On the inverse Kontorovich-Lebedev transform for distributions

Semyon B. Yakubovich *

January 26, 2006

Abstract

We show that in a sense of distributions $$
\lim _{\varepsilon \rightarrow 0+} \frac{1}{\pi^{2}} \tau \sinh \pi \tau \int_{\varepsilon}^{\infty} K_{i \tau}(y) K_{i x}(y) \frac{d y}{y}=\delta(\tau-x),
$$ where δ is the Dirac distribution, $\tau, x \in \mathbb{R}$ and $K_{\nu}(x)$ is the modified Bessel function. The convergence is in $\mathcal{E}^{\prime}(\mathbb{R})$ for any even $\varphi(x) \in \mathcal{E}(\mathbb{R})$, which is a restriction to \mathbb{R} of an analytic function $\varphi(z)$ in a horizontal strip $G_{a}=\{z \in \mathbb{C}:|\operatorname{Im} z| \leq a, a>0\}$ and satisfies the condition $\varphi(z)=O\left(z^{-\alpha} \Gamma(i z+1 / 2)\right),|\operatorname{Rez}| \rightarrow \infty, \alpha>1$ uniformly in G_{a}. The result is applied to prove the representation theorem for the inverse Kontorovich-Lebedev transformation on distributions.

Keywords: Kontorovich-Lebedev transform, distributions, modified Bessel functions AMS subject classification: 46F12, 44A15, 33C10

1 Introduction

In this paper we study a natural extension to spaces of distributions for the inverse Kontorovich-Lebedev transform [4], [7]

$$
\begin{equation*}
F(y)=\int_{-\infty}^{\infty} K_{i \tau}(y) f(\tau) d \tau, \quad y>0 \tag{1.1}
\end{equation*}
$$

[^0]modifying our previous version of this transformation given in [5], which is based on the following expansion
\[

$$
\begin{equation*}
f(x)=\frac{1}{\pi^{2}} \lim _{\epsilon \rightarrow 0+} \int_{0}^{\infty} K_{i x}(y) \frac{1}{y^{1-\epsilon}} \int_{-\infty}^{+\infty} \tau \sinh (\pi \tau) K_{i \tau}(y) f(\tau) d \tau d y \tag{1.2}
\end{equation*}
$$

\]

where the limit is understood in the weak topology of distributions with compact supports $\mathcal{E}^{\prime}(\mathbb{R})$. These results were initiated by the pioneer paper [8] and by evaluation of concrete distributions (cf. in [2]) useful in various applications of the Kontorovich-Lebedev transform.

As it is known [1], [4], [6], [7], the kernel $K_{i \tau}(y)$ belongs to a class of the modified Bessel functions $K_{\nu}(z), I_{\nu}(z)$, which are linear independent solutions of the Bessel differential equation

$$
\begin{equation*}
z^{2} \frac{d^{2} u}{d z^{2}}+z \frac{d u}{d z}-\left(z^{2}+\nu^{2}\right) u=0 . \tag{1.3}
\end{equation*}
$$

They can be given by formulas

$$
\begin{equation*}
I_{\nu}(z)=\sum_{k=0}^{\infty} \frac{(z / 2)^{\nu+2 k}}{\Gamma(\nu+k+1) k!} \tag{1.4}
\end{equation*}
$$

where $\Gamma(w)$ is Euler's Gamma-function [1],

$$
\begin{equation*}
K_{\nu}(z)=\frac{\pi}{2 \sin \pi \nu}\left[I_{-\nu}(z)-I_{\nu}(z)\right] \tag{1.5}
\end{equation*}
$$

when $\nu \neq 0, \pm 1, \pm 2, \ldots$, and $K_{n}(z)=\lim _{\nu \rightarrow n} K_{\nu}(z), n=0, \pm 1, \pm 2, \ldots$. The function $K_{\nu}(z)$ is called also the Macdonald function. It is even with respect to ν and has the following integral representations (cf., in [1], [3])

$$
\begin{equation*}
K_{\nu}(z)=\int_{0}^{\infty} e^{-z \cosh t} \cosh \nu t d t=\frac{1}{2} \int_{0}^{\infty} e^{-z\left(t+t^{-1}\right) / 2} t^{\nu-1} d t \tag{1.6}
\end{equation*}
$$

Useful relations are [1]

$$
\begin{gather*}
z \frac{\partial}{\partial z} K_{\nu}(z)=\nu K_{\nu}(z)-z K_{\nu+1}(z), \tag{1.7}\\
\int_{0}^{\infty} I_{\xi}(x) K_{\nu}(x) \frac{d x}{x}=\frac{1}{\xi^{2}-\nu^{2}}, \operatorname{Re} \xi>|\operatorname{Re} \nu|, \tag{1.8}\\
I_{\nu}(z)=\frac{1}{\sqrt{\pi} \Gamma(\nu+1 / 2)}\left(\frac{z}{2}\right)^{\nu} \int_{-1}^{1} e^{-z x}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} d x, \operatorname{Re} \nu>-\frac{1}{2} . \tag{1.9}
\end{gather*}
$$

These functions have the asymptotic behaviour [1], [7]

$$
\begin{equation*}
K_{\nu}(z)=\left(\frac{\pi}{2 z}\right)^{1 / 2} e^{-z}[1+O(1 / z)], \quad z \rightarrow \infty \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
I_{\nu}(z)=\frac{e^{z}}{\sqrt{2 \pi z}}[1+O(1 / z)], \quad z \rightarrow \infty \tag{1.11}
\end{equation*}
$$

and near the origin

$$
\begin{gather*}
K_{\nu}(z)=O\left(z^{-|\operatorname{Re\nu }|}\right), z \rightarrow 0 \tag{1.12}\\
K_{0}(z)=-\log z+O(1), z \rightarrow 0 \tag{1.13}\\
I_{\nu}(z)=O\left(z^{\operatorname{Re\nu }}\right), \nu \neq 0, z \rightarrow 0 . \tag{1.14}
\end{gather*}
$$

We also mention here the value of their Wronskian [1]

$$
\begin{equation*}
W\left(K_{\nu}(z), I_{\nu}(z)\right)=K_{\nu}(z) I_{\nu}^{\prime}(z)-I_{\nu}(z) K_{\nu}^{\prime}(z)=-\frac{1}{z}, \quad z \neq 0, \quad \nu \in \mathbb{C} \tag{1.15}
\end{equation*}
$$

and symbol ' denotes the derivative with respect to z. When the index of the Macdonald function is pure imaginary, i.e. $\nu=i \tau, \tau \in \mathbb{R}$ then $K_{i \tau}(y), y>0$ is real-valued.

The main object of this work is to study a distributional version of the KontorovichLebedev transformation (1.1) and to prove a representation theorem involving the following kernel function

$$
\begin{equation*}
\mathcal{K}_{\varepsilon}(\tau, x)=\frac{1}{\pi^{2}} \tau \sinh \pi \tau \int_{\varepsilon}^{\infty} K_{i \tau}(y) K_{i x}(y) \frac{d y}{y}, \varepsilon>0 . \tag{1.16}
\end{equation*}
$$

We will prove that $\mathcal{K}_{\varepsilon}(\tau, x)$ converges to a shifted Dirac distribution $\delta(\tau-x)$ when $\varepsilon \rightarrow 0+$ in the sense of the convergence in $\mathcal{E}^{\prime}(\mathbb{R})$. This property can be interpreted as a certain orthogonality of the modified Bessel functions with pure imaginary subscripts.

We note that $\mathcal{E}^{\prime}(\mathbb{R})$ is a dual space of $\mathcal{E}(\mathbb{R})$, which in turn, is a metrizable locally convex space of infinitely differentiable functions $\varphi(x)$ with the topology generated by the collection of seminorms

$$
\begin{equation*}
\gamma_{p, K}(\varphi) \equiv \sup _{x \in K}\left|D_{x}^{p} \varphi(x)\right|<\infty, \tag{1.17}
\end{equation*}
$$

where p is a non-negative integer number, K is a compact set on \mathbb{R}, and $D_{x}=\frac{d}{d x}$.
Along this paper by C we will denote a positive constant not necessarily the same in each occurrence.

2 Orthogonality of the Macdonald functions

The main result of this section is the following
Theorem 1. Let $\varphi \in \mathcal{E}(\mathbb{R})$ be an even function, which is a restriction to \mathbb{R} of an analytic function $\varphi(z)$ in a horizontal strip $G_{a}=\{z \in \mathbb{C}:|\operatorname{Im} z| \leq a, a>0\}$ satisfying the condition $\varphi(z)=O\left(z^{-\alpha} \Gamma(1 / 2+i z)\right),|\operatorname{Rez}| \rightarrow \infty, \alpha>1$ uniformly in G_{a}. Then in $\mathcal{E}^{\prime}(\mathbb{R})$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0+} \mathcal{K}_{\varepsilon}(\tau, x)=\delta(\tau-x), \tau, x \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

More precisely, for each φ under conditions of the theorem we have the equality

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0+}\left\langle\mathcal{K}_{\varepsilon}(\cdot, x), \varphi\right\rangle=\varphi(x), x \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

where the convergence is in the countably multinorm space $\mathcal{E}(\mathbb{R})$.
Proof. By using relation (1.12.3.3) in [3] we calculate the integral with respect to y in (1.16). Then invoking (1.5) with the definition of Wronskian, the kernel $\mathcal{K}_{\varepsilon}(\tau, x)$ can be represented as follows $(|\tau| \neq|x|)$

$$
\begin{gather*}
\mathcal{K}_{\varepsilon}(\tau, x)=\frac{\varepsilon \tau \sinh \pi \tau}{\pi^{2}\left(\tau^{2}-x^{2}\right)}\left[K_{i x}(\varepsilon) K_{i \tau}^{\prime}(\varepsilon)-K_{i \tau}(\varepsilon) K_{i x}^{\prime}(\varepsilon)\right] \\
=\frac{\varepsilon \tau \sinh \pi \tau}{\pi^{2}\left(\tau^{2}-x^{2}\right)} W\left(K_{i x}(\varepsilon), K_{i \tau}(\varepsilon)\right)=\frac{\varepsilon i \tau}{2 \pi\left(\tau^{2}-x^{2}\right)}\left[W\left(K_{i x}(\varepsilon), I_{-i \tau}(\varepsilon)\right)\right. \\
\left.-W\left(K_{i x}(\varepsilon), I_{i \tau}(\varepsilon)\right)\right] . \tag{2.3}
\end{gather*}
$$

Diagonal values $|\tau|=|x|$ of the kernel (1.16) can be easily find by its continuity on \mathbb{R}^{2} as a function of two variables. In fact, for each $\varepsilon>0$ the integral by y is absolutely and uniformly convergent with respect to (τ, x) on any compact subset of \mathbb{R}^{2} by virtue of the inequality (see (1.6)) $\left|K_{\nu}(y)\right| \leq K_{\operatorname{Re} \nu}(y)$ and asymptotic behavior (1.10). Our goal is to show that under conditions of the theorem there exists a nonnegative integer r such that

$$
\begin{equation*}
\max _{0 \leq p \leq r} \sup _{x \in\left[-x_{0}, x_{0}\right]}\left|D_{x}^{p}\left(\varphi-\varphi_{\varepsilon}\right)\right| \rightarrow 0, \varepsilon \rightarrow 0+ \tag{2.4}
\end{equation*}
$$

where $x_{0}>0$ and we denote by

$$
\begin{equation*}
\varphi_{\varepsilon}(x)=\left\langle\mathcal{K}_{\varepsilon}(\cdot, x), \varphi\right\rangle, \varepsilon>0 \tag{2.5}
\end{equation*}
$$

We observe that (2.5) is a regular distribution. Indeed, taking into account the evenness of φ we can write it in the form

$$
\begin{gathered}
\varphi_{\varepsilon}(x)=\frac{\varepsilon}{\pi^{2}} \int_{-\infty}^{\infty} \frac{\tau \sinh \pi \tau}{\tau^{2}-x^{2}} W\left(K_{i x}(\varepsilon), K_{i \tau}(\varepsilon)\right) \varphi(\tau) d \tau \\
=\frac{\varepsilon}{2 \pi^{2}} \int_{-\infty}^{\infty}\left[\frac{1}{\tau-x}+\frac{1}{\tau+x}\right] \sinh \pi \tau W\left(K_{i x}(\varepsilon), K_{i \tau}(\varepsilon)\right) \varphi(\tau) d \tau \\
=\frac{\varepsilon}{\pi^{2}} \int_{-\infty}^{\infty} \frac{\sinh \pi \tau}{\tau-x} W\left(K_{i x}(\varepsilon), K_{i \tau}(\varepsilon)\right) \varphi(\tau) d \tau \\
=\frac{\varepsilon}{2 \pi i} P \cdot V \cdot \int_{-\infty}^{\infty} W\left(K_{i x}(\varepsilon), I_{i \tau}(\varepsilon)\right) \frac{\varphi(\tau)}{\tau-x} d \tau
\end{gathered}
$$

$$
\begin{equation*}
-\frac{\varepsilon}{2 \pi i} P . V . \int_{-\infty}^{\infty} W\left(K_{i x}(\varepsilon), I_{-i \tau}(\varepsilon)\right) \frac{\varphi(\tau)}{\tau-x} d \tau=\varphi_{1 \varepsilon}(x)-\varphi_{2 \varepsilon}(x), \tag{2.6}
\end{equation*}
$$

where both integrals $\varphi_{j \varepsilon}(x), j=1,2$ are understood in the principal Cauchy value. We also satisfy their absolute convergence. We take for instance, integral $\varphi_{1 \varepsilon}(x)$. We have

$$
\varphi_{1 \varepsilon}(x)=\frac{\varepsilon}{2 \pi i} \lim _{\delta \rightarrow 0+}\left(\int_{-\infty}^{-\delta}+\int_{\delta}^{\infty}\right) W\left(K_{i x}(\varepsilon), I_{i(\tau+x)}(\varepsilon)\right) \frac{\varphi(\tau+x)}{\tau} d \tau
$$

Hence it is sufficient to guarantee the estimate

$$
\int_{|\tau| \geq M}\left|W\left(K_{i x}(\varepsilon), I_{i(\tau+x)}(\varepsilon)\right) \frac{\varphi(\tau+x)}{\tau}\right| d \tau<\infty, \varepsilon>0, x \in\left[-x_{0}, x_{0}\right]
$$

where $M>x_{0} \geq|x|$ is large enough. In fact, from (1.9) we immediately obtain the following estimates of the modified Bessel function and its derivative with respect to an argument

$$
\begin{gather*}
\left|I_{\nu}(y)\right| \leq \frac{\Gamma(\operatorname{Re} \nu+1 / 2)}{\Gamma(\operatorname{Re} \nu+1)|\Gamma(\nu+1 / 2)|} e^{y}\left(\frac{y}{2}\right)^{\operatorname{Re} \nu}, \quad y>0, \quad \operatorname{Re} \nu>-\frac{1}{2} \tag{2.7}\\
\left|I_{\nu}^{\prime}(y)\right| \leq \frac{\Gamma(\operatorname{Re} \nu+1 / 2)}{\Gamma(\operatorname{Re} \nu+1)|\Gamma(\nu+1 / 2)|}\left(\frac{|\nu|}{y}+1\right) e^{y}\left(\frac{y}{2}\right)^{\operatorname{Re} \nu} . \tag{2.8}
\end{gather*}
$$

Consequently, taking into account conditions of the theorem we derive

$$
\begin{gathered}
\int_{|\tau| \geq M}\left|W\left(K_{i x}(\varepsilon), I_{i(\tau+x)}(\varepsilon)\right) \frac{\varphi(\tau+x)}{\tau}\right| d \tau \leq C e^{\varepsilon}\left[\left(\frac{2}{y}+\frac{1}{M}\right)\left|K_{i x}(\varepsilon)\right|+\frac{\left|K_{i x}^{\prime}(\varepsilon)\right|}{M}\right] \\
\times \int_{|\tau| \geq M} \frac{d \tau}{\left(|\tau|-x_{0}\right)^{\alpha}}<\infty, \alpha>1 .
\end{gathered}
$$

Analogously we treat $\varphi_{2 \varepsilon}(x)$. Thus (2.5) is a regular distribution and we have the representation (2.6). It is easily seen by an elementary substitution in the integral that $\varphi_{1 \varepsilon}(x)=-\varphi_{2 \varepsilon}(-x)$. Hence we have $\varphi_{\varepsilon}(x)=-\varphi_{2 \varepsilon}(x)-\varphi_{2 \varepsilon}(-x)$ and we will prove that

$$
\begin{equation*}
\max _{0 \leq p \leq r} \sup _{x \in\left[-x_{0}, x_{0}\right]}\left|D_{x}^{p}\left(\frac{\varphi}{2}+\varphi_{2 \varepsilon}\right)\right| \rightarrow 0, \varepsilon \rightarrow 0+. \tag{2.9}
\end{equation*}
$$

Taking then into account the evenness of φ we will conclude (2.4) and therefore will achieve our goal.

In order to establish (2.9) we will appeal to analytic properties of $\varphi(z)$ in the strip G_{a}. Precisely, via Cauchy's theorem we take a big positive R and a small $\delta>0$ to write the equality

$$
\frac{\varepsilon}{2 \pi i}\left(\int_{-R}^{-\delta}+\int_{\delta}^{R}+\int_{R}^{R+i a}+\int_{R+i a}^{-R+i a}+\int_{-R+i a}^{-R}\right) W\left(K_{i x}(\varepsilon), I_{-i(z+x)}(\varepsilon)\right) \frac{\varphi(z+x)}{z} d z
$$

$$
\begin{equation*}
+\frac{\varepsilon}{2 \pi} \int_{\pi}^{0} W\left(K_{i x}(\varepsilon), I_{-i\left(\delta e^{i \theta}+x\right)}(\varepsilon)\right) \varphi\left(\delta e^{i \theta}+x\right) d \theta=0 \tag{2.10}
\end{equation*}
$$

Hence letting $R \rightarrow \infty$ we observe that integrals over ($R, R+i a$) and ($-R+i a,-R$) tend to zero due to asymptotic behavior of the function φ in the strip G_{a}. Then we let $\delta \rightarrow 0$ to obtain (see (2.6))

$$
\begin{gather*}
\varphi_{2 \varepsilon}(x)=-\frac{\varepsilon}{2 \pi} \lim _{\delta \rightarrow 0+} \int_{\pi}^{0} W\left(K_{i x}(\varepsilon), I_{-i\left(\delta e^{i \theta}+x\right)}(\varepsilon)\right) \varphi\left(\delta e^{i \theta}+x\right) d \theta \\
+\frac{\varepsilon}{2 \pi i} \int_{-\infty}^{\infty} W\left(K_{i x}(\varepsilon), I_{a-i \tau}(\varepsilon)\right) \frac{\varphi(\tau+i a)}{\tau-x+i a} d \tau, \quad a>0 . \tag{2.11}
\end{gather*}
$$

Meanwhile, we can pass to the limit when $\delta \rightarrow 0+$ under the integral sign in (2.11) via the dominated convergence theorem. Hence invoking the evenness of the function $K_{i x}(\varepsilon)$ with respect to x and combining with the value of the Wronskian (1.15) we derive the equality

$$
\begin{equation*}
\varphi_{2 \varepsilon}(x)+\frac{\varphi(x)}{2}=\frac{\varepsilon}{2 \pi i} \int_{-\infty}^{\infty} W\left(K_{i x}(\varepsilon), I_{a-i \tau}(\varepsilon)\right) \frac{\varphi(\tau+i a)}{\tau-x+i a} d \tau . \tag{2.12}
\end{equation*}
$$

Hence differentiating through (2.12) with respect to x we put derivatives inside the integral via the uniform convergence on the compact $\left[-x_{0}, x_{0}\right]$ to find

$$
\begin{align*}
D_{x}^{p}\left(\frac{\varphi}{2}+\varphi_{2 \varepsilon}\right)=\frac{\varepsilon}{2 \pi i} & \sum_{l=0}^{p} \frac{p!}{(p-l)!} \int_{-\infty}^{\infty} W\left(D_{x}^{p-l} K_{i x}(\varepsilon), I_{a-i \tau}(\varepsilon)\right) \\
& \times \frac{\varphi(\tau+i a)}{(\tau-x+i a)^{l+1}} d \tau . \tag{2.13}
\end{align*}
$$

In the meantime, appealing to representations (1.6) and assuming $0<\varepsilon<1$ we have the uniform estimates

$$
\begin{gathered}
\left|D_{x}^{p-l} K_{i x}(\varepsilon)\right| \leq \int_{0}^{\infty} e^{-\frac{\varepsilon}{2} e^{t}} t^{p-l} d t=\int_{\varepsilon / 2}^{\infty} e^{-u} \log ^{p-l}\left(\frac{2 u}{\varepsilon}\right) \frac{d u}{u} \\
\leq \int_{\varepsilon / 2}^{1 / 2} \log ^{p-l}\left(\frac{2 u}{\varepsilon}\right) \frac{d u}{u}+\int_{1 / 2}^{\infty} e^{-u}\left(\log 2 u+\log \varepsilon^{-1}\right)^{p-l} \frac{d u}{u}=O\left(\log ^{p-l+1} \varepsilon^{-1}\right) .
\end{gathered}
$$

Analogously, for $p>l$ we obtain

$$
\begin{gathered}
\varepsilon\left|D_{x}^{p-l} K_{i x}^{\prime}(\varepsilon)\right| \leq \varepsilon \int_{0}^{\infty} e^{-\frac{\varepsilon}{2} e^{t}} e^{t} t^{p-l} d t=2(p-l) \int_{0}^{\infty} e^{-\frac{\varepsilon}{2} e^{t}} t^{p-l-1} d t \\
=O\left(\log ^{p-l} \varepsilon^{-1}\right)
\end{gathered}
$$

When $p=l$ evidently (see (1.6), (1.12))

$$
\varepsilon\left|D_{x}^{p-l} K_{i x}^{\prime}(\varepsilon)\right|=\varepsilon\left|K_{i x}^{\prime}(\varepsilon)\right|<\varepsilon \int_{0}^{\infty} e^{-\varepsilon \sinh t} \cosh t d t=1
$$

Combining with estimates (2.7), (2.8) we return to (2.13) to derive

$$
\begin{gathered}
\max _{0 \leq p \leq r} \sup _{x \in\left[-x_{0}, x_{0}\right]}\left|D_{x}^{p}\left(\frac{\varphi}{2}+\varphi_{2 \varepsilon}\right)\right| \leq \max _{0 \leq p \leq r} \sup _{x \in\left[-x_{0}, x_{0}\right]} \frac{\varepsilon}{2 \pi} \sum_{l=0}^{p} \frac{p!}{(p-l)!} \\
\times \int_{-\infty}^{\infty}\left|D_{x}^{p-l} K_{i x}(\varepsilon) I_{a-i \tau}^{\prime}(\varepsilon)\right| \frac{|\varphi(\tau+i a)|}{|\tau-x+i a|^{l+1}} d \tau+\max _{0 \leq p \leq r} \sup _{x \in\left[-x_{0}, x_{0}\right]} \frac{\varepsilon}{2 \pi} \sum_{l=0}^{p} \frac{p!}{(p-l)!} \\
\quad \times \int_{-\infty}^{\infty}\left|D_{x}^{p-l} K_{i x}^{\prime}(\varepsilon) I_{a-i \tau}(\varepsilon)\right| \frac{|\varphi(\tau+i a)|}{|\tau-x+i a|^{l+1}} d \tau \leq C\left(\frac{\varepsilon}{2}\right)^{a} e^{\varepsilon} \log \varepsilon^{-1} \\
\max _{0 \leq p \leq r} \sum_{l=0}^{p} \frac{p!}{(p-l)!} a^{-l} \log ^{p-l} \varepsilon^{-1} \int_{-\infty}^{\infty} \frac{(|a-i \tau|+\varepsilon)|\Gamma(i \tau-a+1 / 2)|}{|\Gamma(a-i \tau+1 / 2)||\tau+i a|^{\alpha}|\tau-x+i a|} d \tau \\
+C\left(\frac{\varepsilon}{2}\right)^{a} e^{\varepsilon} \max _{0 \leq p \leq r} \sum_{l=0}^{p} \frac{p!}{(p-l)!} a^{-l} \log ^{p-l} \varepsilon^{-1} \int_{-\infty}^{\infty} \frac{|\Gamma(i \tau-a+1 / 2)|}{|\Gamma(a-i \tau+1 / 2)||\tau+i a|^{\alpha}} d \tau \\
\quad<C \varepsilon^{a}\left(\log \varepsilon^{-1}+\frac{1}{a}\right)^{r}\left(\log \varepsilon^{-1}+1\right) \rightarrow 0, \varepsilon \rightarrow 0+.
\end{gathered}
$$

The latter integrals are indeed bounded since due to Stirling's formula for Gammafunctions [1]

$$
\left|\frac{\Gamma(i \tau-a+1 / 2)}{\Gamma(a-i \tau+1 / 2)}\right|=O\left(|\tau|^{-2 a}\right), \quad|\tau| \rightarrow \infty
$$

and therefore

$$
\int_{-\infty}^{\infty} \frac{|\Gamma(i \tau-a+1 / 2)|}{|\Gamma(a-i \tau+1 / 2)||\tau+i a|^{\alpha}} d \tau=O(1)+O\left(\int_{|\tau| \geq M} \frac{d \tau}{|\tau|^{2 a+\alpha}}\right)=O(1)
$$

Meanwhile,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{(|a-i \tau|+\varepsilon)|\Gamma(i \tau-a+1 / 2)|}{|\Gamma(a-i \tau+1 / 2)||\tau+i a|^{\alpha}|\tau-x+i a|} d \tau=O(1) \\
& \quad+O\left(\int_{|\tau| \geq M>x_{0}} \frac{d \tau}{|\tau|^{2 a+\alpha-1}\left(|\tau|-x_{0}\right)}\right)=O(1) .
\end{aligned}
$$

Thus we establish (2.9), which implies (2.4). Theorem 1 is proved.

3 Representation theorem

We define a complex analog of the Kontorovich-Lebedev transform (1.1) on distributions $f \in \mathcal{E}^{\prime}(\mathbb{R})$ by

$$
\begin{equation*}
F(z)=\left\langle f, K_{i \cdot}(z)\right\rangle, z \in \mathbb{C} . \tag{3.1}
\end{equation*}
$$

From representations (1.6) it follows that $K_{i \tau}(z)$ is infinitely differentiable with respect to $\tau \in \mathbb{R}$ and analytic with respect to z in the right half-plane $\operatorname{Re} z>0$. Thus $\mathcal{E}(\mathbb{R})$ contains $K_{i \tau}(z)$ for various values of the complex parameter z. We will prove that $F(z)$ is an analytic function in the right-half plane and satisfies there an appropriate estimate. Precisely, we have

Theorem 2. For each $f \in \mathcal{E}^{\prime}(\mathbb{R}) F(z)$ is analytic on the right half-plane $\operatorname{Re} z>0$ and its derivatives

$$
\begin{equation*}
D_{z}^{p} F:=\frac{(-1)^{p}}{2^{p}} \sum_{l=0}^{p}\binom{p}{l}\left\langle f, K_{i \cdot-p+2 l}(z)\right\rangle, p \in \mathbb{N}_{0} . \tag{3.2}
\end{equation*}
$$

Furthermore, the following estimates are true

$$
\begin{gather*}
|F(z)|=O\left(\log ^{r+1}\left(\frac{1}{\operatorname{Re} z}\right)\right), \operatorname{Re} z \rightarrow 0+, r \in \mathbb{N}_{0} \tag{3.3}\\
|F(z)|=O\left(\frac{e^{-\operatorname{Re} z}}{\sqrt{\operatorname{Re} z}}\right), \operatorname{Re} z \rightarrow+\infty \tag{3.4}
\end{gather*}
$$

Proof. Let z be an arbitrary fixed point in the right half-plane with $\operatorname{Rez} \geq y_{0}>0$. Taking a complex increment $\Delta z \neq 0$ such that $z, z+\Delta z$ belong to the right half-plane, we show that $F(z)$ admits a derivative in each inner half-plane. In view of our freedom to choose y_{0} arbitrarily close to zero we will establish the analyticity of $F(z)$ on the right half-plane.

Indeed, invoking definition (3.1) of $F(z)$ we write

$$
\begin{equation*}
\frac{F(z+\Delta z)-F(z)}{\Delta z}-\left\langle f, D_{z} K_{i \cdot}(z)\right\rangle=\left\langle f, \Psi_{\Delta z}(\cdot)\right\rangle \tag{3.5}
\end{equation*}
$$

where

$$
\Psi_{\Delta z}(\tau)=\frac{1}{\Delta z}\left[K_{i \tau}(z+\Delta z)-K_{i \tau}(z)\right]-D_{z} K_{i \tau}(z)
$$

Thus our aim is to verify that there exists an integer $r \in \mathbb{N}_{0}$ such that for any compact $T \in \mathbb{R}$

$$
\begin{equation*}
\max _{0 \leq p \leq r} \sup _{\tau \in T}\left|D_{\tau}^{p} \Psi_{\Delta z}(\tau)\right| \rightarrow 0,|\Delta z| \rightarrow 0 . \tag{3.6}
\end{equation*}
$$

To do this we employ again representations (1.6). Hence we put derivatives inside of the integral via its uniform convergence and after simple manipulations we arrive at the estimate

$$
\left|D_{\tau}^{p} \Psi_{\Delta z}(\tau)\right| \leq \int_{0}^{\infty} t^{p} e^{-y_{0} \cosh t} \frac{\left|e^{-\Delta z \cosh t}-1+\Delta z \cosh t\right|}{|\Delta z|} d t
$$

$$
=\int_{0}^{\infty} t^{p} e^{-y_{0} \cosh t}\left|\sum_{n=2}^{\infty} \frac{(\Delta z)^{n-1} \cosh ^{n} t}{n!}\right| d t \leq \int_{0}^{\infty} t^{p} e^{-y_{0} \cosh t} \sum_{n=2}^{\infty} \frac{|\Delta z|^{n-1} \cosh ^{n} t}{n!} d t
$$

The latter series can be taken out of the integral by virtue of the Levi theorem and we find

$$
\begin{gathered}
\left|D_{\tau}^{p} \Psi_{\Delta z}(\tau)\right| \leq \sum_{n=2}^{\infty} \frac{|\Delta z|^{n-1}}{n!}\left(\int_{0}^{1}+\int_{1}^{\infty}\right) t^{p} e^{-y_{0} e^{t} / 2} e^{n t} d t \\
\leq \sum_{n=2}^{\infty} \frac{|\Delta z|^{n-1} e^{n}}{n!}+\sum_{n=2}^{\infty} \frac{|\Delta z|^{n-1}(n+1)}{\left(y_{0} / 2\right)^{n+1}} \int_{1}^{\infty} e^{-t} t^{p} d t<C|\Delta z| \rightarrow 0,|\Delta z| \rightarrow 0 .
\end{gathered}
$$

Thus we establish (3.6). Hence by using an inductive argument we get the existence of p-th derivative with respect to z. Finally we invoke the relation (cf. [1, 3])

$$
D_{z}^{p} K_{\mu}(z)=\frac{(-1)^{p}}{2^{p}} \sum_{l=0}^{p}\binom{p}{l} K_{\mu-p+2 l}(z),
$$

and we come out with (3.2).
In order to prove (3.3) we appeal to the fact that $F(z)$ is a continuous linear functional on countably multinormed space $\mathcal{E}(\mathbb{R})$. Hence there exists a positive constant C and a nonnegative integer r, which depend on f such that for $0<\operatorname{Re} z<1$ we derive

$$
\begin{gathered}
|F(z)| \leq C \max _{0 \leq p \leq r} \sup _{\tau \in T}\left|D_{\tau}^{p} K_{i \tau}(z)\right| \leq C \max _{0 \leq p \leq r} \int_{0}^{\infty} e^{-\operatorname{Rez} \cosh t} t^{p} d t \\
\leq C \max _{0 \leq p \leq r}\left[\int_{\operatorname{Re} z / 2}^{1 / 2} \log ^{p}\left(\frac{2 u}{\operatorname{Re} z}\right) \frac{d u}{u}+\int_{1 / 2}^{\infty} e^{-u} \log ^{p}\left(\frac{2 u}{\operatorname{Re} z}\right) \frac{d u}{u}\right] \\
=\left(\log ^{r+1}\left(\frac{1}{\operatorname{Re} z}\right)\right), \operatorname{Re} z \rightarrow 0+.
\end{gathered}
$$

Analogously, since

$$
\begin{gathered}
\int_{0}^{\infty} e^{-\operatorname{Re} z \cosh t} t^{p} d t=e^{-\operatorname{Re} z} \int_{0}^{\infty} e^{-2 \operatorname{Re} z \sinh ^{2}(t / 2)} t^{p} d t \\
\leq e^{-\mathrm{Re} z} \int_{0}^{\infty} e^{-\operatorname{Re} z t^{2} / 2} t^{p} d t=2^{(p-1) / 2} \Gamma\left(\frac{p+1}{2}\right) e^{-\operatorname{Re} z}(\operatorname{Re} z)^{-(p+1) / 2}
\end{gathered}
$$

we easily get (3.4). Theorem 2 is proved.
Now we are ready to prove the representation theorem for the Kontorovich-Lebedev transform (3.1) of real positive variable.

Theorem 3. Let $f \in \mathcal{E}^{\prime}(\mathbb{R})$ and $\varphi \in \mathcal{E}(\mathbb{R})$ satisfy conditions of Theorem 1 with $\alpha>2$. Then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0+}\left\langle\frac{1}{\pi^{2}} \tau \sinh \pi \tau \int_{\varepsilon}^{\infty} F(y) K_{i \tau}(y) \frac{d y}{y}, \varphi(\tau)\right\rangle=\langle f, \varphi\rangle . \tag{3.7}
\end{equation*}
$$

Proof. Taking into account asymptotic behaviour (1.10), (1.13) of the Macdonald function, estimates (3.3), (3.4) and elementary inequality (see (1.6)) $K_{i \tau}(y) \leq K_{0}(y)$ we conclude that the latter integral in (3.7) is absolutely and uniformly convergent with respect to $\tau \in \mathbb{R}$ for each $\varepsilon>0$. Moreover, it can be treated as a Riemann improper integral. Furthermore, we show that (3.7) is a regular distribution if φ satisfies conditions of Theorem 1 with $\alpha>2$. In fact, by using (1.5) and the evenness of φ we write

$$
\begin{equation*}
\frac{1}{\pi^{2}}\left\langle\tau \sinh \pi \tau \int_{\varepsilon}^{\infty} F(y) K_{i \tau}(y) \frac{d y}{y}, \varphi(\tau)\right\rangle=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tau \varphi(\tau) \int_{\varepsilon}^{\infty} I_{i \tau}(y) F(y) \frac{d y}{y} d \tau \tag{3.8}
\end{equation*}
$$

Hence appealing to estimates (2.7), (3.3), (3.4) we easily verify the absolute convergence of the iterated integral in the right-hand side of (3.8). Precisely, we obtain

$$
\begin{aligned}
& \int_{-\infty}^{\infty}|\tau \varphi(\tau)| \int_{\varepsilon}^{\infty}\left|I_{i \tau}(y) F(y)\right| \frac{d y}{y} d \tau<C \int_{-\infty}^{\infty} \frac{|\tau \varphi(\tau)|}{|\Gamma(i \tau+1 / 2)|} d \tau \int_{\varepsilon}^{\infty} e^{y}|F(y)| \frac{d y}{y} \\
& \quad<C \int_{\varepsilon}^{\infty} \frac{d y}{y^{3 / 2}}\left[\int_{|\tau|<M} \frac{|\tau \varphi(\tau)|}{|\Gamma(i \tau+1 / 2)|} d \tau+\int_{|\tau|>M} \frac{d \tau}{|\tau|^{\alpha-1}}\right]<\infty, \alpha>2 .
\end{aligned}
$$

Thus the left-hand side of (3.8) is a regular distribution and the corresponding integral in its right-hand side can be approximated by Riemann's sums. Therefore invoking (3.1) we have

$$
\begin{gather*}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tau \varphi(\tau) \int_{\varepsilon}^{\infty} I_{i \tau}(y) F(y) \frac{d y}{y} d \tau=\lim _{N \rightarrow \infty} \frac{1}{2 \pi} \sum_{m=0}^{N} x_{m} \varphi\left(x_{m}\right) \int_{\varepsilon}^{\infty} I_{i x_{m}}(y) F(y) \frac{d y}{y} \\
=\lim _{N \rightarrow \infty}\left\langle f_{x}, \frac{1}{2 \pi} \sum_{m=0}^{N} \tau_{m} \varphi\left(\tau_{m}\right) \int_{\varepsilon}^{\infty} I_{i \tau_{m}}(y) K_{i x}(y) \frac{d y}{y}\right\rangle \tag{3.9}
\end{gather*}
$$

But in the meantime we will establish that when $N \rightarrow \infty$

$$
\frac{1}{2 \pi} \sum_{m=0}^{N} \tau_{m} \varphi\left(\tau_{m}\right) \int_{\varepsilon}^{\infty} I_{i \tau_{m}}(y) K_{i x}(y) \frac{d y}{y}=\varphi_{N, \varepsilon}(x)
$$

converges in $\mathcal{E}(\mathbb{R})$ to $\varphi_{\varepsilon}(x)$, which, in turn, is defined by (2.5). Indeed, calling proofs of Theorems 1, 2 we find (cf. (1.16))

$$
\max _{0 \leq p \leq r} \sup _{x \in\left[-x_{0}, x_{0}\right]}\left|D_{x}^{p}\left(\varphi_{N, \varepsilon}(x)-\varphi_{\varepsilon}(x)\right)\right|=\max _{0 \leq p \leq r} \sup _{x \in\left[-x_{0}, x_{0}\right]}\left|\int_{|\tau|>N} D_{x}^{p} \mathcal{K}_{\varepsilon}(\tau, x) \varphi(\tau) d \tau\right|
$$

$$
<C \int_{\varepsilon}^{\infty} \frac{d y}{y^{3 / 2}} \int_{|\tau|>N} \frac{d \tau}{|\tau|^{\alpha-1}} \rightarrow 0, N \rightarrow \infty, \alpha>2
$$

Combining with (3.9) we get

$$
\lim _{N \rightarrow \infty}\left\langle f_{x}, \frac{1}{2 \pi} \sum_{m=0}^{N} \tau_{m} \varphi\left(\tau_{m}\right) \int_{\varepsilon}^{\infty} I_{i \tau_{m}}(y) K_{i x}(y) \frac{d y}{y}\right\rangle=\left\langle f, \varphi_{\varepsilon}\right\rangle
$$

Hence appealing to Theorem 1 we arrive at the representation (3.7). Theorem 3 is proved.
As a corollary this immediately yields the uniqueness property for the KontorovichLebedev transform (3.1).

Corollary 1. If $F(y)=G(y), y>0$, where F, G are Kontorovich-Lebedev transforms of f and g, respectively, then $f=g$ in the sense of equality in $\mathcal{E}^{\prime}(\mathbb{R})$ for all φ from Theorem 1.

References

1. A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, London and Toronto (1953).
2. G. Z. Forristall, and J. D. Ingram, Evaluation of distributions useful in KontorovichLebedev transform theory, SIAM J: Math. Anal. 3 (1972), 561-566.
3. A.P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, Special Functions, Gordon and Breach, New York (1986).
4. I.N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York (1972).
5. S.B. Yakubovich and B. Fisher, On the theory of the Kontorovich-Lebedev transformation on distributions, Proc. of the Amer. Math. Soc., 122 (1994), N 3, 773-777.
6. S.B. Yakubovich and Yu.F. Luchko, The Hypergeometric Approach to Integral Transforms and Convolutions, (Kluwers Ser. Math. and Appl.: Vol. 287), Dordrecht, Boston, London (1994).
7. S.B. Yakubovich, Index Transforms, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong (1996).
8. A.H. Zemanian, The Kontorovich-Lebedev transformation on distributions of compact support and its inversion, Math. Proc. Cambridge Philos. Soc. 77 (1975), 139-143.
S.B.Yakubovich

Department of Pure Mathematics, Faculty of Sciences,

University of Porto,
Campo Alegre st., 687
4169-007 Porto
Portugal
E-Mail: syakubov@fc.up.pt

[^0]: *Work supported by Fundação para a Ciência e a Tecnologia (FCT) through the Centro de Matemática da Universidade do Porto (CMUP). Available as a PDF file from http://www.fc.up.pt/cmup.

