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Abstract

We establish the mapping properties in the spaceL2(R+; dt
t sinh νt), 0 < ν ≤ π for a convolution

related to the transformation

F (x) =

∞∫

0

f(t)Kit(x)dt, x ∈ R+

involving the modified Bessel functionKit(x) as a kernel. As a consequence, we get the multiplication
theorem for two modified Bessel functions of different subscripts. Further applications to the corre-
sponding class of convolution integral equations are obtained.
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1 Introduction

In this paper we consider the following Kontorovich-Lebedev transformation [1, 2]

F (x) = l.i.m.
N→∞

N∫

0

f(t)Kit(x)dt, x ∈ R+, (1)

where the integration is realized in the mean convergence with respect to an index of the modified Bessel
function of the second kindKit(x) [3], which is real-valued and even with respect tot. A functionf(t) is
supposed to be from the spaceLν

2 ≡ L2(R+; dt
t sinh νt

), 0 < ν ≤ π, i.e.

Lν
2 :=



f :

∞∫

0

|f(t)|2 dt

t sinh νt
= ||f ||2Lν

2
< ∞



 .

For0 < ν1 ≤ ν2 ≤ π it is easily seen the embeddings

Lν1
2 ⊆ Lν2

2 ⊆ Lπ
2 = L2

(
R+;

dt

t sinh πt

)
.
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As it is known [1], the operator (1) maps the spaceLπ
2 onto the spaceL2

(
R+; dx

x

)
and its inverse is

described by

f(t) =
2

π2
l.i.m.
N→∞

t sinh πt

N∫

1/N

F (x)Kit(x)
dx

x
(2)

in the mean convergence sense with respect to the norm inLπ
2 . Moreover, the Parseval equality

∞∫

0

|f(t)|2 dt

t sinh πt
=

2

π2

∞∫

0

|F (x)|2dx

x
(3)

is valid.
Using the Macdonald formula [1, 4] for the product of the modified Bessel functions of different argu-

ments

Kit(x)Kit(y) =
1

2

∞∫

0

e
− 1

2

(
u x2+y2

xy
+xy

u

)

Kit(u)
du

u
, (4)

one can introduce a convolution for the transform (2) defined by the following double integral

(F
γ∗ G)(x) =

1

2

∞∫

0

∞∫

0

F (y)G(u)e
− 1

2

(
x u2+y2

uy
+uy

x

)
dydu

yu
, (5)

whereF (x) andG(x) are two functions from a suitable functional space,γ = π2

2t sinh t
is the weight func-

tion. This operator was first introduced formally in Kakichev [5] as an example of integral nonstandard
convolution. Later this operator was considered in detail in [1, 2, 6, 7, 8, 9].

The main goal of this paper is to establish mapping properties of the following convolution

(
f

α∗ g
)

(t) =
2

π2
t sinh πt

∞∫

0

∞∫

0

f(τ)g(θ)Ωα(t, τ, θ)dτdθ, (6)

where

Ωα(t, τ, θ) =

∞∫

0

xα−1Kiτ (x)Kiθ(x)Kit(x)dx, α, t, τ, θ ∈ R+. (7)

Concerning (6), it was first introduced in Yakubovich [1], p. 142 and announced later in [10]. The kernel (7)
can be calculated employing relation 2.16.46.6 from [4] and we have

Ωα(t, τ, θ) = 2α−3 Re
[
Γ(it)Γ(α− it)

× B

(
α

2
+ i

τ + θ − t

2
,
α

2
− i

τ + θ + t

2

)
B

(
α

2
− i

τ − θ + t

2
,
α

2
+ i

τ − θ − t

2

)

× 4F3

(
α

2
+ i

τ + θ − t

2
,
α

2
− i

τ + θ + t

2
,
α

2
− i

τ − θ + t

2
,
α

2
+ i

τ − θ − t

2
;

1− it,
α− it

2
,
1 + α− it

2
;
1

4

)]
.

(8)

It contains the generalized hypergeometric function4F3(a1, a2, a3, a4; b1, b2, b3; z) at the pointz = 1/4 and
as usualΓ(z), B(x, y) stand for Euler’s gamma- and beta- functions [3].

In the sequel we will give some applications of the convolution (6). In particular, we prove an analog
of the multiplication theorem for two modified Bessel functions with different subscripts. Finally, we will
exhibit certain convolution integral equations related to (6).
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2 Mapping properties of the convolution
(
f

α∗ g
)

(t)

Let us prove an auxiliary lemma which gives a boundedness and the norm estimation for the Kontorovich-
Lebedev transform (1) as an operator fromLν

2, 0 < ν < π into the spaceC(R+) of bounded continuous
functions onR+.

Lemma 1 Let f(t) ∈ Lν
2 with 0 < ν < π. Then transformation (1) exists as a Lebesque integral for all

x > 0 and represents a continuous function onR+. Moreover, it is a bounded operatorF : Lν
2 → C(R+),

namely

sup
x>0

|F (x)| ≤ C||f ||Lν
2
, (9)

with

C =

√
π

2 cos1/2
(

ν
2

) .

Proof. In fact, appealing to Schwarz’s inequality we obtain

|F (x)| ≤
∞∫

0

|f(t)||Kit(x)|dt ≤



∞∫

0

|f(t)|2 dt

t sinh νt




1/2 


∞∫

0

t sinh νtK2
it(x)dt




1/2

= ||f ||Lν
2




∞∫

0

t sinh νtK2
it(x)dt




1/2

. (10)

The latter integral in (10) is calculated in terms of the modified Bessel functionK1 (see [4], relation
2.16.52.8), namely

∞∫

0

t sinh(νt)K2
it(x)dt =

π

2
x sin

ν

2
K1

(
2x cos

ν

2

)
, 0 < ν < π. (11)

Moreover, sincexK1(x) ≤ 1, whenx > 0, it yields (9)

sup
x>0

|F (x)| ≤ sup
x>0

∞∫

0

|f(t)||Kit(x)|dt

≤ sup
x>0

(π

2
x sin

ν

2
K1

(
2x cos

ν

2

))1/2

||f ||Lν
2
≤

√
π

2 cos1/2
(

ν
2

) ||f ||Lν
2

< ∞.

In order to prove thatF (x) is continuous onR+ we will establish the uniform convergence of the integral
(1) with respect tox ≥ x0 > 0. To do this we use the following inequality for the modified Bessel function
(cf. [1], formula (1.100))

|Kit(x)|dt ≤ e−δtK0(x cos δ),

where we chooseν
2

< δ < π
2
. Then for sufficiently bigA > 0 we have

∞∫

A

|f(t)||Kit(x)|dt ≤ ||f ||Lν
2




∞∫

A

t sinh νtK2
it(x)dt




1/2

≤ K2
0(x0 cos δ)

×



∞∫

A

t sinh νte−2δtdt




1/2

→ 0, A →∞.
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Lemma 1 is proved.
Applying the Parseval equality (3) we get

Lemma 2 The equality

2

π2

∞∫

0

t sinh πt |Ωα(t, τ, θ)|2 dt =

∞∫

0

x2α−1K2
iτ (x)K2

iθ(x)dx. (12)

holds for anyα, τ, θ ∈ R+.

Proof. Indeed by asymptotic properties of the modified Bessel functions [3] we observe that the right-hand
side of (12) is finite. ThereforexαKiτ (x)Kiθ(x) ∈ L2

(
R+, dx

x

)
. Moreover, transformation (2) of this

function exists as a Lebesgue integral and is equal to2
π2 t sinh πtΩα(t, τ, θ) (see (7)). Thus via Parseval

equality (3) we arrive at (12).
Lemma 2 is proved.
As a corollary we immediately obtain an analogue of the multiplication theorem for the modified Bessel

functions (cf. (4)) of different subscripts.

Corollary 1 Let0 < α < 2 andτ, θ ∈ R+ be fixed. Then for anyx > 0 the following equality is true

xαKiτ (x)Kiθ(x) =
2α−3

π

∞∫

−∞

Γ(α− it)

Γ(−it)
B

(
α

2
+ i

τ + θ − t

2
,
α

2
− i

τ + θ + t

2

)

× B

(
α

2
− i

τ − θ + t

2
,
α

2
+ i

τ − θ − t

2

)

× 4F3

(
α

2
+ i

τ + θ − t

2
,
α

2
− i

τ + θ + t

2
,
α

2
− i

τ − θ + t

2
,
α

2
+ i

τ − θ − t

2
;

1− it,
α− it

2
,
1 + α− it

2
;
1

4

)
Kit(x) dt.

(13)

Proof. Owing to the definition of the generalized hypergeometric function [3] we write the right-hand side
of (13) as

Iα(x) =

∞∫

−∞

ωα(t, τ, θ)Kit(x) dt, (14)

where

ωα(t, τ, θ) =
2α−3t

πi

∞∑
n=0

B

(
α

2
+ n + i

τ + θ − t

2
,
α

2
+ n− i

τ + θ + t

2

)

× B

(
α

2
+ n− i

τ − θ + t

2
,
α

2
+ n + i

τ − θ − t

2

)
Γ(α− it + 2n)

n!Γ(1− it + n)
.

(15)

Then by an elementary inequality for the beta -function

|B(s, t)| ≤ B(Res, Ret), Res > 0, Ret > 0, (16)
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and the duplication formula for the gamma-function [3] we derive the following estimations

π

2α−3
|ωα(t, τ, θ)| ≤

∣∣∣∣B
(

α

2
+ i

τ + θ − t

2
,
α

2
− i

τ + θ + t

2

)∣∣∣∣

×
∣∣∣∣B

(
α

2
− i

τ − θ + t

2
,
α

2
+ i

τ − θ − t

2

)∣∣∣∣
|Γ(α− it)|
|Γ(−it)|

+ |t|
∞∑

n=1

B2
(α

2
+ n,

α

2
+ n

) |Γ(α− it + 2n)|
n!|Γ(1− it + n)|

≤
∣∣∣∣B

(
α

2
+ i

τ + θ − t

2
,
α

2
− i

τ + θ + t

2

)∣∣∣∣

×
∣∣∣∣B

(
α

2
− i

τ − θ + t

2
,
α

2
+ i

τ − θ − t

2

)∣∣∣∣
|Γ(α− it)|
|Γ(−it)| +

2α−1|t|√
π

∣∣Γ(1− α+it
2

)
∣∣

×
∞∑

n=1

4n

n!
B2

(α

2
+ n,

α

2
+ n

)
B

(α

2
+ n, 1− α

2

)
Γ

(
α + 1

2
+ n

)

=

∣∣∣∣Γ
(

α

2
+ i

τ + θ − t

2

)
Γ

(
α

2
− i

τ + θ + t

2

)∣∣∣∣

×
∣∣∣∣Γ

(
α

2
− i

τ − θ + t

2

)
Γ

(
α

2
+ i

τ − θ − t

2

)∣∣∣∣
1

|Γ(α− it)Γ(−it)|

+
Γ(1− α

2
)|t|

2α−1
∣∣Γ(1− α+it

2
)
∣∣
∞∑

n=1

Γ3
(

α
2

+ n
)

4n(n!)2Γ
(

α+1
2

+ n
) , 0 < α < 2.

Consequently via Stirling’s asymptotic formulas for gamma-functions and factorials [3] the general term
of the latter series isO

(
nα−5/24−n

)
, n →∞. Therefore it converges and accordingly

|ωα(t, τ, θ)| = O
(
|t|α−1

2 eπ|t|/4
)

, |t| → ∞. (17)

Further appealing to the asymptotic formula for the modified Bessel function with respect to an index
(see [1], formula (1.148)) we find

|Kit(x)| =
√

2π

|t| e
−π|t|/2 (1 + O (1/|t|)) , |t| → ∞. (18)

ThereforeIα(x) exists as an absolutely convergent integral for allx ∈ R+ and0 < α < 2.
On the other hand, by virtue of Lemma 2 and formulas (2), (7), (8), (14) we derive

xαKiτ (x)Kiθ(x) =
2

π2
l.i.m.
N→∞

N∫

0

t sinh πtΩα(t, τ, θ)Kit(x)dt

= 2 l.i.m.
N→∞

N∫

0

Kit(x)Re ωα(t, τ, θ)dt

= l.i.m.
N→∞

N∫

−N

ωα(t, τ, θ)Kit(x)dt.

(19)

This means that the latter limit in mean coincides withIα(x). Thus we prove (13) and end the proof of
Corollary 1.

The mapping properties for convolution (6) are given by

5



Theorem 1 Letf, g ∈ Lν
2 with 0 < ν < π. Then convolution

(
f

α∗ g
)

(t) exists as a Lebesque integral and

is continuous onR+. Besides it belongs toLπ
2 .

Proof. Calling Schwarz’s inequality for double integrals we deduce

∣∣∣
(
f

α∗ g
)

(t)
∣∣∣ ≤ 2

π2
t sinh πt

∞∫

0

∞∫

0

|f(τ)||g(θ)||Ωα(t, τ, θ)|dτdθ

≤ 2

π2
t sinh πt




∞∫

0

∞∫

0

|f(τ)|2|g(θ)|2 dτdθ

τθ sinh ντ sinh νθ




1/2

J1/2(t)

=
2

π2
||f ||Lν

2
||g||Lν

2
t sinh πtJ1/2(t),

where we denoted by

J(t) =

∞∫

0

∞∫

0

τθ sinh ντ sinh νθ|Ωα(t, τ, θ)|2dτdθ. (20)

Meanwhile (see (7))

|Ωα(t, τ, θ)|2 ≤



∞∫

0

xα−1|Kiτ (x)Kiθ(x)Kit(x)|dx




2

≤
∞∫

0

xα−1K2
iτ (x)K2

iθ(x)dx

∞∫

0

yα−1K2
it(y)dy.

Hence plainly

J(t) ≤
∞∫

0

yα−1K2
it(y)dy

∞∫

0

∞∫

0

τθ sinh ντ sinh νθ

∞∫

0

xα−1K2
iτ (x)K2

iθ(x)dxdτdθdt

=

∞∫

0

yα−1K2
it(y)dy

∞∫

0

xα−1




∞∫

0

τ sinh ντK2
iτ (x)dτ




2

dx.

(21)

Calculating the inner integral with respect toτ by (11) and integrals with respect toy andx via [4], relation
2.16.33.2

∞∫

0

yα−1K2
µ(y)dy = 2α−3B

(α

2
+ µ,

α

2
− µ

)
Γ2

(α

2

)
, α > 2|Reµ| (22)

we arrive at the estimate

J1/2(t) ≤ Cα

cosα/2+1 ν
2

∣∣∣Γ(
α

2
+ it)

∣∣∣ , 0 < ν < π, (23)

whereCα > 0 is a constant depending only onα. Therefore,

∣∣∣
(
f

α∗ g
)

(t)
∣∣∣ ≤ const.||f ||Lν

2
||g||Lν

2

|Γ(α
2

+ it)|
|Γ(it)|2 = O

(
t

α+1
2 eπt/2

)
, t → +∞. (24)
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Thus we obtain that under conditions of the theorem convolution
(
f

α∗ g
)

(t) exists as a Lebesgue integral

for all t > 0. To establish its continuity onR+ we will do it in a similar way as in the proof of Lemma 1.
Indeed, choosing a bigA > 0, t ∈ [0, T ] andδ ∈ (ν/2, π/2) we invoke the inequality [1]|Kit(x)| ≤ K0(x)
and we derive (see (21))

2

π2
t sinh πt

∞∫

A

∞∫

A

|f(τ)||g(θ)||Ωα(t, τ, θ)|dτdθ ≤ 2

π2
t sinh πt||f ||Lν

2
||g||Lν

2

×



∞∫

A

∞∫

A

τθ sinh ντ sinh νθ|Ωα(t, τ, θ)|2dτdθ




1/2

≤ 2

π2
T sinh πT ||f ||Lν

2
||g||Lν

2

×



∞∫

0

yα−1K2
0(y)dy

∞∫

0

xα−1K2
0(x cos δ)dx




1/2 ∞∫

A

τ sinh ντe−2δτdτ

= const.

∞∫

A

τ sinh ντe−2δτdτ → 0, A →∞.

Therefore integral (6) converges uniformly byt ∈ [0, T ] for anyT > 0.

Now we are ready to prove that
(
f

α∗ g
)

(t) ∈ Lπ
2 . In fact

∣∣∣
(
f

α∗ g
)

(t)
∣∣∣
2

≤ 4

π4
t2J(t) sinh2 πt

∞∫

0

∞∫

0

|f(τ)|2|g(θ)|2 dτdθ

τθ sinh ντ sinh νθ

=
4

π4
t2 sinh2 πt||f ||2Lν

2
||g||2Lν

2
J(t),

whereJ(t) is defined by (20). Then

||f α∗ g||Lπ
2
≤ 2

π2
||f ||Lν

2
||g||Lν

2




∞∫

0

t sinh πtJ(t)dt




1/2

=
2

π2
||f ||Lν

2
||g||Lν

2

×



∞∫

0

∞∫

0

τθ sinh ντ sinh νθ

∞∫

0

t sinh πt|Ωα(t, τ, θ)|2dtdτdθ




1/2

.
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Using (12) we have

||f α∗ g||Lπ
2
≤

√
2

π
||f ||Lν

2
||g||Lν

2

×



∞∫

0

∞∫

0

τθ sinh ντ sinh νθ

∞∫

0

x2α−1K2
iτ (x)K2

iθ(x)dxdτdθ




1/2

=

√
2

π
||f ||Lν

2
||g||Lν

2

×



∞∫

0

x2α−1

∞∫

0

τ sinh ντK2
iτ (x)dτ

∞∫

0

θ sinh νθK2
iθ(x)dθdx




1/2

=

√
2

π
||f ||Lν

2
||g||Lν

2




∞∫

0

x2α−1




∞∫

0

τ sinh ντK2
iτ (x)dτ




2

dx




1/2

.

The latter iterated integral can be easily calculated explicitly invoking again (11) and (22). So the final
inequality for theLπ

2 -norm of the convolution (6) can be written as

||f α∗ g||Lπ
2
≤ Cα,ν ||f ||Lν

2
||g||Lν

2
, (25)

whereCα,ν > 0 is a constant.
Theorem 1 is proved.
Remark 1. It is clear via Fubini’s theorem that convolution (6) is a commutative operation, i.e.f

α∗ g =

g
α∗ f .

Theorem 2 Under conditions of Theorem 1 the following factorization equality for convolution (6) is valid

xαF (x)G(x) = l.i.m.
N→∞

N∫

0

(
f

α∗ g
)

(t)Kit(x)dt, (26)

whereF , G are transforms (1) off andg, respectively. Besides, the Parseval equality of type
∞∫

0

∣∣∣
(
f

α∗ g
)

(t)
∣∣∣
2 dt

t sinh πt
=

2

π2

∞∫

0

x2α−1|F (x)G(x)|2dx (27)

holds true.

Proof. Indeed, appealing to Lemma 1 and Fubini’s theorem we derive the chain of equalities

(
f

α∗ g
)

(t) =
2

π2
t sinh πt

∞∫

0

∞∫

0

f(τ)g(θ)Ωα(t, τ, θ)dτdθ

=
2

π2
t sinh πt

∞∫

0

∞∫

0

f(τ)g(θ)

∞∫

0

xα−1Kiτ (x)Kiθ(x)Kit(x)dxdτdθ

=
2

π2
t sinh πt

∞∫

0

xα−1




∞∫

0

f(τ)Kiτ (x)dτ







∞∫

0

g(θ)Kiθ(x)dθ


 Kit(x)dx

=
2

π2
t sinh πt

∞∫

0

xα−1F (x)G(x)Kit(x)dx
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and all inner integrals are absolutely convergent. But at the same time since
(
f

α∗ g
)

(t) ∈ Lπ
2 we have

xαF (x)G(x) ∈ L2

(
R+, dx

x

)
. Therefore, equalities (26), (27) are direct consequences of the reciprocities

(1), (2) and the Parseval identity (3) for the Kontorovich-Lebedev transformation.
Theorem 2 is proved.
This result can be extended if one of the functions under convolution (6) belongs toLπ

2 . Precisely, we
prove

Theorem 3 Let f ∈ Lπ
2 and g ∈ Lν

2, 0 < ν < π. Then convolution
(
f

α∗ g
)

(t) exists as a Lebesque

integral and still is continuous onR+. Moreover, it belongs toLπ
2 .

Proof. Similar estimations as in Theorem 1 drive us at the chain of inequalities

∣∣∣
(
f

α∗ g
)

(t)
∣∣∣ ≤ 2

π2
t sinh πt

∞∫

0

∞∫

0

|f(τ)||g(θ)||Ωα(t, τ, θ)|dτdθ

≤ 2

π2
t sinh πt




∞∫

0

∞∫

0

|f(τ)|2|g(θ)|2 dτdθ

τθ sinh πτ sinh νθ




1/2

Ψ1/2(t)

=
2

π2
||f ||Lπ

2
||g||Lν

2
t sinh πtΨ1/2(t), (28)

with

Ψ(t) =

∞∫

0

∞∫

0

τθ sinh πτ sinh νθ|Ωα(t, τ, θ)|2dτdθ. (29)

However, the inner integral with respect toτ in (29) can be expressed by using the Parseval equality (12).
Hence employing (11), (22) we find

Ψ(t) =
π2

2

∞∫

0

∞∫

0

θ sinh νθx2α−1K2
iθ(x)K2

it(x)dxdτ

=
π3

4
sin

ν

2

∞∫

0

x2αK2
it(x)K1

(
2x cos

ν

2

)
dx ≤ const.

∞∫

0

x2α−1K2
it(x)dx

= const.|Γ(α + it)|2 .

Thus combining with (28) and taking into account the asymptotic behavior of the gamma function at infinity
we get that convolution (6) exists as a Lebesgue integral and satisfies the following estimate

∣∣∣
(
f

α∗ g
)

(t)
∣∣∣ = O(eπt/2tα+1/2), t → +∞.
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In the same manner as in Theorem 1 we get its continuity. In fact,

2

π2
t sinh πt

∞∫

A

∞∫

A

|f(τ)||g(θ)||Ωα(t, τ, θ)|dτdθ ≤ 2

π2
T sinh πT ||f ||Lπ

2
||g||Lν

2

×



∞∫

A

∞∫

A

τθ sinh πτ sinh νθ|Ωα(t, τ, θ)|2dτdθ




1/2

≤ const.




∞∫

0

x2α−1K2
0(x)K2

0(x cos δ)dx




1/2 


∞∫

A

θ sinh νθe−2δθdθ




1/2

= const.

∞∫

A

θ sinh νθe−2δθdθ → 0, δ >
ν

2
, A →∞.

Therefore under conditions of the theorem integral (6) converges uniformly byt ∈ [0, T ] for anyT > 0.
Further, let us estimate the norm of the convolution (6) in the spaceLπ

2 and show that it is finite. First
we observe that since integral (6) is a Lebesgue one we can write it for allt > 0 as a usual limit

(
f

α∗ g
)

(t) =
2

π2
t sinh πt lim

n→∞

n∫

0

∞∫

0

f(τ)g(θ)Ωα(t, τ, θ)dθdτ.

Hence denoting byfn(τ) = f(τ), τ ∈ [0, n], which vanishes outside of the interval[0, n] we easily find
thatfn ∈ Lν

2 for all n ∈ N. Therefore appealing to the Parseval equality (27) via the Fatou lemma we obtain

∞∫

0

∣∣∣
(
f

α∗ g
)

(t)
∣∣∣
2 dt

t sinh πt
≤ liminfn→∞

∞∫

0

∣∣∣
(
fn

α∗ g
)

(t)
∣∣∣
2 dt

t sinh πt

=
2

π2
liminfn→∞

∞∫

0

x2α−1|Fn(x)G(x)|2dx, (30)

whereFn(x) is the Kontorovich-Lebedev transformation (1) of the functionfn and the corresponding inte-
gral converges absolutely. Moreover, sinceg ∈ Lν

2 then making similar estimates as in the proof of Lemma
1 (see (10)) and invoking equality (11) we derive for allα > 0

xα|G(x)| ≤ const.sup
x>0

[
xα+1/2K

1/2
1

(
2x cos

ν

2

)]
< const.

The latter estimate yields thatxαG(x) is bounded. Consequently, calling again equality (3) we return to
(30) and it becomes

∞∫

0

∣∣∣
(
f

α∗ g
)

(t)
∣∣∣
2 dt

t sinh πt
≤ const. liminfn→∞

∞∫

0

|Fn(x)|2dx

x

= const. liminfn→∞

∞∫

0

|fn(τ)|2 dτ

τ sinh πτ
= const.||f ||2Lπ

2
< ∞.

Theorem 3 is proved.
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Corollary 2 . Formulas (26), (27) keep true under conditions of Theorem 3.
Proof. Similar to the proof of Theorem 2 we derive by straightforward calculations for allt > 0

(
f

α∗ g
)

(t) =
2

π2
t sinh πt lim

n→∞

n∫

0

∞∫

0

f(τ)g(θ)Ωα(t, τ, θ)dτdθ

=
2

π2
t sinh πt lim

n→∞

n∫

0

∞∫

0

f(τ)g(θ)

∞∫

0

xα−1Kiτ (x)Kiθ(x)Kit(x)dxdτdθ

=
2

π2
t sinh πt lim

n→∞

∞∫

0

xα−1




n∫

0

f(τ)Kiτ (x)dτ







∞∫

0

g(θ)Kiθ(x)dθ


 Kit(x)dx

=
2

π2
t sinh πt lim

n→∞

∞∫

0

xα−1Fn(x)G(x)Kit(x)dx

=
2

π2
t sinh πt

∞∫

0

xα−1F (x)G(x)Kit(x)dx.

The latter equality is because for allt > 0 we find

∞∫

0

xα−1|F (x)− Fn(x)||G(x)Kit(x)|dx ≤



∞∫

0

|F (x)− Fn(x)|2dx

x




1/2

×



∞∫

0

x2α|G(x)K0(x)|2dx




1/2

= const.




∞∫

0

|F (x)− Fn(x)|2dx

x




1/2

→ 0, n →∞.

Hence the statement of the corollary follows as in Theorem 2. Corollary 2 is proved.
Remark 2. Theorem 3 and Corollary 2 guarantee the associativity of the convolution (6). Namely, it

has the property

(
f

α∗ g
)

α∗ h = f
α∗

(
g

α∗ h
)

= g
α∗

(
f

α∗ h
)

,

for anyf, g, h ∈ Lν
2, 0 < ν < π.

3 Convolution integral equations

As applications we consider in this last section theLπ
2 -solvability of the first and second kind integral

equations related to convolution (6). Precisely, we exhibit the following integral equations

g(x) = (k
α∗ f)(x), x ∈ R+, (31)

f(x) = h(x) + λ(k
α∗ f)(x), t ∈ R+, λ ∈ C, (32)

whereg, h ∈ Lπ
2 , k ∈ Lν

2, 0 < ν < π are given functions andf(x) ∈ Lπ
2 is to be determined. We will

prove two theorems, which will guarantee the existence and uniqueness ofLπ
2 -solutions and give them in the
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closed form. Certain examples of the functionk will be considered. Similar questions for the convolution
integral equations related to (5) were investigated in [1], Ch. 4.

Denoting by

Kα(x, y) =

∞∫

0

k(θ)Ωα(x, y, θ)dθ (33)

integral equation (31) of the first kind can be written in the form

g(x) =
2

π2
x sinh πx

∞∫

0

Kα(x, y)f(y)dy. (34)

Theorem 4 Let α > 0, g ∈ Lπ
2 andk ∈ Lν

2, 0 < ν < π. Then for the existence of aLπ
2 -solution of the

equation (34) it is necessary and sufficient thatG(u)

uαk̂(u)
∈ L2

(
R+; du

u

)
, whereG, k̂ are the Kontorovich-

Lebedev transformations (1) of the functionsg, k, respectively. Moreover the solution is unique and is given
by the formula

f(x) =
2

π2
l.i.m.
N→∞

x sinh πx

N∫

1/N

G(u)

k̂(u)
Kix(u)

du

uα+1
, (35)

where the convergence is with respect to the norm inLπ
2 .

Proof. Necessity.Indeed, if we assume thatg, k, f belong to the correspondingL-classes and the equa-
tion (34) is satisfied, then via Corollary 2 we have the equality

G(u) = uαk̂(u)F (u),

whereF is the transformation (1) of the functionf . Hence sinceF ∈ L2

(
R+; du

u

)
we get that G(u)

uαk̂(u)
∈

L2

(
R+; dx

x

)
and theLπ

2 -solution is given reciprocally by formula (35).

Sufficiency.If conversely, G(u)

uαk̂(u)
∈ L2

(
R+; du

u

)
, thenf being defined by (35) belongs toLπ

2 and by
virtue of Theorem 3 the right-hand side of (34) belongs toLπ

2 . Therefore by Corollary 2 the Kontorovich-
Lebedev transform (1) of the right-hand side of (34) is equal to

uαk̂(u)F (u) = uαk̂(u)
G(u)

uαk̂(u)
= G(u).

By the reciprocity (2) we see that equation (34) is satisfied and (35) is a uniqueLπ
2 -solution.

Theorem 4 is proved.
Let us consider the convolution integral equation of the second kind (32), which can be written accord-

ingly

f(x) = h(x) +
2λ

π2
x sinh πx

∞∫

0

Kα(x, y)f(y)dy. (36)

We have
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Theorem 5 Let α > 0, λ ∈ C\{0}, h ∈ Lπ
2 , k ∈ Lν

2, 0 < ν < π andH(u) is the Kontorovich-Lebedev
transformation (1) of the functionh. Let alsosupu>0 |uαk̂(u)| < 1

|λ| . Then

f(x) =
2

π2
l.i.m.
N→∞

x sinh πx

N∫

1/N

H(u)

1− λuαk̂(u)
Kix(u)

du

u
, (37)

is a solution of (36) belonging toLπ
2 and any another solution fromLπ

2 coincides with (37) almost for all
x ∈ R+.

Proof. Since[1− λuαk̂(u)]−1 is bounded we have H(u)

1−λuαk̂(u)
∈ L2

(
R+; du

u

)
. Consequently, (37) exists

in the mean sense and defines a functionf from Lπ
2 . At the same time the convolution in the right-hand side

of (36) belongs toLπ
2 via Theorem 3. The transformation (1) of the right-hand side of (36) gives

H(u) + λuαk̂(u)
H(u)

1− λuαk̂(u)
=

H(u)

1− λuαk̂(u)
= F (u).

Thereforef by formula (37) satisfies equation (36) almost for allx ∈ R+.
Conversely, iff, h ∈ Lπ

2 , k ∈ Lν
2 and equality (36) takes place then by Corollary 2 we have

F (u) = H(u) + λuαk̂(u)F (u),

which implies (37). Theorem 5 is proved.
Remark 3. If uαk̂(u) ∈ L2

(
R+; du

u

)
then solution (37) can be written in terms of the resolvent. Indeed,

denoting by

M(u) =
uαk̂(u)

1− λuαk̂(u)
,

and bym(θ) the transform (2) ofM ∈ Lν
2 we can write solution (37) in the form

f(x) = h(x) +
2λ

π2
x sinh πx

∞∫

0

Mα(x, y)h(y)dy, (38)

where

Mα(x, y) =

∞∫

0

m(θ)Ωα(x, y, θ)dθ (39)

Finally we give certain concrete examples of the kernel (33), the corresponding convolution integral
equations (34), (36) and theirLπ

2 -solutions (35), (37).
Example 1. Letk(θ) = θ tanh πθ

2
. It evidently belongs toLν

2 for anyν > 0. Calling relation 2.16.48.14
from [4] we calculate the inner integral in (33) and write the kernel in terms of the notation (7). Precisely
we haveKα(x, y) = Ωα+1(x, y, 0). Thus we arrive at the following integral equations

g(x) =
2

π2
x sinh πx

∞∫

0

Ωα+1(x, y, 0)f(y)dy, (40)
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f(x) = h(x) +
2λ

π2
x sinh πx

∞∫

0

Ωα+1(x, y, 0)f(y)dy. (41)

Hence a uniqueLπ
2 -solution of the equation (40) can be obtained via Theorem 4 by the formula

f(x) =
2

π2
l.i.m.
N→∞

x sinh πx

N∫

1/N

G(u)

K0(u)
Kix(u)

du

uα+2

under condition G(u)
uα+1K0(u)

∈ L2

(
R+; du

u

)
. Moreover, if|λ| < [supu>0 uα+1K0(u)]−1 then (see Theorem 5)

we have a uniqueLπ
2 -solution of the equation (41) written in the form (38), whereMα(x, y) is defined

by (39) with

m(θ) =
2

π2
θ sinh πθ

∞∫

0

uαK0(u)

1− λuα+1K0(u)
Kiθ(u)du.

Example 2. Let k(t) = t sinh πt

∣∣∣∣Γ
(

1

4
+

it

2

)∣∣∣∣
4

∈ Lν
2. By relation 2.16.49.2 from [4] we arrive at the

following convolution integral equations

g(x) = 25/2
√

π x sinh πx

∞∫

0

Ωα+1/2(x, y, 0)f(y)dy, (42)

f(x) = h(x) + 25/2λ
√

π x sinh πx

∞∫

0

Ωα+1/2(x, y, 0)f(y)dy. (43)

Hence a uniqueLπ
2 -solution of the equation (42) is represented by the formula

f(x) =
1√

2ππ4
l.i.m.
N→∞

x sinh πx

N∫

1/N

G(u)

K0(u)
Kix(u)

du

uα+3/2

under condition G(u)

uα+1/2K0(u)
∈ L2

(
R+; du

u

)
. Moreover, if|λ| < [2π2

√
2π supu>0 uα+1/2K0(u)]−1 then we

have a uniqueLπ
2 -solution of the equation (43) written in the form (38), whereMα(x, y) is defined by

(39) with

m(θ) = 25/2
√

π θ sinh πθ

∞∫

0

uα−1/2K0(u)

1− 2π2
√

2πλuα+1/2K0(u)
Kiθ(u)du.

Example 3. Let k(t) = t sin at, a 6= 0. It is easily seen thatk(t) ∈ Lν
2, when|Ima| < ν

2
. Appealing

[4], relation 2.16.48.19 we get the following equations

g(x) =
sinh a

π
x sinh πx

∞∫

0

Kα(x, y)f(y)dy, (44)
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f(x) = h(x) +
λ sinh a

π
x sinh πx

∞∫

0

Kα(x, y)f(y)dy, (45)

where

Kα(x, y) =

∞∫

0

uαe−u cosh αKix(u)Kiy(u)du.

A uniqueLπ
2 -solution of the equation (44) is given by the formula

f(x) =
4

π3 sinh a
l.i.m.
N→∞

x sinh πx

N∫

1/N

eu cosh αG(u)Kix(u)
du

uα+2

under conditionu−(α+1)eu cosh αG(u) ∈ L2

(
R+; du

u

)
. Moreover, if|λ| <

[
π sinh a

2
supu>0 uα+1e−u cosh α

]−1

then we have a uniqueLπ
2 -solution of the equation (45) written in the form (38), whereMα(x, y) is defined

by (39) with

m(θ) =
2 sinh a

π
θ sinh πθ

∞∫

0

uαKiθ(u)

2 eu cosh α − πλ sinh a uα+1
du.
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