infty}\left(\mathbf{R}_{+}\right)$. Hence since $K_{i \tau}(z)$ is analytic in the right half-plane $\operatorname{Re} z>0$ (cf. in (1.7)) and integral (1.1) is uniformly convergent on every compact set of \mathbf{R}_{+}, we may repeatedly differentiate under the integral sign to obtain

$$
\begin{equation*}
A_{x}^{k} K L f=\int_{0}^{\infty} A_{x}^{k} K_{i \tau}(x) f(\tau) d \tau=\int_{0}^{\infty} \tau^{2 k} K_{i \tau}(x) f(\tau) d \tau, k=0,1, \ldots, N \tag{3.2}
\end{equation*}
$$

Invoking with (3.1), (1.18) we deduce

$$
\begin{gather*}
\|K L f\|_{S_{2}^{N, \alpha}\left(\mathbf{R}_{+}\right)}=\left(\sum_{k=0}^{N} \int_{0}^{\infty}\left|A_{x}^{k} K L f\right|^{2} x^{2 \alpha_{k}-1} d x\right)^{1 / 2} \leq\left(\int_{0}^{\infty}|f(\tau)|^{2} \omega_{\alpha}(\tau) d \tau\right)^{1 / 2} \\
=\|f\|_{L_{2}\left(\mathbf{R}_{+} ; \omega_{\alpha}(\tau) d \tau\right)} \tag{3.3}
\end{gather*}
$$

where we denoted by

$$
\begin{equation*}
\omega_{\alpha}(\tau)=\pi^{3 / 2} \sum_{k=0}^{N} \frac{2^{-2 \alpha_{k}-1} \tau^{4 k}\left|\Gamma\left(2 \alpha_{k}+i \tau\right)\right|^{2}}{\Gamma\left(2 \alpha_{k}+1 / 2\right)}, \alpha_{k}>0, k=0,1, \ldots, N . \tag{3.4}
\end{equation*}
$$

By virtue of the density of the $C_{0}^{\infty}\left(\mathbf{R}_{+}\right)$-functions in L_{2} over the measure (3.4) we get that inequality (3.3) is true for any $f(\tau) \in L_{2}\left(\mathbf{R}_{+} ; \omega_{\alpha}(\tau) d \tau\right)$. The Kontorovich-Lebedev transformation (1.1) in the space $S_{2}^{N, \alpha}\left(\mathbf{R}_{+}\right)$we define as follows. Denoting by

$$
f_{n}(\tau)= \begin{cases}f(\tau), & \text { if } \tau \in\left[\frac{1}{n}, n\right], \\ 0, & \text { if } \tau \notin\left[\frac{1}{n}, n\right]\end{cases}
$$

we easily see that $\left\|f-f_{n}\right\|_{L_{2}\left(\mathbf{R}_{+} ; \omega_{\alpha}(\tau) d \tau\right)} \rightarrow 0$, when $n \rightarrow \infty$. But with the asymptotic formula (1.6) and Schwarz's inequality we find that integral (1.1) for $\left(K L f_{n}\right)$ exists as a Lebesgue integral for any n. Moreover, from (3.3) we have

$$
\left\|K L f_{n}-K L f_{m}\right\|_{S_{2}^{N, \alpha}\left(\mathbf{R}_{+}\right)} \leq\left\|f_{n}-f_{m}\right\|_{L_{2}\left(\mathbf{R}_{+} ; \omega_{\alpha}(\tau) d \tau\right)} \rightarrow 0, n, m \rightarrow \infty
$$

Therefore the sequence $\left\{K L f_{n}\right\}$ converges in the space $S_{2}^{N, \alpha}\left(\mathbf{R}_{+}\right)$and the corresponding integral (1.1) is understood as a limit

$$
\begin{equation*}
(K L f)(x)=\lim _{n \rightarrow \infty} \int_{1 / n}^{n} K_{i \tau}(x) f(\tau) d \tau \tag{3.5}
\end{equation*}
$$

with respect to the norm (1.18). Thus we obtain that the Kontorovich-Lebedev transformation (3.5) is a bounded operator $K L: L_{2}\left(\mathbf{R}_{+} ; \omega_{\alpha}(\tau) d \tau\right) \rightarrow S_{2}^{N, \alpha}\left(\mathbf{R}_{+}\right)$, where the weighted function $\omega_{\alpha}(\tau)$ is given by (3.4).

In the case $\alpha=0$ we can prove the Plancherel type theorem, which will establish an isometric isomorphism between the corresponding $L_{2^{-}}$spaces. Indeed, in this case we easily have from (3.4) that

$$
\begin{equation*}
\omega_{0}(\tau)=\frac{\pi^{2}}{2} \frac{1-\tau^{4(N+1)}}{\left(1-\tau^{4}\right) \tau \sinh \pi \tau} . \tag{3.6}
\end{equation*}
$$

Theorem 3. Let $f \in L_{2}\left(\mathbf{R}_{+} ; \omega_{0}(\tau) d \tau\right)$, where the weighted function ω_{0} is defined by (3.6). Then the integral (3.5) for the Kontorovich-Lebedev transform converges to $(K L f)(x)$ with respect to the norm in the space $S_{2}^{N, 0}\left(\mathbf{R}_{+}\right)$; and

$$
\begin{equation*}
f_{n}(\tau)=\frac{2}{\pi^{2}} \tau \sinh \pi \tau \int_{1 / n}^{n} K_{i \tau}(x)(K L f)(x) \frac{d x}{x} \tag{3.7}
\end{equation*}
$$

converges in mean to $f(\tau)$ with respect to the norm in $L_{2}\left(\mathbf{R}_{+} ; \omega_{0}(\tau) d \tau\right)$. Moreover, the following Parseval equality is true

$$
\begin{equation*}
\sum_{k=0}^{N} \int_{0}^{\infty} A_{x}^{k} K L f \overline{A_{x}^{k} K L g} \frac{d x}{x}=\frac{\pi^{2}}{2} \int_{0}^{\infty} f(\tau) \overline{g(\tau)} \frac{1-\tau^{4(N+1)}}{1-\tau^{4}} \frac{d \tau}{\tau \sinh \pi \tau} \tag{3.8}
\end{equation*}
$$

where $f, g \in L_{2}\left(\mathbf{R}_{+} ; \omega_{0}(\tau) d \tau\right)$. In particular,

$$
\|K L f\|_{S_{2}^{N, 0}\left(\mathbf{R}_{+}\right)}=\|f\|_{L_{2}\left(\mathbf{R}_{+} ; \omega_{0}(\tau) d \tau\right)}
$$

that is

$$
\begin{equation*}
\sum_{k=0}^{N} \int_{0}^{\infty}\left|A_{x}^{k} K L f\right|^{2} \frac{d x}{x}=\frac{\pi^{2}}{2} \int_{0}^{\infty}|f(\tau)|^{2} \frac{1-\tau^{4(N+1)}}{1-\tau^{4}} \frac{d \tau}{\tau \sinh \pi \tau} \tag{3.9}
\end{equation*}
$$

Finally, for almost all τ and x from \mathbf{R}_{+}the reciprocal formulas take place

$$
\begin{gather*}
(K L f)(x)=\frac{d}{d x} \int_{0}^{\infty} \int_{0}^{x} K_{i \tau}(y) f(\tau) d y d \tau \tag{3.10}\\
f(\tau)=\frac{2}{\pi^{2}} \frac{\left(1-\tau^{4}\right) \sinh \pi \tau}{1-\tau^{4(N+1)}} \frac{d}{d \tau} \int_{0}^{\infty} \int_{0}^{\tau} y K_{i y}(x) \frac{1-y^{4(N+1)}}{1-y^{4}}(K L f)(x) \frac{d y d x}{x} . \tag{3.11}
\end{gather*}
$$

Proof. Let $f \in L_{2}\left(\mathbf{R}_{+} ; \omega_{0}(\tau) d \tau\right)$. We consider a sequence $\left\{f_{n}(\tau)\right\}$ of $C_{0}^{\infty}\left(\mathbf{R}_{+}\right)$functions, which converges to f. First we find that $\tau^{2 k} f_{n}(\tau) \in C_{0}^{\infty}\left(\mathbf{R}_{+}\right)$for all $k=$ $0,1, \ldots, N$. Hence we invoke (3.2) and we apply the Parseval identity (1.16). As a result we obtain

$$
\int_{0}^{\infty}\left|A_{x}^{k} K L f_{n}\right|^{2} \frac{d x}{x}=\frac{\pi^{2}}{2} \int_{0}^{\infty}\left|f_{n}(\tau)\right|^{2} \frac{\tau^{4 k-1}}{\sinh \pi \tau} d \tau, k=0,1, \ldots, N .
$$

Making elementary summations we immediately arrive at the equality (3.9). Since $\left\{\left(K L f_{n}\right)(x)\right\}$ is a Cauchy sequence in the space $S_{2}^{N, 0}\left(\mathbf{R}_{+}\right)$, then it converges to $(K L f)(x)$ and can be written through the limit (3.5). Moreover passing to the limit we get that (3.9) is true for any $f \in L_{2}\left(\mathbf{R}_{+} ; \omega_{0}(\tau) d \tau\right)$. Further, taking $x>0$ we easily have

$$
\int_{0}^{x}\left(K L f_{n}\right)(y) d y=\int_{0}^{\infty} \int_{0}^{x} K_{i \tau}(y) f_{n}(\tau) d y d \tau
$$

Hence we prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{x}\left(K L f_{n}\right)(y) d y=\int_{0}^{x}(K L f)(y) d y=\int_{0}^{\infty} \int_{0}^{x} K_{i \tau}(y) f(\tau) d y d \tau . \tag{3.12}
\end{equation*}
$$

The latter integral with respect to τ in (3.12) is absolutely convergent and therefore exists in Lebesgue's sense. Indeed, with Schwarz's inequality we derive (cf. in [11], [12], see (1.6))

$$
\int_{0}^{\infty}\left|\int_{0}^{x} K_{i \tau}(y) d y\right||f(\tau)| d \tau \leq\|f\|_{L_{2}\left(\mathbf{R}_{+} ; \omega_{0}(\tau) d \tau\right)}\left(\int_{0}^{\infty}\left|\int_{0}^{x} K_{i \tau}(y) d y\right|^{2} \frac{d \tau}{\omega_{0}(\tau)}\right)^{1 / 2}<\infty
$$

Consequently,

$$
\left|\int_{0}^{x}\left[\left(K L f_{n}\right)(y)-(K L f)(y)\right] d y\right| \leq \text { const. }\left\|f-f_{n}\right\|_{L_{2}\left(\mathbf{R}_{+} ; \omega_{0}(\tau) d \tau\right)} \rightarrow 0, n \rightarrow \infty
$$

and we prove (3.12). Differentiating with respect to x almost for all $x>0$ we arrive at (3.10).

Meantime with the parallelogram identity we easily derive (3.9) the Parseval equality (3.8). In particular, putting

$$
g(y)= \begin{cases}y, & \text { if } y \in[0, \tau] \\ 0, & \text { if } y \in(\tau, \infty)\end{cases}
$$

we find

$$
\begin{equation*}
\sum_{k=0}^{N} \int_{0}^{\infty} A_{x}^{k} K L f A_{x}^{k} \int_{0}^{\tau} y K_{i y}(x) d y \frac{d x}{x}=\frac{\pi^{2}}{2} \int_{0}^{\tau} f(y) \frac{1-y^{4(N+1)}}{1-y^{4}} \frac{d y}{\sinh \pi y} \tag{3.13}
\end{equation*}
$$

But the left-hand side of (3.13) can be represented by taking into account (2.1) and the limit equalities (see (1.3), (1.6))

$$
\begin{aligned}
& \lim _{x \rightarrow 0+} \int_{0}^{\tau} y^{2 k+1} K_{i y}(x) d y=0 \\
& \lim _{x \rightarrow \infty} \int_{0}^{\tau} y^{2 k+1} K_{i y}(x) d y=0
\end{aligned}
$$

for all $k=0,1, \ldots, N$. Thus we obtain

$$
\begin{gathered}
\sum_{k=0}^{N} \int_{0}^{\infty} A_{x}^{k} K L f \\
A_{x}^{k} \int_{0}^{\tau} y K_{i y}(x) d y \frac{d x}{x}=\sum_{k=0}^{N} \int_{0}^{\infty}(K L f)(x) \int_{0}^{\tau} y^{4 k+1} K_{i y}(x) d y \frac{d x}{x} \\
=\int_{0}^{\infty}(K L f)(x) \int_{0}^{\tau} \frac{1-y^{4(N+1)}}{1-y^{4}} K_{i y}(x) y d y \frac{d x}{x}
\end{gathered}
$$

Combining with (3.13) and differentiating with respect to τ we arrive at the reciprocal formula (3.11). Finally we prove (3.7). For a sequence $g_{n}(x)=(K L f)(x), x \in[1 / n, n], n=$ $1,2, \ldots$ of $S_{2}^{N, 0}\left(\mathbf{R}_{+}\right)$- functions, which vanishes outside of the interval $[1 / n, n]$ we have

$$
\begin{align*}
& f_{n}(\tau)=\frac{2}{\pi^{2}} \frac{\left(1-\tau^{4}\right) \sinh \pi \tau}{1-\tau^{4(N+1)}} \frac{d}{d \tau} \int_{0}^{\infty} \int_{0}^{\tau} y K_{i y}(x) \frac{1-y^{4(N+1)}}{1-y^{4}} g_{n}(x) \frac{d y d x}{x} \\
= & \frac{2}{\pi^{2}} \frac{\left(1-\tau^{4}\right) \sinh \pi \tau}{1-\tau^{4(N+1)}} \frac{d}{d \tau} \int_{1 / n}^{n} \int_{0}^{\tau} y K_{i y}(x) \frac{1-y^{4(N+1)}}{1-y^{4}}(K L f)(x) \frac{d y d x}{x} . \tag{3.14}
\end{align*}
$$

Meantime for every n we differentiate under the integral sign in (3.14), which gives

$$
f_{n}(\tau)=\frac{2}{\pi^{2}} \tau \sinh \pi \tau \int_{1 / n}^{n} K_{i \tau}(x)(K L f)(x) \frac{d x}{x}
$$

and it is possible via the uniform convergence with respect to τ of the last integral. If now f is defined by (3.11) then Parseval equality (3.9) implies that

$$
\left\|f-f_{n}\right\|_{L_{2}\left(\mathbf{R}_{+} ; \omega_{0}(\tau) d \tau\right)}^{2}=\left\|K L f-g_{n}\right\|_{S_{2}^{N, 0}\left(\mathbf{R}_{+}\right)}^{2}=\sum_{k=0}^{N} \int_{n}^{\infty}\left|A_{x}^{k} K L f\right|^{2} \frac{d x}{x} \rightarrow 0, n \rightarrow \infty .
$$

Thus we prove (3.7) and we complete the proof of Theorem 3.

4 On the boundedness in $S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right), p \geq 2$

In this final section we will interpolate the norm of the Kontorovich-Lebedev transformation (1.1) as an operator $K L: L_{p}\left(\mathbf{R}_{+} ; \rho_{p, \alpha}(\tau) d \tau\right) \rightarrow S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)$, where $2 \leq p \leq \infty$. The weighted function $\rho_{p, \alpha}(\tau)$ will be indicated below. In the case $p=\infty$ we understand the norm in the space $S_{\infty}^{N, \alpha}\left(\mathbf{R}_{+}\right)$as (see (1.18))

$$
\begin{equation*}
\|u\|_{S_{\infty}^{N, \alpha}\left(\mathbf{R}_{+}\right)}=\lim _{p \rightarrow \infty}\left(\sum_{k=0}^{N} \int_{0}^{\infty}\left|A_{x}^{k} u\right|^{p} x^{\alpha_{k} p-1} d x\right)^{1 / p} \tag{4.1}
\end{equation*}
$$

From the equivalence of norms (2.5) we immediately derive that

$$
\begin{equation*}
C_{1} \sum_{k=0}^{N}\left\|A_{x}^{k} u\right\|_{L_{\alpha_{k}, \infty}} \leq\|u\|_{S_{\infty}^{N, \alpha}\left(\mathbf{R}_{+}\right)} \leq C_{2} \sum_{k=0}^{N}\left\|A_{x}^{k} u\right\|_{L_{\alpha_{k}, \infty}} \tag{4.2}
\end{equation*}
$$

where the norm in $L_{\nu, \infty}$ is defined by (see (1.10), (1.11))

$$
\begin{equation*}
\|f\|_{L_{\nu, \infty}}=\operatorname{ess} \sup \left|x^{\nu} f(x)\right|=\lim _{p \rightarrow \infty}\left(\int_{0}^{\infty}|f(x)|^{p} x^{\nu p-1} d x\right)^{1 / p} \tag{4.3}
\end{equation*}
$$

We begin to derive an inequality for the modulus of the modified Bessel function $\left|K_{i \tau}(x)\right|$. We will apply it below to estimate the $L_{\nu, \infty}$-norm for the $(K L f)(x)$. Indeed, taking the Macdonald formula (1.9) and employing the Schwarz inequality we obtain

$$
\begin{gather*}
K_{i \tau}^{2}(x)=\frac{1}{2} \int_{0}^{\infty} e^{-u-\frac{x^{2}}{2 u}} K_{i \tau}(u) \frac{d u}{u} \leq \frac{1}{2}\left(\int_{0}^{\infty} e^{-2 u-\frac{x^{2}}{u}} u^{-2 \nu-1} d u\right)^{1 / 2} \\
\times\left(\int_{0}^{\infty} K_{i \tau}^{2}(u) u^{2 \nu-1} d u\right)^{1 / 2}, \nu>0 \tag{4.4}
\end{gather*}
$$

Hence invoking with (1.8) and relation (2.16.33.2) from [6] we calculate the latter product of integrals in (4.4). Thus we get

$$
K_{i \tau}^{2}(x) \leq \pi^{1 / 4} 2^{(\nu-1) / 2}\left(\frac{\Gamma(\nu)}{\Gamma(\nu+1 / 2)}\right)^{1 / 2}|\Gamma(\nu+i \tau)| x^{-\nu} K_{2 \nu}^{1 / 2}(2 \sqrt{2} x)
$$

or finally

$$
\begin{equation*}
\left|K_{i \tau}(x)\right| \leq \pi^{1 / 8} 2^{(\nu-1) / 4}\left(\frac{\Gamma(\nu)}{\Gamma(\nu+1 / 2)}\right)^{1 / 4}|\Gamma(\nu+i \tau)|^{1 / 2} x^{-\nu / 2} K_{2 \nu}^{1 / 4}(2 \sqrt{2} x) \tag{4.5}
\end{equation*}
$$

Invoking with inequality $x^{\beta} K_{\beta}(x) \leq 2^{\beta-1} \Gamma(\beta), \beta>0$ (see (1.8)) we find from (1.1), (1.11), (4.5) by straightforward calculations that

$$
\begin{aligned}
& x^{\nu}|(K L f)(x)| \leq\|f\|_{\infty} \int_{0}^{\infty}\left|K_{i \tau}(x)\right| d \tau \\
& \leq 2^{-\nu / 2-3 / 4} \Gamma^{1 / 2}(\nu)\|f\|_{\infty} \int_{0}^{\infty}|\Gamma(\nu+i \tau)|^{1 / 2} d \tau \\
&=C_{\nu}\|f\|_{\infty},
\end{aligned}
$$

where $C_{\nu}>0$ is a constant

$$
C_{\nu}=2^{-\nu / 2-3 / 4} \Gamma^{1 / 2}(\nu) \int_{0}^{\infty}|\Gamma(\nu+i \tau)|^{1 / 2} d \tau, \quad \nu>0 .
$$

Therefore via (4.3) we obtain that the Kontorovich-Lebedev transformation is a bounded operator $K L: L_{\infty}\left(\mathbf{R}_{+} ; d \tau\right) \rightarrow L_{\nu, \infty}$ of type (∞, ∞) and

$$
\begin{equation*}
\|K L f\|_{L_{\nu, \infty}} \leq C_{\nu}\|f\|_{\infty} \tag{4.6}
\end{equation*}
$$

But inequality (3.1) says that this operator is of type (2,2) too. Consequently, by the Riesz-Thorin convexity theorem [3] the Kontorovich-Lebedev transformation is of type (p, p), where $2 \leq p \leq \infty$ i.e. maps the space $L_{p}\left(\mathbf{R}_{+} ;|\Gamma(2 \nu+i \tau)|^{2} d \tau\right)$ into $L_{\nu, p}$. Moreover for $2 \leq p<\infty$ we arrive at the inequality

$$
\begin{equation*}
\int_{0}^{\infty}|(K L f)(x)|^{p} x^{\nu p-1} d x \leq B_{p, \nu} \int_{0}^{\infty}|f(\tau)|^{p}|\Gamma(2 \nu+i \tau)|^{2} d \tau, \quad \nu>0 \tag{4.7}
\end{equation*}
$$

where we denoted by $B_{p, \nu}$ the constant

$$
B_{p, \nu}=\pi^{3 / 2} 2^{-(p / 2+1) \nu-3 p / 4+1 / 2} \frac{\Gamma^{p / 2-1}(\nu)}{\Gamma(2 \nu+1 / 2)}\left(\int_{0}^{\infty}|\Gamma(\nu+i \mu)|^{1 / 2} d \mu\right)^{p-2}
$$

Hence by the same method as in previous section we prove an analog of the inequality (3.3). Thus we obtain

$$
\begin{equation*}
\|K L f\|_{S_{p}^{N, \alpha}\left(\mathbf{R}_{+}\right)} \leq\|f\|_{L_{p}\left(\mathbf{R}_{+} ; \rho_{p, \alpha}(\tau) d \tau\right)} \tag{4.8}
\end{equation*}
$$

where

$$
\rho_{p, \alpha}(\tau)=\sum_{k=0}^{N} B_{p, \alpha_{k}} \tau^{4 k}\left|\Gamma\left(2 \alpha_{k}+i \tau\right)\right|^{2}, \alpha_{k}>0, k=0,1, \ldots, N .
$$

In particular, we have $\rho_{2, \alpha}(\tau)=\omega_{\alpha}(\tau)$ (see (3.4)). So the boundedness of the KontorovichLebedev transformation (1.1) is proved. Finally we show that for all $x>0$ it exists as a Lebesgue integral for any $f \in L_{p}\left(\mathbf{R}_{+} ; \rho_{p, \alpha}(\tau) d \tau\right), p>2$. Indeed, it will immediately follow from the inequality

$$
\int_{0}^{\infty}\left|K_{i \tau}(x) f(\tau)\right| d \tau \leq\left||f|_{L_{p}\left(\mathbf{R}_{+} ;|\Gamma(2 \nu+i \tau)|^{2} d \tau\right)}\right.
$$

$$
\times\left(\int_{0}^{\infty}\left|K_{i \tau}(x)\right|^{q}|\Gamma(2 \nu+i \tau)|^{-2 q / p} d \tau\right)^{1 / q}, q=\frac{p}{p-1},
$$

and from the convergence of the latter integral with respect to τ. This is easily seen from (1.6) and the Stirling asymptotic formula for gamma-functions [1] since the integrand behaves as $O\left(e^{\pi \tau q\left(\frac{1}{2}-\frac{1}{p}\right)} \tau^{\frac{q}{p}(1-4 \nu)-\frac{q}{2}}\right), \tau \rightarrow+\infty$.

References

1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
2. E.M. Dynkin, B.P. Osilenker, Weighted estimates for singular integrals and their applications, Itogi Nauki i Tekhn., 21 (1983), 42- 129 (in Russian).
3. R.E. Edwards, Fourier Series II, Holt, Rinehart and Winston, New York, 1967.
4. B. Lisena, On the generalized Kontorovich-Lebedev transform, Rend. di Matematica, Ser. YII, 9 (1989), 87- 101.
5. Prudnikov, A.P., Brychkov, Yu.A. and Marichev, O.I. Integrals and Series: Elementary Functions. Gordon and Breach, New York, 1986.
6. Prudnikov, A.P., Brychkov, Yu.A. and Marichev, O.I. Integrals and Series: Special Functions. Gordon and Breach, New York, 1986.
7. Prudnikov, A.P., Brychkov, Yu.A. and Marichev, O.I. Integrals and Series: More Special Functions. Gordon and Breach, New York, 1989.
8. I.N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972.
9. E.C. Titchmarsh, An Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1937.
10. S.B. Yakubovich and B. Fisher, On the theory of the Kontorovich-Lebedev transformation on distributions, Proc. of the Amer. Math. Soc., 122 (1994), N 3, 773-777.
11. S.B. Yakubovich, Index Transforms, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1996.
12. S.B. Yakubovich and J. de Graaf, On Parseval equalities and boundedness properties for Kontorovich-Lebedev type operators, Novi Sad J. Math., 29 (1999), N 1, 185205.
13. S.B. Yakubovich, On the integral transfomation associated with the product of gamma-functions, Portugaliae Mathematica, 60 (2003), N 3, 337-351.
14. S.B. Yakubovich, On the Kontorovich-Lebedev transformation, J. of Integral Equations and Appl. 15 (2003), N 1, 95-112.
15. S.B. Yakubovich, Integral transforms of the Kontorovich-Lebedev convolution type, Collect. Math. 54 (2003), N 2, 99-110.
16. A.H. Zemanian, The Kontorovich-Lebedev transformation on distributions of compact support and its inversion, Math. Proc. Cambridge Philos. Soc. 77 (1975), 139- 143.
S.B.Yakubovich

Department of Pure Mathematics, Faculty of Sciences,
University of Porto,
Campo Alegre st., 687
4169-007 Porto
Portugal
E-Mail: syakubov@fc.up.pt

[^0]: *Work supported by Fundação para a Ciência e a Tecnologia (FCT) through the Centro de Matemática da Universidade do Porto (CMUP). Available as a PDF file from http://www.fc.up.pt/cmup.

