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Abstract

We propose an extension to the double iteration method, the Mul-
tipower Defect Correction method, which is used to refine approximate
eigenelements of integral operators. It consists of an inner/outer iteration
where, inside a defect correction iteration, p steps of a power iteration
are used. The approximate inverse used in the defect correction is built
with an approximation to the reduced resolvent operator of a small size
discretization of the integral operator. The kernel of the integral operator
may be weakly singular. The proof of the convergence of this Multipower
Defect Correction method is presented and a numerical example illustrates
the behavior of the method.
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1 Introduction

Let us consider the computation of a cluster of nonzero eigenvalues and associ-
ated invariant subspace basis, for an integral operator T defined on a Banach
space X. Let L(X) be the Banach algebra of all bounded linear operators from
X into itself, T ∈ L(X) and all the norms be denoted by ‖ · ‖.

The Multipower Defect Correction (MDC) method, which is a generaliza-
tion of the double iteration described in [2], starts with an initial approximation
obtained, for instance, with a Kantorovitch method, where the operator T is
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projected onto Xn, a finite dimensional subspace of X. The use of this refine-
ment method requires only the solution of an initial matrix eigenproblem of
moderate size (to be solved only once). These initial spectral elements are then
refined by a special defect correction formula to yield an approximation to the
spectral elements of T . Let T : X → X be defined by,

(Tx)(τ) =

∫
Ω

g(|τ − τ ′|)x(τ ′)dτ ′, τ ∈ Ω,

where the kernel g is possibly weakly singular (in the sense given in [3]) and Ω
is a real interval. The spectral problem to be solved is

TΦ = ΦΘ, (1)

where Φ ∈ Xµ is the invariant subspace basis and Θ (a complex µ × µ ma-
trix) has as eigenvalues the cluster we seek. Xµ is the product space hav-
ing µ factors equal to X, the norm in this space will still be denoted by
‖ · ‖ for the sake of simplicity. T denotes the application of T to each ele-
ment of an ordered family of µ elements of X. The meaning of ΦΘ is ΦΘ =[
µ∑
j=1

Θ(j, 1)Φ(j), . . . ,
µ∑
j=1

Θ(j, µ)Φ(j)

]
for Φ = [Φ(1), . . . ,Φ(µ)].

Given a finite dimensional subspace Xn spanned by en = {(en,j) , j =
1, ..., n} let us denote by e∗n = {

(
e∗n,j

)
, j = 1, ..., n} the adjoint basis of en.

The Kantorovitch method, consists in approximating (1) by

TnΦn = ΦnΘn (2)

where Tn denotes the application of Tn to each element of an ordered family
of µ elements of Xn, and Tn is such that Tnx = πnTx with the projections

πn defined by πnx =
n∑
j=1

〈x, e∗n,j〉en,j , 〈·, e∗n,j〉 being the duality product. The

sequence of these projections converges to the identity operator on X pointwise,
when n goes to infinity.

For this method the convergence of (Tn)n≥1 to T is uniform which is a special
case of the ν−convergence defined in [2]: ‖Tn‖ is bounded, ‖(Tn − T )T‖ → 0
and ‖(Tn − T )Tn‖ → 0.

Let Φ be normalized by 〈Φ , Φ∗n〉 = Iµ where 〈· , ·〉 is a Gram matrix of the
duality products of each function of Φ by each function of Φ∗n (so Φ may depend
on n). The normalizing functions are such that TnΦ∗n = Φ∗nΘn.

We make the following assumptions: Θ 6= 0 has eigenvalues isolated from 0,
‖Φn‖ = 1, 〈Φn , Φ∗n〉 = Iµ, 〈Φ , Φ∗n〉 = Iµ.

For sufficiently large n ([2],[6]), there exists µ clustered nonzero eigenvalues
of Θn and Tn, and the corresponding invariant subspace basis Φn, such that

max{|tr(Θ)/µ− tr(Θn)/µ| , ‖Φ− Φn‖} ≤ c‖(Tn − T )Φ‖. (3)
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Proposition 1. For each k ∈ N there exists a constant ck such that, for all n
large enough,

max{|tr(Θ)/µ− tr(Θn)/µ|, ‖Φ− Φn‖} ≤ ck‖(Tn − T )T k‖. (4)

Proof. It follows from (3), since Φ =
(
T kΦ

)
(Θk)−1 and ‖Φ‖ ≤ 2 ([2], p 98,

where the corresponding to our Φ is denoted by ϕ(n)).

The matrix eigenproblem Anun = unΘn, where An(i, j) = 〈Ten,j , e∗n,i〉, for
all i = 1, ..., n and j = 1, ..., n, a representation of Tn restricted to Xn, yields
the initial spectral elements of Tn : Θn and Φn = enun. Remark that un is a
n× µ matrix and Θn is a n× n complex matrix.

2 Multipower Defect Correction Algorithm

The accuracy of the initial approximation may be poor for moderate n and can
be improved refining it by an inner/outer iteration that has p steps of a power
iteration inside a defect correction applied to F (x) = 0, where F : Xµ → Xµ is
defined by

F (x) = Tx− x〈Tx,Φ∗n〉. (5)

Let Σn : Xµ → Xµ be the block reduced resolvent operator of Tn cor-
responding to the spectrum of Θn, i.e., Σn := G−1

n (I − Pn), where Gnx :=
(I − Pn)Tnx − xΘn, for all x ∈ Xµ, and Pn is the spectral projection of Tn
corresponding to the spectrum of Θn: Pnx := Φn〈x , Φ∗n〉. The computation of
x = Σny for a given y ∈ Xµ, amounts to solve the Sylvester equation

Tn(I − Pn)x− xΘn = (I − Pn)y. (6)

The algorithm starts with an approximation Φn to the invariant subspace
basis of Tn and produces an approximation ξ(k+1) to the invariant subspace
basis of the operator T .

Algorithm 1. Multipower Defect Correction method
ξ(0) = Φn; k = 0;
while ‖F (ξ(k))‖ > ε

ϕ(k,0) = ξ(k);
for j = 1, 2, ..., p

Θ(k,j−1) = 〈Tϕ(k,j−1),Φ∗n〉; ϕ(k,j) =
(
Tϕ(k,j−1)

)
(Θ(k,j−1))−1;

ξ(k+1) = ϕ(k,p) − Σn(F (ϕ(k,p))); k = k + 1;

3 Convergence

The proof of convergence of this method follows the proof of the convergence of
double iteration ([2], p. 145) but it is essentially different, as we can see in the
following.
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In order to simplify the notation we introduce the following abbreviations:
e(k) := ξ(k) − Φ and e(k,j) := ϕ(k,j) − Φ. As it was already defined in the
algorithm, we will have Θ(k,j) := 〈Tϕ(k,j) , Φ∗n〉, for j = 0, ..., p− 1.

Proposition 2. For all n, k and j = 1, ..., p, if 〈Tϕ(k,j−1) , Φ∗n〉 6= 0 then
Pnϕ

(k,j) = Φn, PnF (ϕ(k,j)) = 0 and Pne
(k,j) = 0.

Proof. From the algorithm 〈ϕ(k,j) , Φ∗n〉 = Iµ, Pnϕ
(k,j) = Φn〈ϕ(k,j) , Φ∗n〉 = Φn.

PnF (ϕ(k,j)) = Φn〈Tϕ(k,j) , Φ∗n〉 − Φn〈ϕ(k,j) , Φ∗n〉〈Tϕ(k,j) , Φ∗n〉 = 0. Finally,
Pne

(k,j) = Pn(ϕ(k,j) − Φ) = Φn − Φn = 0, and the proof is complete.

Proposition 3. For all k, and for j = 0, ..., p− 1, if 〈Tϕ(k,j) , Φ∗n〉 6= 0,

e(k,j+1) =
[
Te(k,j) − Φ 〈Te(k,j) , Φ∗n〉

]
(Θ(k,j))−1, (7)

e(k,p) =
[
T pe(k,0) − Φ 〈T pe(k,0) , Φ∗n〉

]
(Θ(k,0))−1 · · · (Θ(k,p−1))−1. (8)

Proof.

e(k,j+1) = ϕ(k,j+1) − Φ

= Tϕ(k,j)(Θ(k,j))−1 − Φ + TΦ(Θ(k,j))−1 − TΦ(Θ(k,j))−1

=
[
Te(k,j) − Φ〈T (ϕ(k,j) − Φ) , Φ∗n〉

]
(Θ(k,j))−1

=
[
Te(k,j) − Φ 〈Te(k,j) , Φ∗n〉

]
(Θ(k,j))−1.

For p = 1 in formula (8), e(k,1) =
[
Te(k,0) − Φ〈Te(k,0) , Φ∗n〉

]
(Θ(k,0))−1. If

the formula (8) is true for j = 0, ..., p− 1, then

e(k,p) =
[
Te(k,p−1) − Φ〈Te(k,p−1) , Φ∗n〉

]
(Θ(k,p−1))−1

=
[
T
(
T p−1e(k,0) − Φ〈T p−1e(k,0) , Φ∗n〉

)
(Θ(k,0))−1 · · · (Θ(k,p−2))−1 −

−Φ〈T
(
T p−1e(k,0) − Φ〈T p−1e(k,0) , Φ∗n〉

)
(Θ(k,0))−1 · · · (Θ(k,p−2))−1 , Φ∗n〉

]
(Θ(k,p−1))−1

=
[
T pe(k,0) − TΦ〈T p−1e(k,0) , Φ∗n〉 −

−Φ〈
(
T pe(k,0) − TΦ〈T p−1e(k,0) , Φ∗n〉

)
, Φ∗n〉

]
(Θ(k,0))−1 · · · (Θ(k,p−1))−1

=
[
T pe(k,0) − Φ〈T pe(k,0) , Φ∗n〉

]
(Θ(k,0))−1 · · · (Θ(k,p−1))−1.

Proposition 4. For all n large enough and all k,

e(k+1) = Σn

[
(Tn − T )e(k,p) + e(k,p)(Θ−Θn) + e(k,p)〈Te(k,p) , Φ∗n〉

+(Φ− Φn)〈Te(k,p) , Φ∗n〉
]
.
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Proof. SinceG−1
n (I−Pn) = Σn, (I−Pn)e(k,p) = e(k,p),ΣnΦn = 0, then PnF (ϕ(k,p)) =

0, F (Φ) = 0, and (I − Pn)Φn = 0, and since Gn and Pn commute, we have

e(k+1) = ϕ(k,p) − Φ− ΣnF (ϕ(k,p))

= G−1
n

[
Gne

(k,p) − (I − Pn)F (ϕ(k,p))
]

= G−1
n (I − Pn)

[
Tne

(k,p) − e(k,p)Θn − F (ϕ(k,p)) + F (Φ)
]

+(Φ− Φn)〈Te(k,p) , Φ∗n〉
]
.

Proposition 5. For all n large enough and all k, if 〈Tϕ(k,j−1) , Φ∗n〉 6= 0 for
all j = 1, ..., p,

e(k+1) = Σn

[
(Tn − T )T pe(k) + T pe(k)(Θ−Θn) + T pe(k)〈T pe(k,p) , Φ∗n〉+

+(Φ− Φn)〈T p+1e(k) , Φ∗n〉
]
(Θ(k,0))−1 · · · (Θ(k,p−1))−1 −

−Σn

[
Tn(Φ− Φn)〈T pe(k) , Φ∗n〉+ (Φ− Φn)〈T pe(k) , Φ∗n〉(Θ−Θn) +

+(Φ− Φn)〈T pe(k) , Φ∗n〉〈T
pe(k,p) , Φ∗n〉

]
(Θ(k,0))−1 · · · (Θ(k,p−1))−1.

Proof. It follows immediately from Proposition 3 and Proposition 4.

Proposition 6. For all n large enough, all k and j = 0, ..., p, ‖Θ(k,j)‖ ≥ ‖Θ‖2 .

Proof. Suppose that for a given p (number of power iterations) and all j =

1, ..., p,
∥∥Θ(k,j−1)

∥∥ ≥ ‖Θ‖2 . Let c∗ be such that, for n large enough, 1 ≤ ‖Φ∗n‖ ≤
c∗. By Proposition 3, e(k,j) =

[
Te(k,j−1) − Φ 〈Te(k,j−1) , Φ∗n〉

]
(Θ(k,j−1))−1, so

that ‖e(k,j)‖ ≤ β‖e(k,j−1)‖, where β := 2‖T‖
‖Θ‖

[
1 + 2 c∗

]
≥ 6, since ‖Φ‖ ≤ 2 for n

large enough. It follows that for all j = 1, ..., p

‖Θ(k,j) −Θ‖ = |〈T (ϕ(k,j) − Φ) , Φ∗n〉| ≤ c∗‖T‖‖e(k,j)‖
≤ c∗β‖T‖‖e(k,j−1)‖ ≤ c∗βp‖T‖‖e(k)‖.

Proposition 5 shows that, for n sufficiently large, ‖e(k)‖ ≤ ‖e(0)‖, and since
there is a constant cp such that, for n large enough, ‖e(0)‖ ≤ cp‖(Tn − T )T p‖,
we conclude that ‖Θ(k,j) − Θ‖ tends to 0 as n tends to infinity uniformly in

(k, j). Hence, for all n large enough, ‖Θ(k,j) − Θ‖ ≤ ‖Θ‖2 , and ‖Θ(k,j)‖ ≥ ‖Θ‖2 ,
independently of k, and for all j = 1, ..., p.

Theorem 7. There exist constants γ0 and γ such that, for n large enough, and
all k ≥ 0,

‖e(k)‖ ≤ γ0‖(Tn − T )T p‖(γ‖(Tn − T )T p‖)k. (9)
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Proof. Propositions 1 and 5 show that there exists γ such that, for n sufficiently
large, ‖e(k+1)‖ ≤ γ‖(Tn − T )T p‖ ‖e(k)‖. But there exists γ0 such that, for n
sufficiently large, ‖e(0)‖ ≤ γ0‖(Tn − T )T p‖, and the bound (9) follows.

The bound (9) improves over the one for the double iteration when ||T || is
less than one as it is the case of the following example that comes from a real
life model with a very interesting weakly singular kernel, the first exponential
integral function (see [1]). Although it is a simplified model, it is of real use ([8],
[7]). The number of iterations and the dimensions of the discretizations needed
are large, however, the total CPU time is quite reasonable.

4 Numerical illustration

To illustrate the performance of the method the following integral operator,

(Tϕ)(τ) =
$

2

∫ τ?

0

E1 (|τ − τ ′|)ϕ (τ ′) dτ ′

issued from a simplified model of the radiative transfer in stellar atmospheres,
defined on X = L1([0, 1]) was used, where τ? is the optical thickness of a stellar
atmosphere, $ ∈ ]0, 1[ is the albedo (assumed to be constant in the present
work) (see [3]).

We considered τ? = 4000, $ = 0.75, and n = 800. For details on how to
derive the corresponding matrix form see [4] or [5]. As the operator T may not
be available in closed form, for computational purpose, we used a finer matrix
representation of it of dimension m = 4000.

A moderate size eigenproblem, 800 × 800, is solved to obtain the initial
approximation and another one is solved to obtain the vector used in the nor-
malizations, before starting the iteration MDC.

As the eigenvalues of this operator are simple the computation of Σny is
here reduced to the solution of a (n + 1) × n linear system of equations (the
extra row in the system corresponds to the restriction of the solution to be in
the (I − Pn)X subspace) with the same coefficient matrix and different right
hand sides. This solution was done by LU decomposition with partial pivoting
once for all.

The computations were done on a personal computer using MATLAB.
Table 1 shows the performance of the MDC method. Increasing values of

p imposes a reduction both on the number of outer iterations to convergence
and on the CPU time, showing the effectiveness of using cheap inner iterations
(although they involve products by the m dimensional matrix Am representing
T in the subspace Xm) to reduce the number of expensive outer iterations
(they involve the solution of a moderate size linear system of equations and one
prolongation step). Furthermore, the double iteration method, p = 1, could
not achieve convergence for the fifth eigenpair.The role of the inner iteration to
accelerate the computations is very important as we can see from Table 1.
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Table 1: Number of outer iterations and total CPU time (sec) for several eigen-
values (and corresponding eigenvectors), for a tolerance less than 1e-12.

p = 1 (double it.) p = 5 p = 20
eig n. it. cpu time outer iter. total cpu time outer iter. total cpu time
1 349 346.2 138 146.9 72 92.3
2 411 406.6 161 170.2 84 106.9
3 495 489.0 192 201.4 99 125.1
4 630 620.5 241 251.8 122 152.5
5 * * 265 278.2 125 156.3

For the five largest eigenvalues in magnitude, the initial approximation, the
refined one computed with the MDC method for a tolerance of 1e− 12, and the
respective eigenvalues of the Am matrix, are presented in Table 2. We can check
that the refined values are as good as if we had proceeded with the Kantorovitch
method to the dimension m = 4000.

Table 2: Initial eigenvalues approximation to be refined, corrected approximate
eigenvalues for tol = 1e− 12.

eig initial eigenvalue refined eigenvalue eigenvalue of A4000

approximation (tol = 1e− 12)

1 0.7499992074916 0.7499997185840 0.74999971858403
2 0.7499970999445 0.7499990781097 0.74999907810973
3 0.7499942701664 0.7499978858383 0.74999788583835
4 0.7499894135218 0.7499959814241 0.74999598142415
5 0.7499814539823 0.7499937902837 0.74999379028378

In Table 3 we show number of iterations and CPU time (sec) for the ap-
proximation of the largest eigenvalues and associated eigenvectors for m = 4000
and p = 20 for coarse and fine tolerances. The method shows good behavior
for both tolerances with a slight degradation in performance when looking for
eigenvalues of smaller absolute value, as expected.

The MDC method is very performant even for coarse tolerances on the norm
of the residual, especially when the number of eigenvalues to compute is not
large. Moreover it has the advantage of being simple to understand and imple-
ment.
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