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Abstract

We establish the mapping properties in the spagfR; -%—), 0 < v < = for a convolution

related to the transformation -
~ [ s, zer.
0

involving the modified Bessel functioR;;(x) as a kernel. As a consequence, we get the multiplication
theorem for two modified Bessel functions of different subscripts. Further applications to the corre-
sponding class of convolution integral equations are obtained.
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1 Introduction

In this paper we consider the following Kontorovich-Lebedev transformation [1, 2]

—11m/f Ky(z)dt, xRy, 1)

N—o0

where the integration is realized in the mean convergence with respect to an index of the modified Bess
function of the second kin&;;(x) [3], which is real-valued and even with respect t function f(¢) is
supposed to be from the spatig = Ly(R,; tsmhyt) O<v<m,ie.

r dt
vo.__ . 2 _ 2
Ly = f/‘f(tﬂ tsinhyt—HfHLg<oo
0

For0 < vy < vy < 7 itis easily seen the embeddings

dt
LB CIn»?CLl =Ly [ Ry;— .
2 =72 = 2( +’tsinh7rt>
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As it is known [1], the operator (1) maps the spdcgonto the spacd., (R.; %) and its inverse is
described by

N
2 dz
1/N

in the mean convergence sense with respect to the nofif).iMoreover, the Parseval equality

de
/|f t81nh7rt /|F ) (3)
is valid.

Using the Macdonald formula [1, 4] for the product of the modified Bessel functions of different argu-
ments

17 —1fusted o du
Kiy(z)Ky(y) = 5/e 2< o ”>Kit(u)37 (4)
0
one can introduce a convolution for the transform (2) defined by the following double integral

where F'(z) andG(x) are two functions from a suitable functional spages 57— is the weight func-
tion. This operator was first introduced formally in Kakichev [5] as an example of integral nonstandarc
convolution. Later this operator was considered in detail in [1, 2, 6, 7, 8, 9].

The main goal of this paper is to establish mapping properties of the following convolution

(f % g) (t) = —t sinh Wt//f o(t,7,0)dTdl, (6)

where

(e}

Qu(t,7,0) = /ma_lKiT(x)Kig(x)Kit(x)dx, a, t, 1,0 € Ry. (7)
0

Concerning (6), it was first introduced in Yakubovich [1], p. 142 and announced later in [10]. The kernel (7’
can be calculated employing relation 2.16.46.6 from [4] and we have

Oult,7,0) = 203 Re[F(z’t)F(a—it)

< B oz+,7'+6—toz T+0+t 3 a T—0+1 a+,r—9—t
2 T Y 2 2 Ty T
« R 04_}_.74—9—1504 T4+0+t « ,T—9+t04+,7'—9—t (8)
—t— =, = =, =
3\ 2 2 9 2 9 2 9 2
1_it7a—it’1+a—it;1 }
2 9 4

It contains the generalized hypergeometric functibila,, as, as, ay; by, bo, bs; 2) at the pointz: = 1/4 and
as usual'(z), B(z,y) stand for Euler’s gamma- and beta- functions [3].

In the sequel we will give some applications of the convolution (6). In particular, we prove an analog
of the multiplication theorem for two modified Bessel functions with different subscripts. Finally, we will
exhibit certain convolution integral equations related to (6).
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2 Mapping properties of the convolution (f ” g) (1)

Let us prove an auxiliary lemma which gives a boundedness and the norm estimation for the Kontorovicl
Lebedev transform (1) as an operator fréfh 0 < v < 7 into the spac&’(R ) of bounded continuous
functions onR ..

Lemmal Let f(t) € Ly with0 < v < 7. Then transformation (1) exists as a Lebesque integral for all
x > 0 and represents a continuous functionl®n. Moreover, it is a bounded operatdf : L5 — C(R,),
namely

sup P (z)| < C1fl|z5 ©

with
O VT

"~ 2cos!/? (%)
Proof. In fact, appealing to Schwarz’s inequality we obtain
1/2 7/ o 1/2
/ tsinh vt K (x)dt

0

o 1/2
= | fllzy (/tsinhytht(x)dt) : (10)

0

dt
tsinh vt

@l < [lrolg@ia< | [

The latter integral in (10) is calculated in terms of the modified Bessel fundtipiisee [4], relation
2.16.52.8), namely

oo

/tsinh(l/t)Kft(x)dt = gx sin gKl <2x cos g) , O<v<m (11)
0

Moreover, sincec K1 (z) < 1, whenx > 0, it yields (9)

>0

sup|[F(a)] < sup / PO ()]t
0

T .U N\ /2 NS
< ili%)<§xsm§[(1(2xcos§>> ]|fHL5§meHL5<oo.

In order to prove that'(z) is continuous ofiR ;. we will establish the uniform convergence of the integral
(1) with respect tac > z, > 0. To do this we use the following inequality for the modified Bessel function
(cf. [1], formula (1.100))

| Ky (z)|dt < e " Ko(xcosd),
where we choosg < 0 < 7. Then for sufficiently bigd > 0 we have

o0

00 1/2
/|f(t)||Kit(=T)|dt < |Ifllzy (/tsinhl/tKZ%(:v)dt) < KZ(wgcosd)
A A

o 1/2

X /tsinh vte 2t — 0, A — oo.

A



Lemma 1 is proved.
Applying the Parseval equality (3) we get

Lemma 2 The equality

/t81nh7rt|Q (t,7,0)]> dt = /an_leT(x)Kfa(a:)dx. (12)
0 0

holds for anya, 7, 6 € R,..

Proof. Indeed by asymptotic properties of the modified Bessel functions [3] we observe that the right-han
side of (12) is finite. Therefore® K, (z)Ky(z) € L, (R:,%). Moreover, transformation (2) of this
function exists as a Lebesgue integral and is equeﬁz—t&inh 7t (t, 7,0) (see (7)). Thus via Parseval
equality (3) we arrive at (12).

Lemma 2 is proved.

As a corollary we immediately obtain an analogue of the multiplication theorem for the modified Besse
functions (cf. (4)) of different subscripts.

Corollary 1 Let0 < o < 2andr, 6 € R, be fixed. Then for any > 0 the following equality is true

N 2073 OOF(Oz—it) a T4+0—t o THO+
2K (2)Kip(x) = - / T(—it) B(§+ZT,§—ZT
« B a_ T—@+t0z+_r—9—t
2 2 2 2 (13)
w R a+,7+9—ta TH+HO0+t « ,T—9+t04+,7'—9—t
-_—t— - —— — - — — - —
D) 2’2 2 2 2 2 2
a—1it 1+a—1t 1
i, 9 ; 9 74> t(‘r)

Proof. Owing to the definition of the generalized hypergeometric function [3] we write the right-hand side
of (13) as

I,(z) = /wa(t,T, 0)K () dt, (24)

where

o0

29~ 3t 0 —t 04t
walt,7,0) = ZB( +n —i—ZL&—i—n—ii)

22 y (15)
< (%4 T—(9+t04+ +‘7'—9—15 I'(a —it +2n)
— n—i——— n 7 .
2 2 2 2 n!T(1 — it +n)
Then by an elementary inequality for the beta -function
|B(s,t)| < B(Res,Ret), Res >0, Ret >0, (16)



and the duplication formula for the gamma-function [3] we derive the following estimations

T a TH+0—-t a THO0+1
T < IB(Z 42— = ;7"
I ] e |
< |5 g—zT_QH,O‘HT_G_t |F(a—.it)|
2 2 2 2 ID(—it)]
= o a IT'(a — it + 2n)|
t BQ<— = )
* ||; 2 T ) T — it +n)|
a T+0-t o THO+
< |p(& 2=t rrrTe
et )
- - t\||T(a—i ga-1
< (e _iT 9+t’g T 0—t\| I« zt)|+ ||
2 2 2 2 IT(—i VT [D(1 = ofi)|
4n o o) a+1
X ;EB <2+n,2+n)B<§+n,1—§>F( ; +n>
0—t 0+t
= |7 g_H'L T g_ii
2 2 2 2
a T—0+t a T—0-1 1
o (AL | o (R
< e )(2“ )=
I'(1—9) > —I—n)
, 0 <a<2.
2a 1‘1-‘ oH—zt ‘;471 n!) QF a+1+n) a

Consequently via Stirling’s asymptotic formulas for gamma-functions and factorials [3] the general tern
of the latter series i€ (n®~*/24™") , n — co. Therefore it converges and accordingly

walt,7,0)] = O (112 €Y, Jt] = oc. (17)

Further appealing to the asymptotic formula for the modified Bessel function with respect to an inde:
(see [1], formula (1.148)) we find

| Kir(2)] = \/i TR0 /1)), [t = oo (18)

Thereforel,,(z) exists as an absolutely convergent integral forall R, and0 < a < 2.
On the other hand, by virtue of Lemma 2 and formulas (2), (7), (8), (14) we derive

2
K (2)Ky(x) = 77_ /tsmhMQ (t,7,0)Ky(x)dt

Ki(z)Rew,(t, ,0)dt (29)

I

N}
2
l

= lNlm Wa (t, 7,0) Kt (x)dt.
-N

This means that the latter limit in mean coincides witliz). Thus we prove (13) and end the proof of

Corollary 1.
The mapping properties for convolution (6) are given by

5



Theorem 1 Letf, g € LY with0 < v < 7. Then convolutior(f % g) (t) exists as a Lebesque integral and
is continuous oiR ;. Besides it belongs tb].

Proof. Calling Schwarz’s inequality for double integrals we deduce

o 2 rr
‘(f*g) (t)‘ < —tsinhwt//|f Ig(O)|Qu(t, 7, 0)|drdo
0
00 00 1/2
drdf
< 2 1/2
- t51nh7rt //|f )Fla(®) T@SinhyTsinhz/G T
0 0
- —QHfHLgHgHLgfSinhmel/z(t)a
m
where we denoted by
//TQSinhl/Tsinhl/H\Qa(t,T,H)\zdrde. (20)
0 0

Meanwhile (see (7))

00 2

|Qu(t,7,0)]? < /xa_1]Kif(az)Kig(x)Kit(xﬂdx

IN

0
[a K@@ [y K W
0

0

Hence plainly

J(t)

IN

/ R EAT dy//7’981nh m'smhl/e/ K2 (2) K2 (2)dedrddt

= /yo‘ K2 (y) dy/x /TSinhVTKizT(ZL’)dT dx.

0 0

(21)

Calculating the inner integral with respectitdy (11) and integrals with respectgandzx via [4], relation
2.16.33.2

[y =275 (5 n G - )12 (5). o> 2Rel (22)
0
we arrive at the estimate
C «
1/2 « - -
TR0 < ey PG —Ht)’, 0<v<n, (23)

where(C', > 0 is a constant depending only en Therefore,

0G0 _ g (5 o

6
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Thus we obtain that under conditions of the theorem convoIL(tiﬁ)ﬁ g) (t) exists as a Lebesgue integral

for all ¢ > 0. To establish its continuity oR, we will do it in a similar way as in the proof of Lemma 1.
Indeed, choosing a big > 0,¢ € [0,7] andd € (v/2,7/2) we invoke the inequality [1]K;;(x)| < Ky(x)
and we derive (see (21))

[o oo o) 2
—t81nh7rt//|f g (0)]|Q0(t, 7,0)|drdl < —tSthﬂ'tHfHLVHgHLV
A A

1/2

2
//Tesinhm-sinhuema(t,ﬂ 0)|*drdo < T sinh 7| f||y 9]l Ly
m

X /ya_lKg(y)dy/xa_lKg(x cos d)dx /Tsinh vre 27dr
0 0 A

o0

= Const./Tsinh vre 2Tdr — 0, A — .
A

Therefore integral (6) converges uniformly by [0, 7’| for anyT > 0.
Now we are ready to prove théy” % g) (t) € L. Infact

o 2 4 T drdf
frg)®] < —t*J(t)sinh’x [F(T) g :
‘( g)t‘ < t°J(t) sin to/o/ g(0

4 7'9 sinh v7 sinh v0

4
- thsmhzﬂmeLgHgHLg J(t),

whereJ(t) is defined by (20). Then

. 1/2

a 2 .
1% llss < llAllsllallag | [ esinbmes e
0

2
= p\\f\\LgHgHLg

o 1/2

/ / 76 sinh v7 sinh v0 / tsinh 7t|Q (¢, 7, 0)|*dtdrdo

0

X



Using (12) we have

o V2
17 8 alls < Lilfllglgloy
X //7'9 sinh v7 sinh VQ/$2a_1KfT(I)Ki29(I>dCL’de9
00
V2
= i fgligloy
X /x2a1/7'sinh I/TKZ%_(CL’)dT/QSiIlh V0K (z)dfdx
0 0
o o 2 1/2
V2 . .
— 7||f||L5||g||L5 /xza ! /TSlnhVTKiQT(QZ)dT dx

0 0
The latter iterated integral can be easily calculated explicitly invoking again (11) and (22). So the fina
inequality for theL7-norm of the convolution (6) can be written as

F* glleg < Canllfllzgllgllzy, (25)

whereC,, , > 0 is a constant.
Theorem 1 is proved.
Remark 1. Itis clear via Fubini’'s theorem that convolution (6) is a commutative operatiory, ﬁeg =
g% f.
Theorem 2 Under conditions of Theorem 1 the following factorization equality for convolution (6) is valid

N

2 F(2)G(x) = Lim. ( Fé g) (t) K () dt, (26)

whereF, GG are transforms (1) of and g, respectively. Besides, the Parseval equality of type
[1(r%9) @
0

Proof. Indeed, appealing to Lemma 1 and Fubini’s theorem we derive the chain of equalities

(fi“g> t) = —tsmhmf// o(t, 7, 0)drdo

0

o0

Pt 2 [ e py Gl Pda 27)

tsinhmt 72

0
holds true.

o

70 f(r / K (2) Kig(2) Ky (2)dedrdd

= —t sinh 7t

0\80

_ %tsmhm / ( / P K ) (?g(@)Kig(x)dQ) K(x)da
= %tsinhﬂ't/l’aIF(.I)G(l‘)KZ’t(.T)d.I



and all inner integrals are absolutely convergent. But at the same time (sfrfé@) (t) € LE we have

r2F(x)G(x) € Lo (R+, dx—x) Therefore, equalities (26), (27) are direct consequences of the reciprocities
(1), (2) and the Parseval identity (3) for the Kontorovich-Lebedev transformation.

Theorem 2 is proved.

This result can be extended if one of the functions under convolution (6) belorigs terecisely, we
prove

Theorem3 Letf € LT andg € LY, 0 < v < w. Then convolutior(f % g) (t) exists as a Lebesque
integral and still is continuous oR ... Moreover, it belongs td.].

Proof. Similar estimations as in Theorem 1 drive us at the chain of inequalities

oo 0

(r3a) 0] < Gesmst [ [0 oyas

1/2
drdf
< = 1/2
- ts1nh7rt //|f Flg(0) T@SinhﬂTsinhVQ V)
= ;HfHLgHgHLgtSinhﬂt‘Ifl/z(t)’ (28)
with
//TQSinhﬁTsinhVH\Qa(tm, 0)|*drdo. (29)
0 0

However, the inner integral with respectitan (29) can be expressed by using the Parseval equality (12).
Hence employing (11), (22) we find

U(t) = %//«9sinh1/996’2‘1_1[(129(95)[(2:(95)6[9“17
00

3 o0 o0
- % sin g /xQO‘Kft(x)Kl (2.7) cos g) dr < const./ v?* VK (v)dx
0 0

= const|D(a +it)]*.

Thus combining with (28) and taking into account the asymptotic behavior of the gamma function at infinity
we get that convolution (6) exists as a Lebesgue integral and satisfies the following estimate

’(f 2 g) (t)’ — O(e™/21° V), ¢ - yoo.



In the same manner as in Theorem 1 we get its continuity. In fact,

oo 0 2
—t51nh7rt//|f Ng(@)][Q20(t, 7, 0)|drdo < —TSlIlh?TTHfHL’THgHLV
A A

0o 00 1/2
//7'0 sinh 77 sinh v0|Q, (, 7, 0) |*drd6
A A
00 1/2 o 1/2
< const| [ s K3 @)R3(rcosd)ds | | [ osiuhvteas
B A

[e.9]

= const./ 6 sinh vhe2%dp — 0, § > g, A — 0.
A

Therefore under conditions of the theorem integral (6) converges uniformiyely, 7] for anyT” > 0.
Further, let us estimate the norm of the convolution (6) in the spgcand show that it is finite. First
we observe that since integral (6) is a Lebesgue one we can write it for-allas a usual limit

n—oo

(f % g) (t) = —t sinh 7t lim //f o(t, 7, 0)dOdT.

Hence denoting by, (7) = f(7), 7 € [0,n], which vanishes outside of the interJal n] we easily find
thatf,, € L} for all n € N. Therefore appealing to the Parseval equality (27) via the Fatou lemma we obtain

/‘ ‘ < liminf /’ )(t) v dt
tsmh mt e t sinh 7t

oo

— 2 liminf, .. / 22071 B, (2)G () [2d, (30)

T2

0

whereF, (x) is the Kontorovich-Lebedev transformation (1) of the functfgrand the corresponding inte-
gral converges absolutely. Moreover, since L4 then making similar estimates as in the proof of Lemma
1 (see (10)) and invoking equality (11) we derive foralt 0

r*|G ()| < const.sup [x““/QKll/Q <2:1: oS g)] < const.
>0

The latter estimate yields that'G(z) is bounded. Consequently, calling again equality (3) we return to
(30) and it becomes

G

= const. Iiminf,Hoo/Ifn(T) 2
0

d
< const. I|m|nt1_,oo/!F |2 ’

dr

——— =constl|f|]?, < co.
Tsinh 77 HfHL? o0

Theorem 3 is proved.
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Corollary 2. Formulas (26), (27) keep true under conditions of Theorem 3
Proof. Similar to the proof of Theorem 2 we derive by straightforward calculations foral

(ffklg> (t) = —tblnhﬂt lim //f o(t, 7, 0)dTdl

n—oo

n—oo

- %“mh”,}%‘o 2 ( / f(T)KiT(x)dT) ( / g(Q)Kie(x)dQ) Ky(x)da

2
= tsinhnt lim [ 2°7'F,(2)G(2) Ky (z)da

7‘(2 n—00
0

= —tsmhmﬁ hm//f / 7 K (2) Kig(2) Ky () dodTdf

2 o0
= Ztsihrt / 22 P(2) G () Koy ()

0

The latter equality is because for ali> 0 we find

o0

00 1/2
/xallF(x) — Fo(2)||G(2) Ky (2)|dz < (/ |F(z) — Fn(x)Qdf)

0

00 1/2 1/2
« (/ 22 G(2) Ko (2)| dx) — const. (/F 2d$) 0, = o0,

0

Hence the statement of the corollary follows as in Theorem 2. Corollary 2 is proved.
Remark 2. Theorem 3 and Corollary 2 guarantee the associativity of the convolution (6). Namely, it
has the property

(f%)i‘h:f‘i@ih):ﬁ(fi‘h),

foranyf,g,h € L}, 0 <v <.

3 Convolution integral equations

As applications we consider in this last section ttiesolvability of the first and second kind integral
equations related to convolution (6). Precisely, we exhibit the following integral equations

g(x) = (k* f)(z), z€Ry, (31)

f(@) =h(z)+ Ak * f)z), teR,, \eC, (32)

whereg,h € L3, k € LY, 0 < v < 7 are given functions and(z) € L] is to be determined. We will
prove two theorems, which will guarantee the existence and uniqueng$ssofutions and give them in the

11



closed form. Certain examples of the functiomvill be considered. Similar questions for the convolution
integral equations related to (5) were investigated in [1], Ch. 4.
Denoting by

o0

Ko(,y) = / k(0)Q (2, y, 0)d0 (33)

0

integral equation (31) of the first kind can be written in the form

o0

g(z) = % rsinh 7z / Koz, y) f(y)dy. (34)

0

Theorem 4 Leta > 0, g € L7 andk € LY, 0 < v < w. Then for the existence of & -solution of the
equation (34) it is necessary and sufﬂ(:lent th%%"— € Lo R+, ) whereG, k are the Kontorovich-

Lebedev transformations (1) of the functigng, respectlvely Moreover the solution is unique and is given
by the formula

7'(‘2 N—oo

N
f(z) = 3 lim. zsinh mx / Gu) Kix(u)d—uH> (35)
uOé
/N

where the convergence is with respect to the normjin

Proof. Necessitylndeed, if we assume thatk, f belong to the correspondingclasses and the equa-
tion (34) is satisfied, then via Corollary 2 we have the equality

where F' is the transformation (1) of the functigh Hence since’ € L, (]R+, ) we get that )

L, (Ry; %) and theLj-solution is given reciprocally by formula (35).
Sufficiencylf conversely, - 1(”) € L, (Ry; 2¢), thenf being defined by (35) belongs 1 and by

virtue of Theorem 3 the rlght hand side of (34) belong4.3o Therefore by Corollary 2 the Kontorovich-
Lebedev transform (1) of the right-hand side of (34) is equal to

IS

Q
EN
&

By the reciprocity (2) we see that equation (34) is satisfied and (35) is a uhiggelution.
Theorem 4 is proved.
Let us consider the convolution integral equation of the second kind (32), which can be written accorc

ingly
f(z)=h(z)+ = xsmhwx/lCa : (36)
0

We have

12



Theorem 5 Leta > 0,A € C\{0}, h € L3, k€ L}, 0 <v < ki and H (u) is the Kontorovich-Lebedev
transformation (1) of the functioh. Let alsosup,,- |[u“k(u)| < IM Then

A(u) Kix(u)d—u, (37)

N
2

f(z) = = Lim. xsmhmv/—A

1 — duk(u) u

7T2 N—oo
1/N

is a solution of (36) belonging td6] and any another solution frorh] coincides with (37) almost for all
r € R,

Proof. Since[l — Au®k(u)]~! is bounded we havw € L, (Ry; ). Consequently, (37) exists
in the mean sense and defines a funcfidrom L7. At the same time the convolution in the right-hand side
of (36) belongs td ] via Theorem 3. The transformation (1) of the right-hand side of (36) gives

Hw) —_  H(u

3) )
)+ Ak = )~ 1= xueh(a)

= F(u).

Thereforef by formula (37) satisfies equation (36) almost foraalt R, .
Conversely, iff,h € L7, k € LY and equality (36) takes place then by Corollary 2 we have

F(u) = H(u) + Mk(u)F(u),

which implies (37). Theorem 5 is proved.
Remark 3. If u®k(u) € Ly (Ry; %“) then solution (37) can be written in terms of the resolvent. Indeed,
denoting by

B ual%(u)
Mu) = 1 — duk(u)’

and bym/(0) the transform (2) of\/ € L4 we can write solution (37) in the form

f(z) = h(x) + — xsmh 7T$/Ma y)dy, (38)
0
where
/m (x,y,0)do (39)
0

Finally we give certain concrete examples of the kernel (33), the corresponding convolution integra
equations (34), (36) and thels-solutions (35), (37).

Example 1 Letk(f) = 6 tanh %9 It evidently belongs td.} for anyr > 0. Calling relation 2.16.48.14
from [4] we calculate the inner integral in (33) and write the kernel in terms of the notation (7). Precisely
we havelC, (z,y) = Q.+1(x,y,0). Thus we arrive at the following integral equations

o0

o) = 25 wsinh e [ Quuali1.0)f () (40)
0

13



f(z)=h(z)+ % x sinh Wx/QaH(x,y, 0)f(y)dy. (42)

2
0

Hence a uniquéj-solution of the equation (40) can be obtained via Theorem 4 by the formula

7T2 N—>OO ua+2

N
flz) = 2 lim. xsinh 7z / Glu) sz(u)d—u
/N

under condltlonﬁ“)() € Ly (Ry; 2). Moreover, if|A| < [sup,-,u®*'Ko(u)]~! then (see Theorem 5)

we have a uniqué.j-solution of the equation (41) written in the form (38), whe¥é,(z,y) is defined
by (39) with

u®Ko(
m(f) = 051nh7r9/ | —AuaflKo )Kig(u)du.

4

1t . .
Example 2 Letk(t) = tsinh it 'F (1_1 + %) € L. By relation 2.16.49.2 from [4] we arrive at the

following convolution integral equations

o0

g(x) = 2/ zsinh / Qa1 9,0) f (y)dy, (42)
0

o0

f(x) = h(z) + 2°2X\V/7 zsinh 7wz / Qat1/2(2,v,0) f(y)dy. (43)

0

Hence a uniqué.j-solution of the equation (42) is represented by the formula

G(u) du
f(x) = \/ﬂﬂ INLIEO xsinh 7z / Kolu) ua+5/2
1N
under conditlon% € Ly (Ry; %), Moreover, if|\| < [27%V/27 sup,,» u®T/2Ko(u)]~* then we

have a uniqud.j-solution of the equation (43) written in the form (38), whe¥é, (z,y) is defined by
(39) with

[e.e]

a—1/2K
m(6) = 2°2\/7 #sinh 7T9/ u ol®)
0

1 — 2m2y/ 2w uet1/2 Ky (u)

Kig(u)du.

Example 3 Letk(t) = tsinat, a # 0. Itis easily seen that(t) ¢ Ly, when|Ilma| < §. Appealing
[4], relation 2.16.48.19 we get the following equations

sinh a

g(x) = x sinh Wx/lca y)dy, (44)
0
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o0

xsinhﬂx/lCa(x,y)f(y)dy, (45)

0

Asinh a

™

fw) = h(z) +

where

o0

Kolz,y) = /uo‘e“COShaKm(u)Kiy(u)du.
0

A unique L3-solution of the equation (44) is given by the formula

N

4 . . u cosh a du

f(g,;) = m 1N1_>r£10 x sinh Tz / e G(U)sz(u) uot2
1/N

... . : -1
under conditionu~(@DetoshaG(y) € Ly (Ry; 24). Moreover, if[A| < [Z2Re gyp,  uottemucosha]

then we have a uniqui; -solution of the equation (45) written in the form (38), wheve, (z, v) is defined
by (39) with

2sinha . r u*Kip(u)
0) = 0 sinh w6 .
m(0) T ST /Ze“COSha—W)\sinha uotl
0
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