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Abstract. A proof of an orthogonality relation for the MacDonald’s functions
with identical arguments but unequal complex lower indices is presented. The
orthogonality is derived first via a heuristic approach based on the Mehler-Fock
integral transform of the MacDonald’s functions, and then proved rigorously using
a polynomial approximation procedure.

1. INTRODUCTION

Certain problems of mathematical physics arising in spheroidal or cylindrical do-
mains, e.g. Laplace’s equation, have solutions that involve MacDonald’s functions
[1] and conical functions [1] [2]. These functions which also enter integral transforms
such as those of Kontorovich-Lebedev, and Mehler-Fock as kernels [3] find important
applications in boundary value problems of electrostatics and elasticity [4]. These
applications typically entail modeling material domains [5]-[7] or voids in material
domains [8] with the appropriate continuous surfaces generated by fixing one of the
coordinates in the chosen coordinate system [9].

The study of one such problem [10], where the probe of an Atomic Force Microscope
(AFM) [11] was modeled as a hyperboloid of revolution, resulted in the following
newly derived integral expansion for the Cartesian coordinate z [12]

(1.1) z = −πz0

∫ ∞

1

η′ dη′
∫ ∞

0

q tanh πq

cosh πq
P 0
− 1

2
+iq

(0)
[
P 0
− 1

2
+iq

(µ)− P 0
− 1

2
+iq

(0)
]

× P 0
− 1

2
+iq

(η′)P 0
− 1

2
+iq

(η) dq,

where z0 is a scale factor that defines the focal distance of the hyperboloid in the
spheroidal (η, µ, ϕ) coordinate system, and the P s denote the conical functions . This
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integral expansion comprises the key element in the study of the Coulomb interaction
of the AFM’s dielectric probe with a charged substrate or sample surface. Here the
charge distribution can be the result of an applied potential difference between the
probe and the sample, or a result of the sample being naturally charged [13]. A
crucial step in proving this expansion is the validity of the following orthogonality
relation for the MacDonald’s functions of identical arguments but different complex
lower indices

(1.2)
2

π2
q′ sinh(πq′)

∫ ∞

0

Kiq(α)Kiq′(α)

α
dα = δ(q − q′),

where the Ks denote the MacDonald’s functions. A similar orthogonality relation for
the conical functions, also utilized in the proof of the expansion in (1.1), was first
derived by Van Nostrand [14]. In short, the proof there involved considering the asso-
ciated Legendre equation being satisfied by two linearly independent solutions. The
differential equation was then manipulated and integrated, whereupon the orthog-
onality relation was derived by resorting to limiting considerations and asymptotic
expansions of the conical functions. We also note that Titchmarsh [25] proves a dual
orthogonality relation for the MacDonald’s functions

(1.3)
2

π2 α

∫ ∞

0

q sinh(πq)Kiq(α)Kiq(α
′) dq = δ(α− α′),

α, α′ > 0.
The proof of the orthogonality relation in (1.2) is the aim of this paper. In this

work, Section 2 defines the MacDonald’s and the conical functions and presents a
couple of relevant propositions concerning properties of these functions, followed by
their proofs. In Section 3, the main section, a heuristic derivation for (1.2) based on
an integral representation for the conical functions and the Mehler-Fock transform
is outlined. Moreover, in Section 3, we introduce the Orthogonality Theorem which
states (1.2) and also present its proof. We also note that a different approach to
this orthogonality problem, based on the analytic properties of testing functions for
distributions has been considered in [28].

2. MACDONALD’S AND CONICAL FUNCTIONS

Let N0 = {0, 1, 2, 3, . . .} and define the MacDonald’s functions ([1] or [3] page 354,
6-1-6) by

(2.1) Kiq(α) =

∫ ∞

0

e−α cosh ζ cos(qζ) dζ, where α, q > 0.

The above can also be written as (see [15], [16])

(2.2) Kiq(α) =
π

2i sinh(πq)
[I−iq(α)− Iiq(α)],
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where Iν(α) are the modified Bessel functions

Iν(α) =
∞∑

r=0

1

r! Γ(r + ν + 1)

(α

2

)2r+ν

.

For η = cosh ζ and ζ ≥ 0, define the conical functions

(2.3) Pm
− 1

2
+iq

(η) =
2m+1Zm

q tanhm ζ
2

π(2m− 1)!! cosh ζ
2

∫ π
2

0

cos
[
2q sinh−1

(
sinh ζ

2
cos y

)]
sin2m y√

1− tanh2 ζ
2
sin2 y

dy,

where m ∈ N0, (−1)!! = 1, Z0
q = 1, and

Zm
q = (−1)m

(
q2 +

1

4

)(
q2 +

9

4

)
· · ·

(
q2 +

(2m− 1)2

4

)
,(2.4)

with Z0
q = 1 (see [17], [18], [1], [3]). For asymptotic expansions and numerical con-

siderations regarding the conical functions see [19], [20] and the references therein.
We conclude this section by proving two results, which will be used throughout the

rest of this paper.

Proposition 2.5. For all α, q > 0

(2.6) |Kiq(α)| ≤
√

π

q sinh(πq)
eα,

and

(2.7) |Kiq(α)| ≤
√

π

2α
e−α.

Proof. From the property of the Gamma function [16], we have

Γ(r + 1± iq) = (1± iq)(2± iq) · · · (r ± iq)Γ(1± iq)
def
:= ar(±q)Γ(1± iq),

with a0(q) = 1. Noting that |ar(q)| = |ar(−q)|, (2.2) implies

|Kiq(α)| ≤ π

2 sinh(πq)

(
1

|Γ(1− iq)| +
1

|Γ(1 + iq)|
) ∞∑

r=0

1

r! |ar(q)|
(α

2

)2r

.

Now (2.6) follows from the inequality

∞∑
r=0

1

r! |ar(q)|
(α

2

)2r

≤
∞∑

r=0

1

(r!)2

(α

2

)2r

≤
[ ∞∑

r=0

1

r!

(α

2

)r
]2

= eα,

together with the fact (see [15], [21])

(2.8) |Γ(1± iq)| =
√

πq

sinh(πq)
.
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Next, from (2.1), we have

|Kiq(α)| ≤
∫ ∞

0

e−α(1+ 1
2
ζ2) dζ =

√
π

2α
e−α,

which proves (2.7). ¤
Proposition 2.9. Fix η0 > 1 and m ∈ N0. Then there exists a constant C > 0,
depending only on m and η0, such that

(2.10)

∣∣∣∣
dm

dηm
P 0
− 1

2
+iq

(η)

∣∣∣∣ ≤ C q2m

for all q > 0 and η ∈ [1, η0].

Proof. The proof uses the following relation1 for the conical functions.

(2.11)
dm

dηm
P 0
− 1

2
+iq

(η) =
(
η2 − 1

)−m
2 Pm

− 1
2
+iq

(η),

where η ≥ 1, q > 0, and m ∈ N0 (see [3] or [18], p. 334, (8.6.6)). Fix q > 0 and let

K(k) =

∫ π
2

0

1√
1− k2 sin2 y

dy.

Noting that
∣∣∣ tanh ζ

2

sinh ζ

∣∣∣ ≤ 1
2
, for all ζ ≥ 0, (2.3) and (2.11) imply

∣∣∣∣
dm

dηm
P 0
− 1

2
+iq

(η)

∣∣∣∣ ≤
2|Zm

q |
π(2m− 1)!!

K(tanh
ζ0

2
),

where η = cosh ζ ∈ [1, η0], ζ ∈ [0, ζ0], η0 = cosh ζ0. To complete the proof use (2.4)
to conclude |Zm

q | ≤ Cmq2m, where Cm > 0 depends only on m. ¤

3. MAIN RESULT

We start with a heuristic derivation of the orthogonality relation. Consider the
zero order Mehler-Fock transform of e−αη as given by [3]

(3.1) e−αη =

√
2

πα

∫ ∞

0

q tanh(πq)Kiq(α)P 0
− 1

2
+iq

(η) dq,

where η = cosh ζ ∈ [1,∞[, α ≥ 0, and q ≥ 0. Using the integral representation in
(2.3) for the conical functions, the following integral representation for the zero order
conical functions can be derived [3]

(3.2) P 0
− 1

2
+iq

(η) = 2
1
2 π−

3
2 cosh(πq)

∫ ∞

0

e−αη Kiq(α)√
α

dα.

1We note here that, although indifferent in the present work, for the general form of the conical
functions Pm

− 1
2+iq

(z), and for −1 < z < 1, some references introduce a (−1)m multiplicative factor

to the right hand side of (2.11) [2][p. 148].
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Representing the latter integral as limε→0+

∫∞
ε

, we substitute (3.2) in (3.1) and change
the order of integration via Fubini’s Theorem. This yields
(3.3)

P 0
− 1

2
+iq

(η) =
2

π2
cosh(πq) lim

ε→0+

∫ ∞

0

q′ tanh(πq′)P 0
− 1

2
+iq′(η) dq′

∫ ∞

ε

Kiq(α)Kiq′(α)

α
dα.

Since η is arbitrary, (3.3) would lead us to expect that the expression in the left side
of (1.2) is the Dirac distribution δ(q − q′). In fact, this is the content of our main
result.

Orthogonality Theorem . For each q, q′ > 0

2

π2
q′ sinh(πq′)

∫ ∞

0

Kiq(α)Kiq′(α)

α
dα = δ(q − q′),

where δ denotes the Dirac distribution.

Before giving the proof of the Orthogonality Theorem, we need a few preliminary
results. Also, for q, q′, ε > 0, let

F (q, q′; ε) =
2

π2
q′ sinh(πq′)

∫ ∞

ε

Kiq(α)Kiq′(α)

α
dα.

Note that, by (2.7), the above integral converges for all ε > 0; a fact which will be
used throughout the paper.

Proposition 3.4. If q > 0 and n ∈ N0, then

(3.5) q2n sech(πq) = lim
ε→0+

∫ ∞

0

q′2n
sech(πq′)F (q, q′; ε) dq′,

Proof. To simplify the notation, we put P 0
q (η) = P 0

− 1
2
+iq

(η). Also, throughout the

proof, different positive constants will be denoted by C. Now, let η ≥ 1 and m ∈ N0.
We begin by proving the following two identities.

(3.6)

√
2

π3
cosh(πq)

∫ ∞

0

(
dm

dηm
e−αη

)
Kiq(α)√

α
dα =

dm

dηm
P 0

q (η)

and

(3.7)
dm

dηm
e−αη =

√
2

πα

∫ ∞

0

Kiq(α)q tanh(πq)
dm

dηm
P 0

q (η) dq, ∀α > 0.

For m = 0, the above identities are equations (3.1) and (3.2) mentioned above. More-
over, we only prove the case m = 1. The proof for m ≥ 2 follows inductively and is
similar to the one given for the case m = 1.

For h ∈ R, (3.1) gives

(?)
P 0

q (η + h)− P 0
q (η)

h
=

√
2

π3
cosh(πq)

∫ ∞

0

fh(α) dα,
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where

fh(α) =
e−α(η+h) − e−αη

h

Kiq(α)√
α

.

Noting that | e−α(η+h)−e−αη

h
| ≤ C|α| for |h| sufficiently small, it follows from (2.7) that

|fh(α)| is dominated by C e−α, which obviously belongs to L1(0,∞). Letting h → 0 in
(?), the Lebesgue Dominated Convergence Theorem implies (3.6) for the case m = 1.

Similarly, for h ∈ R, (3.2) gives

e−α(η+h) − e−αη

h
=

√
2

πα

∫ ∞

0

gh(q) dq,

where

gh(q) = Kiq(α)q tanh(πq)
P 0

q (η + h)− P 0
q (η)

h
.

By (2.10), |P 0
q (η+h)−P 0

q (η)

h
| ≤ Cq2 for |h| sufficiently small. Thus it follows from (2.6)

that |gh(q)| ≤ Cg(q), where g(q) = q2
√

q
sinh(πq)

. However, g(q) = O(q2) as q → 0; and,

g(q) = O(q
5
2 e−πq/2) as q → ∞. Therefore, g(q) ∈ L1(0,∞) and (3.7) follows from a

similar argument given in the proof of (3.6).
Next, using (3.7) in (3.6) yields

sech(πq)
dm

dηm
P 0

q (η) =
2

π2

∫ ∞

0

(∫ ∞

0

Kiq′(α)q′ tanh(πq′)
dm

dηm
P 0

q′(η) dq′
)

Kiq(α)

α
dα

= lim
ε→0+

2

π2

∫ ∞

ε

(∫ ∞

0

Kiq′(α)q′ tanh(πq′)
dm

dηm
P 0

q′(η) dq′
)

Kiq(α)

α
dα(3.8)

For each ε > 0, one can use (2.6), (2.7), and (2.10) to obtain
∫ ∞

ε

∫ ∞

0

∣∣∣∣q′ tanh(πq′)
Kiq′(α)Kiq(α)

α

dm

dηm
P 0

q′(η)

∣∣∣∣ dq′ dα

≤ C

(∫ ∞

ε

1

α
3
2

dα

)
·
(∫ ∞

0

q′2m

√
q′

sinh(πq′)
dq′

)
< ∞,

where the same argument as the one given in the proof of (3.7) shows that the
last integral in the above inequality is bounded. Therefore, we may apply Fubini’s
Theorem to (3.8):

(3.9) sech(πq)
dm

dηm
P 0

q (η) = lim
ε→0+

∫ ∞

0

sech(πq′)
(

dm

dηm
P 0

q′(η)

)
F (q, q′; ε) dq′,

for each m ∈ N0, q > 0, and η ≥ 1. As a consequence of (2.3) and (2.11)

dm

dηm
Pq(η)

∣∣∣∣
η=1

=
2Zm

q

π(2m− 1)!!

∫ π
2

0

sin2m y dy =
Zm

q

(2m)!!
.

Thus, letting η = 1 in (3.9) and using the fact that Zm
q is an even polynomial in q of

degree 2m, the proof of the proposition follows easily from an inductive argument.
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¤
The next lemma is standard. However, for the sake of completeness, we have

included a proof. Also recall that for a nonempty open set Ω ⊆ R, C∞
c (Ω) denotes

the space of infinitely differentiable functions whose supports are compact subsets of
Ω.

Lemma 3.10. Suppose a > 0 and let φ ∈ C∞
c (R). If δ > 0, then there exists a

polynomial P such that ∣∣φ(x)− P (x)e−a|x|∣∣ < δ, ∀x ∈ R.

Moreover, if φ is an even function, then P may be taken to be an even polynomial.

Proof. Let w(x) = e−a|x| on R and define the weighted L2-space,

L2
w = {f : R→ C|f is measurable,

∫ ∞

−∞
|f(x)|2w(x) dx < ∞}.

It follows that the span of the set of polynomials {xn}∞n=0 ⊂ L2
w is dense in L2

w. A
proof of this fact is similar to that in [23] [Sec. 21.64, p. 416] (where it is proved that
the Hermite polynomials are complete in a weighted L2-space).

Since φ ∈ C∞
c (R), we have φ′(x)ea|x| ∈ L2

w. Thus, from the above fact, there is a
polynomial Q such that

(3.11) ||φ′ea|x| −Q||L2
w

=

∫

R

∣∣φ′(x)ea|x| −Q(x)
∣∣2e−a|x| dx <

√
a

2
δ.

Now, let P (x) = ea|x| ∫ x

−∞ Q(t)e−a|t| dx. Then P is the desired polynomial. To see
this, let x ∈ R. Then

∣∣φ(x)− P (x)e−a|x|∣∣ =

∣∣∣∣
∫ x

−∞

(
φ′(t)−Q(t)e−a|t|) dt

∣∣∣∣

≤
∫

R

∣∣φ′(x)ea|x| −Q(x)
∣∣ e−a|x| dx

≤
(∫

R
e−a|x| dx

) 1
2

||φ′ea|x| −Q||L2
w
.

So the result follows from (3.11).
Suppose now that φ is even. With P as above write P = Pe + Po where Pe (Po) is

an even (odd) polynomial. Then

∣∣Po(x)e−a|x|∣∣ =
1

2

∣∣φ(x)− P (x)e−a|x| − (
φ(−x)− P (−x)e−a|−x|)∣∣ < δ,

on R. This implies
∣∣φ(x)− Pe(x)e−a|x|∣∣ ≤

∣∣φ(x)− P (x)e−a|x|∣∣ +
∣∣Po(x)e−a|x|∣∣ < 2δ,

on R and this proves the second part of Lemma 3.10.
¤



8 A. PASSIAN, H. SIMPSON, S. KOUCHEKIAN, S. B. YAKUBOVICH

Our next and final lemma contains two parts. Only part (ii) will be used in the
proof of the Orthogonality Theorem. Part (i), however, is essential to get (ii) and it
also contains a useful inequality with further application; therefore, it has been stated
separately. Also ‖ · ‖∞ denotes the usual sup–norm.

Lemma 3.12. Let β > 1
2
, and define

Fβ(q, q′; ε) =
1

[cosh(πq′)]β
F (q, q′; ε)

(i) For each q > 0, there exists Cq > 0 (depending only on q) such that

|Fβ(q, q′; ε)| ≤ Cq2
β| ln ε

2
|q′ 12 e−(β− 1

2
)πq′ , for all 0 < ε < 2.

(ii) If ψ : (0,∞) → R is differentiable and bounded on (0,∞), then there exists
Cq,β > 0 (depending only on q, β) such that

lim sup
ε→0+

∣∣∣∣
∫ ∞

0

ψ(q′)Fβ(q, q′; ε) dq′
∣∣∣∣ ≤ Cq,β ‖ψ‖∞.

Proof. From the definition of F (q, q′; ε)

Fβ(q, q′; ε) = G(q, q′, β)

∫ ∞

ε

Kiq(α)Kiq′(α)

α
dα,

where

(3.13) G(q, q′, β) =
2

π2
q′[sech(πq′)]β sinh(πq′).

Fix q > 0. In all that follows, 0 < ε < 2 and different positive constants will be
denoted by C (a pure numerical) or Cq (depending only on q). We estimate Fβ(q, q′; ε)
(β > 1

2
) by considering the integrals

∫∞
2

,
∫ 2

ε
separately in the definition of Fβ. For the

former integral, we have by (2.6), (2.7),
∣∣∣∣G(q, q′, β)

∫ ∞

2

Kiq(α)Kiq′(α)

α
dα

∣∣∣∣ ≤
sinh(πq′)

π[cosh(πq′)]β

√
2q′

sinh(πq′)

∫ ∞

2

α−
3
2 dα

=
2

π
[sech(πq′)]β

√
q′ sinh(πq′).

(3.14)

Next, we estimate
∫ 2

ε

Kiq(α)Kiq′ (α)

α
dα. Recall from (2.2) that

Kiq(α) = A(α, q) + A(α,−q),

where

(3.15) A(α, q) =
πi

2 sinh(πq)
Iiq(α) =

πi

2 sinh(πq)

eiq ln α
2

Γ(1 + iq)

∞∑
r=0

1

r!ar(q)

(α

2

)2r

,

with ar(q) = (1 + iq)(2 + iq) · · · (r + iq) and a0(q) = 1.

Noting that A(α,−q) = A(α, q), it follows

(3.16) Kiq(α)Kiq′(α) = 2<[A(α, q)A(α, q′)] + 2<[A(α, q)A(α,−q′)].
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Now for all real q1, q2 and α > 0, (3.15) implies

(3.17) A(α, q1)A(α, q2) = M(q1, q2)e
i(q1+q2) ln α

2

∞∑
n=0

bn(q1, q2)
(α

2

)2n

,

where

(3.18) M(q1, q2) =
−π2

4 sinh(πq1) sinh(πq2)Γ(1 + iq1)Γ(1 + iq2)
,

and

bn(q1, q2) =
∑

r+s=n
r,s≥0

1

r!s!ar(q1)as(q2)
, n ≥ 0.

Moreover, for all n ≥ 0 and real q1, q2, it is easily seen

(3.19) |bn(q1, q2)| ≤
∑

r+s=n
r,s≥0

1

(r!s!)2
≤

∑
r+s=n
r,s≥0

1

r!s!
=

1

n!

n∑

k=0

(
n

k

)
=

2n

n!
.

Thus, the series in (3.17) converges uniformly α > 0 and all real q1, q2. Consequently,
∫ 2

ε

A(α, q1)A(α, q2)

α
dα = M(q1, q2)

∞∑
n=0

bn(q1, q2)

∫ 2

ε

ei(q1+q2) ln α
2

(α

2

)2n dα

α

= M(q1, q2)
∞∑

n=0

an(q1, q2, ε),

(3.20)

where

(3.21) an(q1, q2, ε) =
bn(q1, q2)

2n + i(q1 + q2)

[
1− ei(q1+q2) ln ε

2

( ε

2

)2n
]

, n ≥ 0.

Since |2n + i(q + q′)| > q for all n ∈ N0 and q, q′ > 0, it follows from (3.20), (3.21),
and (3.19) that

(3.22)

∣∣∣∣
∫ 2

ε

A(α, q)A(α, q′)
α

dα

∣∣∣∣ ≤ |M(q, q′)| 2e
2

q
.

For q′ > 0 and q 6= q′, we have from (3.20)

(3.23)

∫ 2

ε

A(α, q)A(α,−q′)
α

dα = M(q,−q′)a0(q,−q′, ε)+M(q,−q′)
∞∑

n=1

an(q,−q′, ε).

The reason for writing the first term of the above sum separately comes from the
existence of the singularity as q′ → q. This fact becomes more clear throughout the
rest of the proof and specially in the proof of part (ii). Now a similar argument as in
(3.22), together with observation |2n + i(q − q′)| ≥ 2n ≥ 2 for n ≥ 1, implies

(3.24)

∣∣∣∣∣M(q,−q′)
∞∑

n=1

an(q,−q′, ε)

∣∣∣∣∣ ≤ |M(q, q′)|
∞∑

n=1

2n

n!
< |M(q, q′)|e2.
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Also from (3.21) and definition of bn(q,−q′)

< [M(q,−q′)a0(q,−q′, ε)] =
=M(q,−q′)

q − q′

[
cos

[
(q − q′) ln

ε

2

]
− 1

]

−<M(q,−q′)
sin

[
(q − q′) ln ε

2

]

q − q′
.

(3.25)

Using (3.18), we can estimate the first term in (3.25);∣∣∣∣
=M(q,−q′)

q − q′

∣∣∣∣ ≤ |M(q, q′)|
∣∣∣∣

1

q′ − q

[
Γ(1 + iq′)
Γ(1− iq′)

− Γ(1 + iq)

Γ(1− iq)

]∣∣∣∣ ≤ |M(q, q′)|δq,(3.26)

where in the last inequality we have used the properties of the Gamma function to
conclude

δq = sup
q′>0

∣∣∣∣
1

q′ − q

[
Γ(1 + iq′)
Γ(1− iq′)

− Γ(1 + iq)

Γ(1− iq)

]∣∣∣∣ < ∞.

Now putting all pieces together, (3.13), (3.16), (3.20), (3.23) yield

(3.27) Fβ(q, q′; ε) = H1(q, q
′; ε) + H2(q, q

′)
sin

[
(q − q′) ln ε

2

]

q − q′
,

where

(3.28) H1(q, q
′; ε) = G(q, q′, β)

(∫ ∞

2

Kiq(α)Kiq′(α)

α
dα+

2<
[
M(q, q′)

∞∑
n=0

an(q, q′, ε)
]

+ 2<
[
M(q,−q′)

∞∑
n=1

an(q,−q′, ε)
]
+

=M(q,−q′)
q − q′

(
cos

[
(q − q′) ln

ε

2

]
− 1

))
,

and

(3.29) H2(q, q
′; ε) = −G(q, q′, β)<M(q,−q′).

From (2.8) and definition of M(q1, q2) (see (3.18)), we have

(3.30) |M(q, q′)| ≤ π

4
[qq′ sinh(πq) sinh(πq′)]−

1
2 .

Using the simple observation [sech(πq′)]β
√

q′ sinh(πq′) ≤ C 2βq′
1
2 e−(β− 1

2
)πq′ , it follows

from (3.30) and our obtained estimates (3.14), (3.22), (3.24), and (3.26) that

(3.31) |H1(q, q
′; ε)|, |H2(q, q

′)| ≤ Cq 2βq′
1
2 e−(β− 1

2
)πq′

Finally, since 0 < ε < 2, (3.31) and (3.27) yield

(3.32) |Fβ(q, q′; ε)| ≤ Cq

∣∣∣ln ε

2

∣∣∣ 2βq′
1
2 e−(β− 1

2
)πq′ ,

for all q′ > 0. This proves part (i).
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To prove part (ii), let ψ : (0,∞) → R be differentiable and bounded on (0,∞). By
(3.32) the integral

∫∞
0

ψ(q′)Fβ(q, q′; ε) dq′ is convergent. Using (3.27), we write
∫ ∞

0

ψ(q′)Fβ(q, q′; ε) dq′ =
∫ ∞

0

ψ(q′)H3(q, q
′; ε) dq′

+

∫ 3
2
q

1
2
q

ψ(q′)H2(q, q
′)

sin
[
(q′ − q) ln ε

2

]

q′ − q
dq′

+

∫
|q′−q|> 1

2
q

q′>0

ψ(q′)H2(q, q
′)

sin
[
(q′ − q) ln ε

2

]

q′ − q
dq′

= I1 + I2 + I3.

From (3.31), it follows

|I1 + I3| ≤ Cq 2β

(
1 +

2

q

)
||ψ||∞

∫ ∞

0

q′
1
2 e−(β− 1

2
)πq′ dq′ ≤ Cq,β||ψ||∞,

In order to estimate I2, let u = q′ − q. Then

I2 =

∫ 1
2
q

− 1
2
q

f(u)
sin | ln ε

2
|u

u
du,

where f(u) = −ψ(u + q)H2(q, u + q). Next, we use the fact that if f : (a, b) → R
(a < 0 < b) is continuous and bounded such that (f(u)− f(0))/u is also bounded in
a neighborhood of u = 0, then (see [24])

(3.33) lim
R→∞

∫ b

a

f(u)
sin(Ru)

u
du = πf(0).

Now form (3.29) and (3.18) it follows that (f(u) − f(0))/u is bounded near u = 0.
Thus, (3.33) and (3.31) imply

lim
ε→0+

|I2| = π|f(0)| = π|ψ(q)H2(q, q)| ≤ Cq,β ||ψ||∞.

This completes the proof of part (ii). ¤

Finally, we are in the position to present a proof of our main result.

Proof of Orthogonality Theorem. We show that F (q, q′; ε) −−−→
ε→0+

δ(q−q′), in the

distribution sense; more explicitly (see [22]),

(3.34) lim
ε→0+

∫ ∞

0

φ(q′)F (q, q′; ε) dq′ = φ(q), for all φ ∈ C∞
c (0,∞).

Now let φ ∈ C∞
c (0,∞) and suppose δ > 0. For 1

2
< β < 1, clearly

φ(q)e−(1−β)π|q| cosh(πq) ∈ C∞
c (0,∞),
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and we may extend this to an even function in C∞
c (R). Then by Lemma 3.10 there

exists an even polynomial P such that∣∣φ(q)e−(1−β)π|q| cosh(πq)− P (q)e−(1−β)π|q|∣∣ < δ, ∀q ∈ R.

Multiplying the above inequality by [cosh(πq)]β−1e(1−β)π|q| yields

(3.35) |φ(q)− P (q)sech(πq)|[cosh(πq)]β < 21−βδ, ∀q > 0.

Multiplying (3.35) by [sech(πq)]β (< 1) yields

(3.36) |φ(q)− P (q)sech(πq)| < 21−βδ, ∀q > 0.

For the remainder of the proof fix q > 0. Then∫ ∞

0

φ(q′)F (q, q′; ε) dq′ =
∫ ∞

0

P (q′)sech(πq′)F (q, q′; ε) dq′

+

∫ ∞

0

ψ(q′)F (q, q′; ε) dq′,
(3.37)

where
ψ(q′) = φ(q′)− P (q′)sech(πq′).

Now (3.5) implies (since P is an even polynomial),

lim
ε→0+

∫ ∞

0

P (q′)sech(πq′)F (q, q′; ε) dq′ = P (q)sech(πq),

for each q > 0. This and (3.36), (3.37) yield

(3.38) lim sup
ε→0+

∣∣∣∣φ(q)−
∫ ∞

0

φ(q′)F (q, q′; ε) dq′
∣∣∣∣

≤ 21−βδ + lim sup
ε→0+

∣∣∣∣
∫ ∞

0

ψ(q′)F (q, q′; ε) dq′
∣∣∣∣

= 21−βδ + lim sup
ε→0+

∣∣∣∣
∫ ∞

0

ψ(q′)[cosh(πq′)]βFβ(q, q′; ε) dq′
∣∣∣∣ .

By Lemma 3.12, as well as

‖ψ(q′)[cosh(πq′)]β‖∞ < 21−βδ,

(by (3.35)), the last term in (3.38) is at most 21−βCqδ. Thus

lim sup
ε→0+

∣∣∣∣φ(q)−
∫ ∞

0

φ(q′)F (q, q′; ε) dq′
∣∣∣∣ ≤ 21−β(1 + Cq)δ.

Since δ > 0 is arbitrary, we get (3.34). This proves the Theorem. ¤

ACKNOWLEGEMENT

This work was supported by the Oak Ridge National Laboratory, Oak Ridge, Ten-
nessee, 37831-6123, Managed by UT-Battelle, LLC for the Department of Energy
under contract number DE-AC05-0096OR22725.



ON THE ORTHOGONALITY OF THE MACDONALD’S FUNCTIONS 13

References

[1] N. N. Lebedev, Special functions and their applications, Prentic Hall, Inc., 1965.
[2] W. Smythe, Static and dynamic electricity, McGraw-Hill, Inc., 1950.
[3] I. N. Sneddon, The use of integral transform, McGraw-Hill, Inc., 1972.
[4] N. N. Lebedev, I. P. Skalskaia, Some boundary value problems of mathematical physics and of

the theory of elasticity for a hyperboloid of revolution of one sheet, PMM 30 5 (1966), 889-896.
[5] T. L. Ferrell, Modulation of collective electronic effects in foils by the electron scanning tunneling

microscope, Nuclear Instruments and Methods in Physics Research B 96 (1995), 483-485.
[6] T. L. Ferrell, Thin-foil surface-plasmon modification in scanning-probe microscopy, Phys. Rev.

B 50 (1994-I), 14738-14741.
[7] A. Passian, Collective electronic effects in scanning probe microscopy, Ph.D. Dissertation, The

University of Tennessee, Knoxville (2000).
[8] R. S. Becker, V. E. Anderson, R. D. Birkhoff, T. L. Ferrell, and R. H. Ritchie, Surface plasmon

dispersion on a single sheeted hyperboloid, Canadian Journal of Physics 59 4 (1981), 521-529.
[9] R. H. Ritchie, J. C. Ashley, and T. L. Ferrell, Electromagnetic surface modes, Edited by A. D.

Boardman, John Wiley & Sons, 1982, 119-143.
[10] A. Passian, A. Wig, F. Meriaudeau, M. Buncick, T. Thundat, and T. L. Ferrell, Electrostatic

force density for a scanned probe above a charged surface, J. of Appl. Phys. 90 2 (2001),
1011-1016.

[11] G. Binnig, C. F. Quate, and Ch. Gerber, Atomic force microscope, Phys. Rev. Lett. 56 (1986),
930-933.

[12] A. Passian, H. Simpson, S. Kouchekian, and T. L. Ferrell, An infinite integral expansion involv-
ing conical functions, Manuscript under preparation, 2006.

[13] R. Erlandsson, G. M. McClelland, C. M. Mate, and S. Chiang, Atomic force microscopy using
optical interferometry, J. Vac. Sci. Technol. A 6 (1988), 266-270.

[14] R. G. Van Nostrand, The orthogonality of hyperboloid functions, J. Math. Phys. 10 (1954),
276-282.

[15] G. Arfken, Mathematical methods for physicists, Third edition, Academic Press Inc., 1985.
[16] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Academic Press Inc.,

1980.
[17] K. S. Kölbig, A program for computing the conical functions of the first kind Pm

− 1
2+iq

(x) for
m = 0 and m = 1, Computer Physics Communications 23 (1981), 51-61.

[18] M. I. Zhurina, L. N. Karmazina, Tables and formulae for the spherical functions Pm
− 1

2+iq
(z),

Pergamon Press Ltd., 1966.
[19] M. I. Zhurina, L. N. Karmazina, Tables of the Legendre functions P− 1

2+iτ (x), part I, Pergamon
Press Ltd., 1964.

[20] M. I. Zhurina, L. N. Karmazina, Tables of the Legendre functions P− 1
2+iτ (x), part II, Pergamon

Press Ltd., 1965.
[21] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and

mathematical tables, Applied Mathematics Series 55, National Bureau of Standards, 1965.
[22] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973.
[23] E. Hewitt, and K. Stromberg, Real and abstract analysis, Springer Verlag, 1965.
[24] R. V. Churchil, and J. W. Brown, Fourier series and eigenvalue problems, Third edition,

McGraw-Hill Inc., 1978.
[25] E. C. Titchmarch, Eigenfunction expansions, Part I, Second edition, University Press, Oxford,

1962.
[26] A. P. Prudnikov,Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Special Functions,

Gordon and Breach, New York, 1986.
[27] S. B. Yakubovich, Index Transforms, World Scientific, Singapore, 1996.



14 A. PASSIAN, H. SIMPSON, S. KOUCHEKIAN, S. B. YAKUBOVICH

[28] S. B. Yakubovich, A distribution associated with the Kontorovich–Lebedev transform, Opuscula
Mathematica, 26 (2006), N 1, 161–172.

A. Passian, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, TN
37830; and, Department of Physics, University of Tennessee,, Knoxville, TN 37996-
1300

E-mail address: passian@utk.edu

Henry Simpson, Department of Mathematics, University of Tennessee,, Knoxville,
TN 37996-1300

E-mail address: hsimpson@math.utk.edu

Sherwin Kouchekian, Department of Mathematics & Statistics University of South
Alabama, Mobile, AL 36668

E-mail address: sherwin@jaguar1.usouthal.edu

S. B. Yakubovich, University of Porto, Faculty of Sciences, Depatment of Pure
Mathematics, Campo Alegre st. 687, 4169–007 Porto, Portugal

E-mail address: syakubov@fc.up.pt


