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Abstract

We establish an analog of the Morgan theorem for the Kontorovich-Lebedev operator
of general complex index.
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Let f(t) be a complex-valued measurable function defined on ¢t € Ry = (0,00). We deal
with the following Kontorovich-Lebedev operator of general complex index

Kelf] = / T Ka(O)f(t)dt, z =z +iy €C, 1)
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which is a modification of the Kontorovich-Lebedev transformation (y = 0) (cf. [5], [6]) with
respect to an index of the Macdonald function K, (¢) [2]. As it is known, the function K, ()
satisfies the differential equation
d*u  du
Pt t— — (P + 1 )u=0 2
for which it is the solution that remains bounded as ¢ tends to infinity on the real line. The
Macdonald function has the asymptotic behaviour [2]

K, (t) = (%)1/2 e '[1+0(1/t)], t — oo, (3)

and near the origin
i tRIK, (1) = O(1), t — 0, (4)
Ky(t) = —logt+O(1), t — 0. (5)

It can be defined by the following integral representations [5], [6]

K,(t) = / e~ teosh cosh vudu, t > 0, (6)
0

1 /t\" [ t2
K,(t) = 5 (5) /0 e " ay Y du, t > 0. (7)

Hence we easily find that K, (t) is a real-valued positive function when v € R and an even
function with respect to the index v. Moreover, it satisfies the following inequality

1K, (t)] < Kpeo(t), t > 0. 8)

Applying (8) to the kernel K;,(t) and using (6) we conclude, that this is an entire function
with respect to z satisfying the inequality

|Ki.(t)] < Ky(t), t >0, z=x+1y. (9)

For the function K,(t) we will use the following estimate (see [7])

K,(t) < CO;? exp Pyo[a + (2([@42— 1))!} , >0, yeR, (10)

where o, 3 > 1, é + = =1, [#] is an integer part of 5 and the constant does not depend on
t, .

Let us assume that f in (1) satisfies the condition
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MORGAN’S THEOREM

i.e. f is integrable in the weighted Lebesgue space

/Ooo|f(t)|exp {%}jm'} %<oo, 8>2

Hence taking (1), we estimate the absolute value of the Kontorovich-Lebedev transform. In-
deed, invoking (10) and (11) we obtain the estimate

K.Lf) < / KL ()£ ()t

o [0 2 I dt o
< Const.eya/ |f(t)] exp {M} — = Const.e%,
0 at Vi
which drives us to the inequality
1yl
| Ki(z+iy) [f]| < const.e e (12)
for all z,y € R and o = % €]1,2[. Therefore K;,[f] is entire on C. Furthermore, assuming

that its restriction on R, which is the classical Kontorovich-Lebedev transform K, [f], belongs
to L, (R; e”'l“‘adx) , p € [1,00] with p > ésin 5(a —1), we apply the Phragmen- Lindelof type
lemma from [1] in order to conclude that K;.[f] = 0.

On the other side condition (11) and integral representation (6) with Fubini’s theorem

guarantee the following composition equality
1 o0 . o0
Kilfl =5 [ emomau [~ erepaa (13
—00 0

in terms of the Fourier and Laplace transforms. Therefore the conclusion above K;,[f] = 0
yields

/OO e~teoshu p()dt = 0, (14)
0

because

ey“/ eteoshu f()dt € Ly(R; du)
0

for any y € R. In fact, we have (see (10))

1 [ oo
- / e YU / €_tCOShuf(t)dt
2 —00 0

1 oo o
du < 5/ e_y“du/ e~teoshu £(4)|dt
- 0

o0

— [ Kol < o

This means that f € Li(Ry; Ko(t)dt). Consequently, from (14) and discussions in [7], Section
3 we get that f = 0 almost for all ¢ > 0. Thus we have proved the following analog of the
Morgan theorem [3] for the Kontorovich-Lebedev transform.
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Theorem. Let p € [1,00] and

e i (Reonp | PR ) o
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Let the Kontorovich-Lebedev transform K;.[f], which is a restriction of the general Kontorovich-
Lebedev operator (1) on the real line, belong to the space

| 6
L, (R;ep‘ | dm) L= ﬁ’

where p > Lsin Z(aw—1). Then f(t) is null almost for all t > 0.
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