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Abstract An eigenvalue equation, for linear instability modes involving large scales in a convective hydromag-
netic system, is derived in the framework of multiscale analysis. We consider a horizontal layer with electrically
conducting boundaries, kept at �xed temperatures and with free surface boundary conditions for the velocity
�eld; periodicity in horizontal directions is assumed. The steady states must be stable to short (fast) scale
perturbations and possess symmetry about the vertical axis, allowing instabilities involving large (slow) scales
to develop. We expand the modes and their growth rates in power series in the scale separation parameter
and obtain a hierarchy of equations, which are solved numerically. Second order solvability condition yields a
closed equation for the leading terms of the asymptotic expansions and respective growth rate, whose origin
is in the (combined) eddy di�usivity phenomenon. For about 10% of randomly generated steady convective
hydromagnetic regimes, negative eddy di�usivity is found.

Abstract 1 Introduction

According to the present-day paradigm, magnetic �elds of most astrophysical objects � the Earth and the outer
planets of the Solar system having a molten metal �uid core [1], the Sun [2] and other stars, and even entire
galaxies [3] � owe their existence to convective hydromagnetic processes [4, 5, 6]. Convection in the presence of a
magnetic �eld obeys a familiar set of equations: the Navier-Stokes equation with Lorentz and Archimedes forces
for the �ow, the magnetic induction equation for the magnetic �eld, and the heat equation for temperature.
Virtually no analytic solutions of this system of equations are known except for some signi�cantly reduced cases
[7], under the assumption that certain symmetries are present, or for speci�c initial conditions. The referred set
of equations may be used to simulate the evolution of astrophysical convective hydromagnetic systems. This
approach was followed in [8, 9, 10], where magneto-convection in an idealised plane layer was considered, and in
[11, 12, 13, 14, 15, 16, 17, 18], where the outer core of the Earth was modelled by three-dimensional equations
of hydromagnetic convection in a spherical layer and, as a result, the predominant dipole morphology of the
Earth's magnetic �eld was correctly reproduced in computations.

However, in practice, accurate simulations for geo- and astrophysical real parameter values are close to im-
possible, because the limited power of available computers prohibits computations with the adequate spatial
(insu�cient memory) and temporal (insu�cient CPU power) resolution. The simulations done by Glatzmaier
and Roberts [11, 12, 13, 14, 15, 16] were performed for parameter values di�ering by several orders of magnitude
from those characterising the outer liquid core of the Earth. Nevertheless, the agreement between these simu-
lations and the geodynamo is surprising [18]. The existence of sharp contrast spatial structures (e.g., Ekman
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boundary layer, which emerges in convective �ows in a rotating layer with no-slip boundary conditions, and the
instability of which may be a source of dynamo [19, 20, 21, 22, 23]) and the prominent role which turbulence
plays in the generation of magnetic �elds, indicate that such a high resolution is indeed necessary in simulations.
Core-mantle coupling, which is believed to cause decade variations of the length of day, is another geophysical
phenomenon involving small scales (topographic features at the boundary are unlikely to exceed 5 km in am-
plitude; see [1]). Validity of numerical techniques for smoothening the resolution cut-o�, such as employment of
hyperviscosity, is questionable [24, 25, 26, 27].

A signi�cant uncertainty in rheology relations [28] and parameter values [29] in the convective hydromagnetic
equations (for instance, estimates of thermal di�usivity for the Earth core di�er in several orders of magnitude
[1]), makes it desirable to investigate typical regimes of behaviour of the solutions by varying the parameters in
certain ranges and �nding locations, in the parameter space, of bifurcations marking drastic changes in behaviour
[30]. A purely numerical approach to the implementation of this task would require a further signi�cant increase
of the amount of computations. Consequently, a semi-analytic approach, employing asymptotic relations, is
unavoidable as an alternative to both purely analytic and numerical approaches. Here we employ it to consider
the problem of linear stability of three-dimensional convective hydromagnetic steady states in a layer.

The characteristic spatial scale of the perturbed steady state is supposed to be much larger than that of the
steady state. The ratio of the spatial scale of the �ow (fast spatial variable) to the large scale of perturbation
(slow variable), ε, is a small parameter. (By small- and large-scale vector �elds we refer to �elds involving
spatial scales of the order of the width of the layer and much larger scales, respectively.) Applying methods of
the general theory of homogenisation of di�erential operators [31, 32, 33, 34], we expand perturbation modes
and their growth rates in asymptotic series in the parameter ε and obtain a homogenised operator in slow
variables, acting on mean �elds. Eigenvalues of this operator control stability to large-scale perturbations. The
advantage of this approach stems from opening the possibility to disentangle the large and small scales and
fully resolve small scales by solving the so-called auxiliary problems.

Generically, the multiscale analysis reveals the presence of α-e�ect (see [35, 36, 37]). The homogenised linear
operator is then the �rst-order di�erential operator. Consequently, the system is generically unstable, since the
spectrum of the operator is symmetric about the origin (if a mode W(x) is associated with an eigenvalue λ,
then W(−x) is a mode associated with the eigenvalue −λ). In convective hydromagnetic systems which possess
symmetry about a vertical axis or parity-invariance, α-e�ect is not present and the homogenised equations
involve a second-order partial di�erential operator, whose eigenfunctions are Fourier harmonics. Its eigenvalues
may be positive, implying instability. This phenomenon is referred to as negative (combined) eddy di�usivity
[38]. Instability of this kind is weak: in the presence of α-e�ect the growth rate of the dominant perturbations
is O(ε), whereas it is O(ε2) when α-e�ect is absent. Evaluation of eddy tensors emerging in the homogenised
equations requires solution of auxiliary problems, which are linear elliptic partial di�erential equations in fast
variables. With just a single characteristic spatial scale involved, they are not too demanding numerically.

Multiscale asymptotic analysis was successfully applied to various problems of hydrodynamics and magnetohy-
drodynamics. The e�ect of negative eddy viscosity arises in two-dimensional [39, 40, 41] and three-dimensional
[42, 43, 44] hydrodynamic systems, if the �ow is parity-invariant or if it is a Beltrami �eld (in [42] large scale along
only one direction was assumed). Eddy di�usivity can be complex [45, 44]. In generic hydrodynamic systems,
which do not possess the properties mentioned above, similar expansions indicate the presence of the so-called
AKA-e�ect (i.e. anisotropic kinetic α-e�ect) [35, 36]. In passive scalar transport systems, eddy di�usivity can
only enhance molecular di�usivity [46, 47].

In the kinematic dynamo problem (concerning magnetic �eld generation, when the feedback in�uence of magnetic
�eld on the �ow via the Lorentz force is neglected), multiscale expansions were apparently �rst introduced in
[48] and [49] (where scale separation was related to fast rotation of the layer of conducting �uid). Similar
asymptotic expansions in the kinematic problem (for �ows, the amplitude of which may depend on the scale
ratio) predict occurrence of α-e�ect [50, 51, 37]. Generation of large-scale magnetic �eld by the negative magnetic
eddy di�usivity mechanism is possible for parity-invariant steady [52, 53, 54] (in [54], large scale along only one
direction was assumed) or time-periodic �ows [55], and by convective Bisshopp cell patterns [56], symmetric
about the vertical axis. Combined eddy di�usivity tensors for large-scale perturbations of both the �ow and
magnetic �eld constituting a parity-invariant three-dimensional MHD steady state were derived in [57].

In the papers cited above two di�erent scales were present in the system. Multiscale expansions with three
spatial scales were employed in [58, 59] to study the small-angle instability [60] in convection in a rotating layer.

Evolution of a mean hydrodynamic large-scale perturbation in the weakly nonlinear regime was considered in
the absence of magnetic �eld for two-dimensional parity-invariant space-periodic �ows [41, 61], and for three-
dimensional MHD systems [62]. In [62] it is not required that the MHD state, nonlinear stability of which is
examined, is either space periodic or steady; equations for the mean �ow and magnetic �eld are generalisations
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of the Navier-Stokes and magnetic induction equation with an anisotropic (in general) combined eddy di�usivity
tensor and quadratic eddy advection.

In section 2, we present the equations for thermal convection in the presence of magnetic �eld and discuss
boundary conditions and symmetries. In section 3, the multiscale formalism is applied. In section 3.1, an eigen-
function of the linearisation of a convective hydromagnetic system and its associated eigenvalue are expanded
in a power series of the scale separation parameter and a hierarchy of equations is derived. In section 3.2, the
solvability condition, which plays an important role in solution of equations of this hierarchy and in derivation
of an equation for the mean part of perturbation in the leading order, is discussed. In sections 3.3 and 3.4, the
�rst two (order 0 and order 1) equations in the hierarchy are expressed as a linear combination of the so-called
auxiliary problems. In section 3.5, we consider the solvability condition for equations at order 2 and thereby
derive the eigenvalue equation for the mean part of the leading terms in the expansions of the instability modes
and their growth rates. At this stage emerges the homogenised combined eddy di�usivity operator acting on
mean �elds. In section 4, we brie�y describe the numerical procedure for solving the auxiliary problems and
present a set of basic �elds which lead to large-scale instability for appropriate physical parameters (namely
molecular di�usivities). Finally (section 5), we comment on possible extensions and limitations of the application
of multiscale techniques employed here to study the instability of convective �ows in the presence of magnetic
�eld.

2 Equations of thermal convection in the presence of magnetic �eld

2.1 Time evolution of a convective hydromagnetic system

Magnetic �eld generation by thermal convection is governed by the Navier-Stokes equation, the magnetic in-
duction equation and heat transfer equation [63]:

∂tV = V × (∂ ×V)− ∂p + ν∂2V

−H× (∂ ×H)− α(T − T0)G + F̃,

∂ ·V = 0,

∂tH = ∂ × (V ×H) + η∂2H + R̃, (1)

∂ ·H = 0,

∂t T = −(V · ∂)T + k∂2T +
σ

2
|∂ ×H|2 + S̃,

where V = (V1, V2, V3), H = (H1,H2,H3) and T , depending on position in space x = (x1, x2, x3) and time
t, are the velocity �eld, the magnetic �eld and the temperature, respectively. We use the notation ∂t ≡ ∂/∂t,

∂i ≡ ∂/∂xi and ∂ ≡
∑3

i=1 ei∂i, where ei is the ith canonical vector. The term involving G (gravity, G = −g e3

for a horizontal layer) is the buoyancy force due to temperature variation and H × (∂ × H) is the Lorentz
force. F̃ represents any other body forces acting on the �uid, R̃ is due to imposed external currents or magnetic
�elds, and S̃ describes the distribution of external heat sources. ν is the kinematic viscosity, η the magnetic
di�usivity, and α, k and σ are parameters related to thermal expansion, thermal conductivity and electrical
conductivity, respectively. Solenoidality of magnetic �eld follows from the Maxwell equations. Flows are deemed
incompressible in line with the Boussinesq approximation. Henceforth, the system of equations (1) will be
referred to as CHM (convective hydromagnetic).

We consider the CHM equations in the spatial domain D = [0, L1]× [0, L2]× [0, L3], assuming periodicity in x1

and x2 directions, and considering a �nite layer in the x3 direction. The boundary conditions at the surface of
the layer are

• for the velocity �eld:

V3|x3=0,L3 = 0,

∂3V1|x3=0,L3 = ∂3V2|x3=0,L3 = 0;

• for the magnetic �eld:

H3|x3=0,L3 = 0,

∂3H1|x3=0,L3 = ∂3H2|x3=0,L3 = 0;

• for the temperature �eld:

T |x3=0 = T1,

T |x3=L3 = T2.



4 M. Baptista

It is convenient to introduce the variable
θ = T − T1 − δTx3,

where δT = (T2 − T1)/L3, satisfying the uniform boundary conditions

θ|x3=0,L3 = 0.

A solution to the CHM system may possess symmetry about the vertical axis, provided the forcing terms F̃, R̃, S̃
possess the same symmetry. A vector �eld Q is called symmetric (about the vertical axis) if

Q1(−x1,−x2, x3) = −Q1(x1, x2, x3),
Q2(−x1,−x2, x3) = −Q2(x1, x2, x3),
Q3(−x1,−x2, x3) = Q3(x1, x2, x3);

and anti-symmetric if

Q1(−x1,−x2, x3) = Q1(x1, x2, x3),
Q2(−x1,−x2, x3) = Q2(x1, x2, x3),
Q3(−x1,−x2, x3) = −Q3(x1, x2, x3).

We call a scalar �eld f symmetric if

f(−x1,−x2, x3) = f(x1, x2, x3),

and anti-symmetric if
f(−x1,−x2, x3) = −f(x1, x2, x3).

Symmetries are essential to eliminate �rst order (alpha) e�ects. In [43] parity-invariance is used to this purpose,
but, for a horizontal layer, symmetry about the vertical axis is more realistic. Furthermore, parity invariance is
inconsistent with the basic equations (1) for σ 6= 0. Under an appropriate forcing, any hydromagnetic convective
system will possess steady states with these symmetries.

2.2 Linearised CHM operator

Let us consider a steady state solution, p̃, Ṽ, H̃ and θ̃, of the CHM system (1) and a small perturbation, peλt,
Veλt, Heλt and θeλt, of this steady state, where p, V, H and θ depend only on spatial variables. In what
follows, we will call the spatial pro�les of the perturbation �elds, p, V, H and θ, a perturbation. Replacing p,
V, H, θ, respectively, by p̃ + peλt, Ṽ + Veλt, H̃ + Heλt, θ̃ + θeλt in (1) and neglecting second order terms in
the perturbation, we obtain an eigenvalue problem for the perturbation:

AW = λW +

∂p
0
0

 ,

∂ ·V = 0,
∂ ·H = 0.

(2)

Here, the block notation introduced in [43] is used:

W =

V
H
θ

 , (3)

is the (3 + 3 + 1)-dimensional block column vector combining the 3 components of the �ow, the 3 components
of the magnetic �eld and the temperature �eld. In what follows, (3 + 3 + 1)-dimensional vectors of a similar
structure, will be used. The operator A is obtained by linearisation of the CHM equations in the vicinity of the
steady state p̃, Ṽ, H̃ and θ̃; it can be represented as a block matrix (acting on (3 + 3 + 1)-dimensional vectors
of the structure similar to (3)):

A =

 ν∂2 + Ṽ × (∂ × •)− (∂ × Ṽ)× −H̃× (∂ × •) + (∂ × H̃)× −αG
−∂ × (H̃× •) η∂2 + ∂ × (Ṽ × •) 0
−(• · ∂)θ̃ − δTe3· σ(∂ × H̃) · (∂ × •) k ∂2 − Ṽ · ∂

 . (4)

Note that A preserves the symmetry of �elds W, symmetric (or anti-symmetric) about the vertical axis.

The complete formulation of the eigenvalue problem (2) involves specifying spatial periods of perturbations,
which can be any integer multiples of the periods L1 and L2. If the smallest of the periodicity boxes is considered,
the system of equations (2) is referred to as the problem of linear stability to short-scale perturbations.
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3 Linearised large-scale CHM equation

3.1 The two-scales expansion

In this section we construct a homogenisation of the linearised CHM operator. Eigenvalues of the homogenised
operator control linear stability of the CHM steady state to perturbations with spatial periods large enough for
the asymptotic behaviour to set in.

Following the method applied in previous studies [52, 53, 57, 55], we consider fast variables, x, representing the
short scale dynamics, and slow variables, X = (X1, X2) = (εx1, εx2), representing the large scale dynamics. (In
a layer of �nite width only slow variables in horizontal directions are geometrically consistent.) The parameter ε
is the scale separation. The perturbations p, V, H and θ are assumed to depend on both fast and slow variables.
We denote ∇i ≡ ∂/∂Xi and ∇ ≡

∑2
i=1 ei∇i.

Now we perform di�erentiation in (2) applying the chain rule: ∂i → ∂i + ε∇i for i = 1, 2. This implies

A = A(0) + εA(1) + ε2A(2),

where

A(0) =

 ν∂2 + Ṽ × (∂ × •)− (∂ × Ṽ)× −H̃× (∂ × •) + (∂ × H̃)× −αG
−∂ × (H̃× •) η∂2 + ∂ × (Ṽ × •) 0
−(• · ∂)θ̃ − δTe3· σ(∂ × H̃) · (∂ × •) k ∂2 − Ṽ · ∂

 , (5)

A(1) =

2ν∂ · ∇+ Ṽ × (∇× •) −H̃× (∇× •) 0
−∇× (H̃× •) 2η∂ · ∇+∇× (Ṽ × •) 0
0 σ(∂ × H̃) · (∇× •) 2k∂ · ∇ − Ṽ · ∇

 , (6)

A(2) = Ξ∇2, with Ξ =

 ν 0 0
0 η 0
0 0 k

 (7)

(Ξ is the molecular di�usivity tensor). Note that A(0) and A(2) preserve the symmetries of both symmetric and
anti-symmetric �elds, but A(1) exchanges their symmetry.

Next we expand W, p and λ in power series of ε:

W =
n∑

i=0

εiW(i) + O(εn+1), (8)

p =
n∑

i=0

εip(i) + O(εn+1), (9)

λ =
n∑

i=0

εiλi + O(εn+1). (10)

Each coe�cient W(i) and p(i) in the expansions is a function of both x and X. Substituting these series in (2)
and equating the terms in εn, at each order n, we obtain a hierarchy of equations:

� order 0:

A(0)W(0) = λ0W(0) +

∂p(0)

0
0

 , (11)

∂ ·V(0) = 0, (12)

∂ ·B(0) = 0, (13)

� order 1:

A(0)W(1) = −A(1)W(0) + λ0W(1) + λ1W(0) +

∂p(1) +∇p(0)

0
0

 , (14)

∂ ·V(1) = −∇ ·V(0), (15)

∂ ·B(1) = −∇ ·B(0), (16)
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� order 2:

A(0)W(2) = −A(1)W(1) −A(2)W(0) + λ0W(2) + λ1W(1) + λ2W(0) +

∂p(2) +∇p(1)

0
0

 , (17)

∂ ·V(2) = −∇ ·V(1), (18)

∂ ·B(2) = −∇ ·B(1), (19)

� order n:

A(0)W(n) = −A(1)W(n−1) −A(2)W(n−2) +
n∑

i=0

λiW(n−i) +

∂p(n) +∇p(n−1)

0
0

 , (20)

∂ ·V(n) = −∇ ·V(n−1), (21)

∂ ·B(n) = −∇ ·B(n−1). (22)

Let 〈•〉 = (L1L2L3)−1
∫
D •dx1dx2dx3 denote the mean (over the fast variables in D) and {•} = • − 〈•〉 denote

the �uctuating part of a vector or scalar �eld here denoted indistinguishably by •. The average 〈•〉 is the large
scale component of the respective �eld. It is possible to solve recursively all equations in the hierarchy, �nding
all terms of the expansions (8)-(10). Only the equations up to order 2 are required to derive a homogenised
eigenvalue equation for the mean parts, 〈W(0)〉 and 〈p(0)〉, of the leading terms. It emerges as the solvability
condition for the equation in the fast variables at order 2.

3.2 Solvability Conditions

Let P be the projection into the subspace of (3 + 3 + 1)-dimensional �elds, in which the 3-dimensional vector
components are solenoidal:

P

QV

QH

Qθ

 =

QV − ∂QVp

QH − ∂QHp

Qθ

 ,

where ∂2QVp = ∂ ·QV and ∂2QHp = ∂ ·QH . In what follows, we will solve equations of the form

PA(0)f = Pg,

where vector components of f are required to be solenoidal; this equation is thus equivalent to

PA(0)Pf = Pg. (23)

By the Fredholm alternative [64], a solution of (23) exists if and only if Pg is orthogonal to the kernel of
(PA(0)P)∗, where ∗ denotes the adjoint operator. In other words, the solvability condition for (23) is 〈Pg, c〉 = 0,
where c is any vector in ker(PA(0)∗P) and 〈·, ·〉 denotes the L2 inner product. As usual, the adjoint operator
A(0)∗ can be derived performing integration by parts in the identity 〈A(0)∗W1,W2〉 = 〈W1,A(0)W2〉. In the
present case

A(0)∗ =

 ν∂2 − ∂ × (Ṽ × •) + (∂ × Ṽ)× H̃× (∂ × •) −e3δT + θ̃∂

∂ × (H̃× •)− (∂ × H̃)× η∂2 − Ṽ × (∂ × •) σ∂ × (∂ × H̃)− σ(∂ × H̃)× (∂•)
−αG · 0 k∂2 + Ṽ · ∂

 .

Boundary conditions for the vector �elds in the domain of A(0)∗ can be found from the condition that boundary
surface integrals, emerging in integration by parts in the scalar product 〈W1,A(0)W2〉, vanish. It can be veri�ed
that the boundary conditions that we assume hold for vector �elds in the domain of the adjoint operator as
well.

Our construction relies on the existence of vector �elds in ker(PA(0)P) with non-vanishing average horizontal
components of the �ow and magnetic �eld (see a detailed discussion in [56]). It can be easily established that the
dimension of the subspace of ker(PA(0)P), consisting of such vectors, is equal to the dimension of the subspace

of ker(PA(0)∗P) consisting of vectors with non-zero horizontal space averages. If c =

 cV

cH

0

, where cV and
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cH are any constant horizontal vectors, evidently PA(0)∗Pc = 0, since A(0)∗c is a gradient. Such constant
vector �elds satisfy the boundary conditions under consideration; therefore any such c belongs to ker(PA(0)∗P).
Thus, ker(PA(0)P) is at least four-dimensional. In what follows, we assume that the dimension is four, which
is generically the case, and thus any non-zero vector from ker(PA(0)P) has non-zero horizontal averages of the
�ow and/or magnetic �eld components. Then the solvability condition for (23) consists of orthogonality of gV

and gH to constant horizontal vectors, i.e. the horizontal components of 〈gV 〉 and 〈gH〉 must vanish.

3.3 Equations at order 0

Decoupling of the large- and short-scale behaviour is evident in the form of solutions of the equations emerging
at orders 0 and 1 in the hierarchy. Since A(0) is an operator in the fast variables, short-scale variation of these
solutions is exclusively due to their multiplicative dependence on solutions of (11)-(13) and (14)-(16) � the
so-called auxiliary problems, which are partial di�erential equations in the fast variables.

Performing integration and using the boundary conditions, we �nd that the horizontal components of the �ow
and magnetic �eld components of 〈A(0)W(0)〉 vanish. Since we seek solutions where 〈V(0)〉 and 〈H(0)〉 do not
vanish simultaneously, averaging of (11) implies λ0 = 0. The problem to solve becomes

A(0)W(0) =

∂p(0)

0
0

 . (24)

By linearity,

W(0) =
4∑

i=1

ai Si, {p(0)} =
4∑

i=1

ai Sp
i . (25)

The �elds Si =

SV
i

SH
i

Sθ
i

 and Sp
i are linearly independent solutions of the problems

A(0)Si =

∂Sp
i

0
0

 ,

∂ · SV
i = 0,

∂ · SH
i = 0,

(26)

i.e. Si are linearly independent �elds in ker(PA(0)P). The gradient part of (26) satis�es

∂2Sp
i = ∂ ·

(
A(0)Si

)V

. (27)

Note that 〈p(0)〉 cannot be determined at this order, since derivatives in the fast variables in the r.h.s. of (24)
eliminate any averages in p(0). Si and Sp

i depend only on the fast variables. The coe�cients of the linear
combinations ((25)), ai, depend only on the slow variables.

The four possible averages (constant mean �elds) in ker(PA(0)P), selected by the boundary conditions, are

〈S1〉 =

e1

0
0

 , 〈S2〉 =

e2

0
0

 ,

〈S3〉 =

 0
e1

0

 , 〈S4〉 =

 0
e2

0

 .

Hence, the four auxiliary problems at order 0 are

A(0){S1} =

∂(Sp
1 − Ṽ1) + ∂1Ṽ

∂1H̃
∂1θ̃

 , (28)

A(0){S2} =

∂(Sp
2 − Ṽ2) + ∂2Ṽ

∂2H̃
∂2θ̃

 , (29)
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A(0){S3} =

∂(Sp
3 + H̃1)− ∂1H̃
−∂1Ṽ

0

 , (30)

A(0){S4} =

∂(Sp
4 + H̃2)− ∂2H̃
−∂2Ṽ

0

 , (31)

with Sp
i given by (27).

Solenoidal parts of the right hand sides of (28)-(31) are anti-symmetric and, since A(0) preserves the symmetry
of �elds, Si are anti-symmetric. Evidently, the order 0 auxiliary problems are of the form of (23), and their
solvability follows immediately from the periodicity of the CHM steady state Ṽ, H̃, θ̃ in horizontal directions.

3.4 Equations at order 1

Averaging of (14) yields

〈
A(0)W(1)

〉
= −

〈
A(1)W(0)

〉
+ λ1〈W(0)〉+

∇〈p(0)〉
0
0

 . (32)

As in order 0, horizontal parts of the �ow and magnetic �eld components of 〈A(0)W(1)〉 are zero. The same holds
for 〈A(1)W(0)〉 (this can be shown, integrating directly the terms of the form of spatial derivatives and using
the boundary conditions, and exploiting the symmetry of the perturbed CHM steady state and anti-symmetry
in the fast variables of V(0) and H(0) when considering mean horizontal parts of the terms of the form of
Ṽ × (∇×V(0))). (32) becomes

λ1〈W(0)〉+

∇〈p(0)〉
0
0

 =

0
0
0

 .

Thus, if λ1 6= 0, then 〈H(0)〉 = 0 and 〈V(0)〉 = −∇〈p(0)〉/λ1. However, averaging of (15) over the fast variables
yields∇·〈V(0)〉 = 0, with 〈V(0)〉 and∇〈p(0)〉 belonging thereby to orthogonal subspaces. This implies 〈V(0)〉 = 0,
which contradicts the original assumption that 〈V(0)〉 and 〈H(0)〉 do not vanish simultaneously. Therefore,
λ1 = 0, 〈p(0)〉 = 0 and (14) reduces to

A(0)W(1) = −A(1)W(0) +

∇p(0)

0
0

+

∂p(1)

0
0

 . (33)

From (25) we �nd

−A(1)W(0) +

∇p(0)

0
0

 =
4∑

i=1

2∑
j=1

Mij∇jai,

where

Mij = −BjSi +

ejS
p
i

0
0


and

Bj =

2ν∂j + ejṼ · • − Ṽj −ejH̃ · •+ H̃j 0
−H̃ej · •+ H̃j 2η∂j + Ṽej · • − Ṽj 0

0
∑3

k=1

(
∂jH̃k − ∂kH̃j

)
ek· 2k∂j − Ṽj

 . (34)

The problem at this order reduces to

A(0)W(1) =
4∑

i=1

2∑
j=1

Mij∇jαi +

∂p(1)

0
0

 .

Therefore, by linearity,

W(1) =
4∑

i=1

2∑
j=1

∇jaiΓij +
4∑

i=1

biSi, (35)
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{p(1)} =
4∑

i=1

2∑
j=1

∇jaiΓ
p
ij +

4∑
i=1

biS
p
i , (36)

where Γij =

ΓV
ij

ΓH
ij

Γ θ
ij

 and Γ p
ij are mean-free linearly independent solutions of the auxiliary problem at order 1 :

A(0)Γij = Mij +

∂Γ p
ij

0
0

 ,

∂ · ΓV
ij = −

(
SV

i

)
j
,

∂ · ΓH
ij = −

(
SH

i

)
j
.

(37)

Taking the divergence of the velocity component, we obtain a Poisson equation for Γ p
ij :

∂2Γ p
ij = ∂ ·

(
A(0)Γij −Mij

)V

. (38)

The average of p(1) cannot be determined at this order, since derivatives in the fast variables in the r.h.s. of
(33) eliminate it. In (35) and (36), bi depend only on the slow variables, and the �elds Γij and Γ p

ij only on the
fast ones. It is convenient to solve (37) in the subspace of (3 + 3 + 1)-dimensional vector �elds, where vector
components are solenoidal. Consider the substitution

Γij = Γ′
ij +

∂ΠV
ij

∂ΠH
ij

0

 .

The conditions
∂2ΠV

ij = −
(
SV

i

)
j
, ∂2ΠH

ij = −
(
SH

i

)
j

imply ∂ · Γ′V
ij = ∂ · Γ′H

ij = 0. At order 1 we have thus to solve eight equations:

PA(0)Γ′
ij = P

Mij −A(0)

∂ΠV
ij

∂ΠH
ij

0

 (39)

for i = 1, . . . , 4 and j = 1, 2. Solvability of (39) can be easily veri�ed by symmetry arguments, since Bj changes
the symmetry of �elds.

3.5 The mean-�eld equations for the CHM instability mode

At order 2 the solvability condition is not trivially satis�ed and yields equations for the large-scale mean
components of the instability mode. We consider orthogonality of the r.h.s. of (17) to ker (PA(0)∗P), i.e.〈

Cl, λ2W(0) −A(2)W(0) −A(1)W(1) +

∇p(1)

0
0

〉 = 0, (40)

∀Cl ∈ ker(PA(0)∗P). From (35),

A(1)W(1) =
4∑

i=1

2∑
j,k=1

BkΓij∇k∇jai.

Since Cl are constant, (40) is equivalent to

λ2

4∑
i=1

〈Cl,Si〉ai −
4∑

i=1

〈Cl,ΞSi〉∇2ai −
4∑

i=1

2∑
j,k=1

〈Cl,BkΓij〉∇k∇jai + 〈CV
l ,∇〈p(1)〉〉 = 0 (41)

From the system of equations (41), we �nd ai; then W(0) is obtained from (25). Thus, we have derived a closed
set of equations for the leading terms in the expansions (8)-(10) of eigenmodes and their growth rates. The
leading term in the eigenvalue expansion is λ2, i.e. λ = O(ε2). This growth rate determines the characteristic
slow time scale of the large-scale dynamics: T = ε2t.
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Since only horizontal components of CV
l and CH

l can be nonzero for constant vectors Cl ∈ ker(PA(0)∗P) (see
section 3.2), we can choose Cl = 〈Sl〉. This implies 〈Si,Cl〉 = δli (here δli is the Kronecker symbol). Then (41)
takes the form

λ2

4∑
i=1

δliai +
4∑

i=1

2∑
j,k=1

〈Cl,−ΞSiδjk −BkΓij〉∇k∇jai

+〈CV
l ,∇〈p(1)〉〉 = 0. (42)

This is an eigenvalue problem for the second order partial di�erential operator with constant coe�cients, which
is called combined eddy di�usivity operator. It admits Fourier harmonics as eigenfunctions:

an(X) = ân(q)eiq·X, 〈p(1)〉 = p̂(q)eiq·X, (43)

where q = (q1, q2) is an arbitrary unit wavevector and n = 1, ..., 4. Upon substitution we �nd that the coe�cients
ân satisfy 

(λ2 + ν)â1

(λ2 + ν)â2

(λ2 + η)â3

(λ2 + η)â4

+ E


â1

â2

â3

â4

 = −ip̂(q)


q1

q2

0
0

 , (44)

where E is the 4× 4 matrix

Eli =
2∑

j,k=1

qkqj〈Cl,BkΓij〉. (45)

Averaging of (15) and (16) yields ∇ ·
〈
V(0)

〉
= 0 and ∇ ·

〈
H(0)

〉
= 0. By virtue of these solenoidality conditions

and (43),

(â1, â2) = â′1(q2,−q1),
(â3, â4) = â′2(q2,−q1).

Substituting these expressions into (44) and scalar multiplying it by (q2,−q1; q2,−q1), we reduce (44) to an
equivalent 2× 2 eigenvalue problem: [

(λ2 + ν)â′1
(λ2 + η)â′2

]
+ E′

[
â′1
â′2

]
= 0, (46)

where

E′
11 = E11q

2
2 − (E12 + E21)q1q2 + E22q

2
1 ,

E′
12 = E13q

2
2 − (E14 + E23)q1q2 + E24q

2
1 ,

E′
21 = E31q

2
2 − (E32 + E41)q1q2 + E42q

2
1 ,

E′
22 = E33q

2
2 − (E34 + E43)q1q2 + E44q

2
1 .

Noting that q = (cos θ, sin θ), θ ∈ [0, 2π], we obtain

λ±2 (θ) = − b

2

(
1±

√
1− 4c

b

)
,

with b = ν + η + E′
11 + E′

22 and c = νη + νE′
22 + ηE′

11 +E′
11E

′
22−E′

12E
′
21. The maximum and minimum growth

rates,

λmax
2 = max

θ∈[0,2π]
max

{
λ+

2 (θ), λ−2 (θ)
}

, (47)

λmin
2 = min

θ∈[0,2π]
min

{
λ+

2 (θ), λ−2 (θ)
}

, (48)

are admitted for θ's denoted by θmax and θmin, respectively.
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4 Numerical Results

The auxiliary problems were solved numerically using pseudo-spectral methods to evaluate the action of the
operators A(0) (5) and Bj (34) on the �elds. In the �nite direction of the layer, the usual plane wave basis was
replaced by a half period sine or cosine basis, agreeing with the boundary conditions:

f(x, y, z) =
∑

nkx , nky , nkz

f̂(kx, ky, kz)ei(kxx+kyy) sin(kzz),

for a scalar function satisfying Dirichlet-kind boundary conditions, and

f(x, y, z) =
∑

nkx , nky , nkz

f̂(kx, ky, kz)ei(kxx+kyy) cos(kzz),

for a scalar function satisfying Neumann-kind boundary conditions, with kx = 2πnkx/L1, ky = 2πnky/L2,
kz = πnkz/L3 and nkx , nky , nkz ∈ Z. For each auxiliary problem, a linear system of equations in the Fourier
space was obtained and solved numerically by the conjugate gradients method [65].

Asymptotic expansions for large molecular di�usivities, as well as comparison with previous calculations for plan
form velocity �elds [56], were used to validate the code. As previously stated, the basic steady state must be
stable to short-scale perturbations, i.e. the dominant eigenvalue (λshort) of the operator A must have a negative
real part. The dominant eigenvalue can be evaluated using the method used in [66] for perturbations in each of
the two symmetry subspaces.

We want to model magnetic instabilities in turbulent convective �ows. For the reasons exposed in the intro-
duction, simulations of fully turbulent regimes are very resource expensive. Within the scope of our approach,
steady states can be randomly generated with decaying energy spectrum. Such states satisfy the basic equations
for the appropriate source terms. Usually only a �nite number of Fourier harmonics (kmin ≤ k < kmax) is
generated, the remaining being set to 0. Applying the appropriate linear transformations, we make sure that
the generated CHM steady states are solenoidal and possess the required symmetry. The coe�cients are then
normalised to obtain the desired energy spectrum and the norm (r.m.s.) of each �eld is set to 1. Algebraic
(E(k) ∼ k−ξ) or exponential (E(k) ∼ exp(−ξk)) spectra were used in [53, 57, 56].

Zheligovsky et. al. [53] found that �ows with exponentially decaying spectra are statistically better dynamos.
However, in fully developed turbulence, the energy spectrum in the inertial range is known to be algebraic. In
this work, all �elds have been normalised to have decaying algebraic energy spectra, with ξ = 4, for the Fourier
modes with 0 ≤ k < 7. Simulations have been carried out for the periodicity box of size 2π × 2π × π, with the
resolution of 32× 32× 16 Fourier harmonics. An ensemble of 1000 instances of CHM states has been generated.
It turns out that 110 out of 1000 generated �ows exhibit negative combined eddy di�usivity (see Fig. 1). The
values ν = µ = κ = 0.5 were chosen that large so that to make sure that the randomly generated CHM states
were stable to short-scale perturbations. We have directly checked, by computation of the decay rates of the
dominant short-scale modes, that 30 of the generated CHM states from our ensemble are indeed stable; for 3 of
them eddy di�usivity is negative. No instances of CHM states unstable to short-scale perturbations were found
for these values of di�usivities.
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Figure 1 Statistics of eddy di�usivity.
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In �gure 2, the �elds corresponding to one of the generated steady states are presented. The short-scale growth
rates are λshort = −0.5662, for symmetric perturbations, and λshort = −0.05175, for antisymmetric perturba-
tions. The maximum and minimum growth rates of large-scale perturbations are λmax

2 = 1.426, for θmax = 3.392,
and λmin

2 = −1.165, for θmin = 3.593, respectively. The maximum growth rate is positive (which corresponds
to a negative eigenvalue of the eddy di�usivity tensor), i.e. a large-scale instability is present. All the auxiliary
problems show a decaying energy spectrum (see �gures 3-8 below) and the expected symmetries can be observed.

Spatial short-scale structure of the large-scale eigenmode is de�ned by the leading term W(0) in the expansion
(8), and therefore by the �elds Si (see (25)). Magnetic �eld in all of them (see �gures 3-6) has the form of
distorted "retrograde columns" [67] and concentrates near the horizontal boundaries of the layer. This kind
of structure is reproduced in their linear combination W(0) for the most unstable mode (see �gure 7). Such
behaviour was originally noticed in the non-linear evolutionary simulations [67] of magnetic �eld generation
by rotating thermal convection, and it can be attributed to the boundary conditions, namely, ideal electric
conductivity of the boundaries. It is interesting that this feature is quite robust � from the formal point of view
our problem is evidently quite di�erent from the one considered in [67].

Steady state velocity Steady state magnetic �eld

Steady state temperature Steady state energy spectra

Figure 2 Basic (steady state) �elds and corresponding energy spectra. Symmetry about the z-axis is observed in all of
the displayed �elds.
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S1 : velocity S1 : magnetic �eld

S1 : temperature S1 : energy spectra

Figure 3 S1 �elds and corresponding energy spectra. Anti-symmetry about the z-axis is observed in all of the displayed
�elds.

S2 : velocity S2 : magnetic �eld

S2 : temperature S2 : energy spectra

Figure 4 S2 �elds and corresponding energy spectra. Anti-symmetry about the z-axis is observed in all of the displayed
�elds.
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S3 : velocity S3 : magnetic �eld

S3 : temperature S3 : energy spectra

Figure 5 S3 �elds and corresponding energy spectra. Anti-symmetry about the z-axis is observed in all of the displayed
�elds.

S4 : velocity S4 : magnetic �eld

S4 : temperature S4 : energy spectra

Figure 6 S4 �elds and corresponding energy spectra. Anti-symmetry about the z-axis is observed in all of the displayed
�elds.
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W(0) : velocity W(0) : magnetic �eld

W(0) : temperature W(0) : energy spectra

Figure 7 Short-scale structure of W(0), for λmax
2 . Anti-symmetry about the z-axis is observed in all of the displayed

�elds.

Γ11 : velocity Γ11 : magnetic �eld

Γ11 : temperature Γ11 : energy spectra

Figure 8 Γ11 �elds and corresponding energy spectra. Symmetry about the z-axis is observed in all of the displayed
�elds.

5 Concluding Remarks

We have derived an eigenvalue equation for large-scale perturbation modes of a CHM steady state. On average
(over small spatial scales) the modes are, in the leading order, simple harmonic waves. Their growth rates are
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controlled by the combined di�usivity tensor, involving molecular kinematic viscosity and magnetic di�usivity
and an additional tensor � the so-called combined eddy (turbulent) di�usivity correction, which is anisotropic
(the entries of the matrix E′ depend on the direction of the wave vector q), and which intermixes the in�uence
of the �ow and magnetic �eld. Originally this mutual in�uence is due to advection (the in�uence of the �ow on
magnetic �eld) and the action of the Lorentz force (the in�uence of the magnetic �eld on the �ow), but it has
now a di�erent algebraic form � in particular, unlike in these basic physical laws, it is, on average, linear.

We have found that about 10% of randomly generated steady CHM regimes, that are stable to short-scale
perturbations, exhibit negative eddy di�usivity; such steady states are unstable to large-scale perturbations.
However, the growth rate of the perturbation is quadratic in the scale ratio ε, i.e. it is small. Thus, this instability
can be observed only if the considered CHM steady state is stable to short-scale perturbations, which would
have larger (O(ε0)) growth rates otherwise. Other competing linear instabilities may also persist. For instance,
in thermal convection in a rotating layer with free boundaries (with no magnetic �eld present), steady rolls,
steady square cells, standing and travelling waves near the onset were demonstrated [58, 59] to be unstable
to large-scale perturbations of a particular form (the small angle instability), with the growth rates scaling as
O(ε2) for the rolls and the cells, and O(ε) for the waves (here ε is the smallest scale ratio in the system); the
rolls and square cells possess symmetry about the vertical axis.

The restriction that the perturbed CHM state is steady can be lifted [62]. Instead of averaging over fast spatial
variables, averaging over the spatio-temporal domain of fast variables must then be performed. This allows, in
particular, to carry out the stability analysis of time-periodic CHM states. However, in any case the perturbed
states are required to be symmetric (for instance, symmetry about the vertical axis, as considered here). Parity
invariance is another type of symmetry consistent with the CHM equations, if the Joule term is neglected. Like
the symmetry about the vertical axis, it guarantees that no α-e�ect emerges and it allows to construct a second
order combined eddy di�usivity operator by the same method of homogenisation.

Di�erent multiscale expansions are obtained for di�erent sets of conditions imposed at the horizontal boundaries
of the layer. Often considered alternative boundary conditions include the no-slip condition for the �ow, an
isolator outside the �uid layer condition for the magnetic �eld, and heat insulating boundaries (zero heat �ux
condition) for temperature. They can be of interest, for instance, in geophysical applications (for which the no-
slip condition at the outer kernel boundaries and the isolator condition at the outer boundary of the spherical
layer are more appropriate than those considered here). The method of homogenisation that we have used relies
on the existence of constant vector �elds in ker(PA(0)∗P). In addition to the two constant horizontal vectors in
the �ow and magnetic �eld components considered here, another scalar constant, a �xed temperature, belongs
to ker(PA(0)∗P), if Joule heating is neglected (σ = 0) and the zero heat �ux condition for temperature is
assumed. Therefore, the procedure of homogenisation that we have used can be applied if, at least, one of the
following conditions is imposed on the horizontal boundaries: free boundaries, or conducting boundaries, or
no heat �ux. Each quantity, satisfying boundary conditions from this list, increases dimension of the problem
for large-scale mean-�elds obtained from the solvability condition for the equations emerging at order 2. The
remaining ones (temperature in the particular case that we have considered here) are essentially short-scale and
only a�ect, via solutions of auxiliary problems at orders 0 and 1, the values of coe�cients in the combined eddy
di�usivity tensor for the large-scale quantities. The boundary conditions for which this approach is not directly
applicable (i.e. the no-slip boundary condition for the �ow, or the insulator condition for the magnetic �eld,
or �xed temperature) can apparently still be treated by the homogenisation method that we have applied, but
this requires considering boundary layers, increasing signi�cantly the complexity of the problem.

A common feature of astrophysical convective systems, such as interiors of planets or stars, is rotation. A
straightforward incorporation of the Coriolis force in the analysis is inconsistent with the homogenisation pro-
cedure that we have used: averaging of the linearised Navier-Stokes equation (for the free boundary conditions)
shows that constant average non-zero horizontal velocities give rise to a non-zero average Coriolis force, which
can be balanced only by a constant gradient of pressure. This suggests an unbounded linear growth of pres-
sure, which is not, however, unphysical: in a rotating system only pressure can o�set the centrifugal force. The
simplest way to overcome the resultant algebraic di�culties is to consider the vorticity equation, for which the
methods for construction of the two-scale expansion are applicable without any modi�cations.
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