On the inverse Kontorovich-Lebedev transform for
distributions

Semyon B. Yakubovich *
January 26, 2006

Abstract

We show that in a sense of distributions

sliI(r)lJr ﬁT sinh 71'7'/ Kir(y)Kiz(y)— = 6(1 — z),

where ¢ is the Dirac distribution, 7,z € R and K, (z) is the modified Bessel function.
The convergence is in £ (R) for any even ¢(z) € £(R), which is a restriction to R of
an analytic function ¢(z) in a horizontal strip G, = {z € C: [Im z| < a, a > 0} and
satisfies the condition ¢(z) = O (z7*T'(iz +1/2)), |Re z| — oo, a > 1 uniformly
in G4. The result is applied to prove the representation theorem for the inverse
Kontorovich-Lebedev transformation on distributions.
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1 Introduction

In this paper we study a natural extension to spaces of distributions for the inverse
Kontorovich-Lebedev transform [4], [7]

/ K (y)f(r)dr, y >0, (1.1)
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modifying our previous version of this transformation given in [5], which is based on the
following expansion

o] +o0
fla) == Jim [ Kot [ rsinen K rdy,(12)
where the limit is understood in the weak topology of distributions with compact supports
E'(R). These results were initiated by the pioneer paper [8] and by evaluation of con-
crete distributions (cf. in [2]) useful in various applications of the Kontorovich-Lebedev
transform.

As it is known [1], [4], [6], [7], the kernel K;,(y) belongs to a class of the modified Bessel
functions K,(z), I, (z), which are linear independent solutions of the Bessel differential
equation

22—+ i (2 + %) u = 0. (1.3)

They can be given by formulas

Lz =y R (1.4

—~T(v+k+ Dkl

where I'(w) is Euler’'s Gamma-function [1],

(e

K,(2)

[[,I,(Z) - Il/(z)} ) (15)

2sin v

when v # 0,£1,£2,..., and K,(2) = lim,_., K,(2), n = 0,4£1,£2,... . The function
K, (z) is called also the Macdonald function. It is even with respect to v and has the
following integral representations (cf., in [1], [3])

oo 1 oo B
K,(2) Z/ e~ 0t cosh vtdt = 5/ e ATy (1.6)
0 0
Useful relations are [1]
0
= K() = V() — Ko (2), (L7)
o dx 1
/O [g(l’)K,/(ﬁ)? = m, Ref > |Reu|, (18)
1 2\ (! 1 1
I(z) = (—) —22(1 — g?) 3, - 1.
(2) 12 \2 /16 (1—2z%) z, Rev > 5 (1.9)
These functions have the asymptotic behaviour [1], [7]
T\Y2 _,
K, (2) = (§> eF[L+0(1/2)],  z— oo, (1.10)
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Iy(z):\/%[1+0(1/z)], 2 = 0. (1.11)

and near the origin

K,(z)=0 (z*‘Re’j') , 2 — 0, (1.12)
Ky(z) = —logz+O(1), z — 0, (1.13)
I(2) = O(2"),v #0, z — 0. (1.14)
We also mention here the value of their Wronskian [1]
1
W(K,(2),1,(2) = K,(2)I(2) — 1,(2)K.(2) = 2 #0, veC (1.15)

and symbol " denotes the derivative with respect to z. When the index of the Macdonald
function is pure imaginary, i.e. v =47, 7 € R then K;.(y), y > 0 is real-valued.

The main object of this work is to study a distributional version of the Kontorovich-
Lebedev transformation (1.1) and to prove a representation theorem involving the follow-
ing kernel function

1 00 d
K.(1,2) = ;TsinhﬂT/ Ko (y) K (y)?y, > 0. (1.16)

We will prove that K. (7, z) converges to a shifted Dirac distribution 6(7—z) when ¢ — 0+
in the sense of the convergence in & (R). This property can be interpreted as a certain
orthogonality of the modified Bessel functions with pure imaginary subscripts.

We note that £'(R) is a dual space of £(R), which in turn, is a metrizable locally
convex space of infinitely differentiable functions ¢(x) with the topology generated by the
collection of seminorms

oxc(9) = sup | Dyp(w) |< oo, (1.17)
S

where p is a non-negative integer number, K is a compact set on R, and D, = %.
Along this paper by C' we will denote a positive constant not necessarily the same in

each occurrence.

2 Orthogonality of the Macdonald functions

The main result of this section is the following

Theorem 1. Let ¢ € E(R) be an even function, which is a restriction to R of an
analytic function ¢(z) in a horizontal strip G, = {z € C: |Im z| < a, a > 0} satisfying
the condition p(z) = O (z7*T'(1/2 +iz)), |Re z| — oo, a > 1 uniformly in G,. Then in
E'(R)

li%1+ K.(r,z)=6(tr —x), 7,0 € R. (2.1)
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More precisely, for each ¢ under conditions of the theorem we have the equality

lim (K. (2).¢) = p(z). 2 € R (22)
where the convergence is in the countably multinorm space E(R).

Proof. By using relation (1.12.3.3) in [3] we calculate the integral with respect to y
in (1.16). Then invoking (1.5) with the definition of Wronskian, the kernel K. (7, x) can
be represented as follows (|7| # |z|)

et sinh 71
m2(72 — 22)

Ku(r,z) = (Kou()KL(2) — Kir ()KL, ()

eTsinh 7t eiT
= mW(Ki (€), Kir(€)) = (=22 (W (Kiz(e), I-ir(€))
—W (Kix(€), Lir(€))] - (2.3)

Diagonal values |7| = |z| of the kernel (1.16) can be easily find by its continuity on R?
as a function of two variables. In fact, for each € > 0 the integral by y is absolutely and
uniformly convergent with respect to (7,x) on any compact subset of R? by virtue of the
inequality (see (1.6)) |K,(y)| < Kgre (y) and asymptotic behavior (1.10). Our goal is to
show that under conditions of the theorem there exists a nonnegative integer r such that

maxo<p<, sup |DE(¢ —p.)| — 0, € — 0+, (2.4)

z€[—xz0,20]

where zy > 0 and we denote by

ve(x) = (Ke(+,2), @), € > 0. (2.5)

We observe that (2.5) is a regular distribution. Indeed, taking into account the evenness
of ¢ we can write it in the form

o) = < / TSI e (0, K (6)) ol(r)dr

2 T2 — g2
= T Y bW (K (o), Ko () o(7)d
) SN 7T i ) T T)aT
22 J_|lT—r T+=x 7
e [ sinhnr
=2 ) o WKle), Kir(e)) wlr)dr

- pv. /OO W (Ku (@), I () 2 g7

271 T—x
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21 T—x

__PV /OO W (Kiz(€), I-ir(€)) Mdr = p1:(7) — Poc(), (2.6)

where both integrals ¢;.(z), j = 1,2 are understood in the principal Cauchy value. We
also satisfy their absolute convergence. We take for instance, integral ¢;.(z). We have

o) = o i ([ )W (00 o) 2

Hence it is sufficient to guarantee the estimate

dr < 00, € >0, = € [—xg, x0),
-

’W zx( ) [Z(T+$)(8)) M

|T|>M

where M > o > |z| is large enough. In fact, from (1.9) we immediately obtain the
following estimates of the modified Bessel function and its derivative with respect to an
argument

I'(Rev +1/2) (YR 1
g - 2.
T(Rev + 1)|T(v + 1/2)[° ( > o y> 0 Rev> =3, (2.7)

12, (y)] < 5
()] < ['(Rev +1/2) : (M +1) (y)Reu. 28)

['(Rev +1)|I'(v +1/2 2

Consequently, taking into account conditions of the theorem we derive

i <0 (24 o+ B

/ dr
X T <00, a> 1.
|7|>M (I7] = 20)

Analogously we treat po-(x). Thus (2.5) is a regular distribution and we have the rep-
resentation (2.6). It is easily seen by an elementary substitution in the integral that
01:(x) = —pa-(—x). Hence we have p () = —pa.(2) — po-(—x) and we will prove that

D§ <§ + @25)

‘W zx( ) [Z(TJr:r)( )) M

T

\T|>M

maXop<p<r sup
T€[—x0,20]

—0, e —>0+. (2.9)

Taking then into account the evenness of ¢ we will conclude (2.4) and therefore will
achieve our goal.

In order to establish (2.9) we will appeal to analytic properties of ¢(z) in the strip
G,. Precisely, via Cauchy’s theorem we take a big positive R and a small § > 0 to write
the equality

s 225
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0
b | W (Kia), Ligseinsay(€)) @ (667 + ) dB = 0, (2.10)

2m J,

Hence letting R — oo we observe that integrals over (R, R+ ia) and (—R + ia, —R) tend
to zero due to asymptotic behavior of the function ¢ in the strip G,. Then we let § — 0
to obtain (see (2.6))

0

SIRT if
p2c(z) = —o - lim j W (Kia(€), I_i(seio1a)(€)) ¢ (86" + ) df
e [* (T +ia)
— K; I, - : 2.11

Meanwhile, we can pass to the limit when § — 0+ under the integral sign in (2.11) via
the dominated convergence theorem. Hence invoking the evenness of the function K, (¢)
with respect to  and combining with the value of the Wronskian (1.15) we derive the
equality

o(T +ia)
T—2x+1a

02 (2) + %‘”) - % /_ T W (K (e), i (2)) dr. (2.12)

Hence differentiating through (2.12) with respect to = we put derivatives inside the integral
via the uniform convergence on the compact [—xg, zo| to find

D (24 = o [ W (0 K0 )

2mi 4 (p—10)!

o(T + ia) .
(1 —z +ia)tt

(2.13)

In the meantime, appealing to representations (1.6) and assuming 0 < ¢ < 1 we have the
uniform estimates

L. o 2u\ d
‘D;’_le(é)‘ g/ e 2 tp_ldt:/ e‘“logp_l (_u) a

0 /2 € u

1/2 2u\ d > i d
< / logP™ (_u) & +/ e (log 2u + log 8’1)]) 'M_0o (logp*lJrl 5’1) .
/2 € u 1/2 u

Analogously, for p > [ we obtain
e |DY KL (e)] < 5/ e 5 etrldt = 2(p — l)/ o5 i1y
0 0

=0 (logp*l 5_1) :
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When p = [ evidently (see (1.6), (1.12))
e|DEK ()] = e | K], (e)] < 6/ e~ =S cosh tdt = 1.
0

Combining with estimates (2.7), (2.8) we return to (2.13) to derive

P |

3 p!
< maxo<p<, SUPp Z —

max su
0<p<r p ve]z0.20] 2 s (p _ l)‘

TE€[—z0,70]

Dﬁ <g + ()025)

00 ) &
o : (7 + ia)| € P!
X / |D£ Kiﬂ?(e)]a—zﬁ'(e” |7_ —x+ Z'a|l+1 dr + maXo<p<r E[SU£) ol 2 Z (p - l)'
—00 TE[—To, =0 )

x/ |DPK] () 1o—ir(2) lplr +ia) dT<C(g>aeelog8’1

o ”T —z+idalt T

p

o _1/00 (la — 7| + &) |[T(iT — a + 1/2)]
r 1 ! d
masosper ) 0T 8 | N 1/l el bl

p |

£\ . Pt e [ Tt —a+1/2)]
O
3 6max0<p<;(p_z)!a | a—ir + 1/2)[|7 + ial*

1 T
< Ce® (10g5_1+—> (loge_l—i-l) —0,e—>0+.
a

The latter integrals are indeed bounded since due to Stirling’s formula for Gamma-
functions [1]

‘F(iT—a+1/2)‘

_ —2a
F(CL—ZT+1/2) _O<|T| )7 |T|_>OO7

and therefore

o0 ID(iT — a4+ 1/2)] B dr _
[mwm—n+umv+mwh‘om+0([»Mvww> o).

Meanwhile,

o0 (la —it| + &) |T(iT —a+ 1/2)] B
/_Oo D(a —ir + 1/2)|[7 + iao|r —a +ia|dT =0()

dr
+0 (/ ) = 0(1).
> Mo [TI20T7 (7| — o) 1)

Thus we establish (2.9), which implies (2.4). Theorem 1 is proved.
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3 Representation theorem

We define a complex analog of the Kontorovich-Lebedev transform (1.1) on distributions
f e & (R)by
F(z)=(f,Ki.(2)), =€ C. (3.1)
From representations (1.6) it follows that K;,(z) is infinitely differentiable with respect
to 7 € R and analytic with respect to z in the right half-plane Rez > 0. Thus £(R)
contains K, (z) for various values of the complex parameter z. We will prove that F(z)
is an analytic function in the right-half plane and satisfies there an appropriate estimate.
Precisely, we have
Theorem 2. For each f € £ (R) F(z) is analytic on the right half-plane Rez > 0 and
its derivatives

DPF = (—2110)19 lz_; (12) (f, Ki _psa(2)), p € No. (3.2)

Furthermore, the following estimates are true

1
|F(2)] = O (log’"+1 (@)) , Rez — 0+, r € Ny, (3.3)
—Rez
|F(z)] =0 (\e/R_> , Rez — 400. (3.4)
ez

Proof. Let z be an arbitrary fixed point in the right half-plane with Rez > yy > 0.
Taking a complex increment Az # 0 such that z, z + Az belong to the right half-plane,
we show that F'(z) admits a derivative in each inner half-plane. In view of our freedom
to choose yo arbitrarily close to zero we will establish the analyticity of F'(z) on the right
half-plane.

Indeed, invoking definition (3.1) of F'(z) we write

F(z+ Az) — F(z)
Az

- <f: DzKZ(Z)> = <f7 \PAZ(» ) (35)

where

Ua,(T) = Aiz (Kir(z+ Az) — Kir(2)] = DK (2).

Thus our aim is to verify that there exists an integer r € Ny such that for any compact
T eR
maxo<p<, Sup |[DEWa,(7)| — 0, |Az| — 0. (3.6)
T

TE
To do this we employ again representations (1.6). Hence we put derivatives inside of
the integral via its uniform convergence and after simple manipulations we arrive at the

estimate
Azcosht _ 1 4 Ay cosht|

|Az]

00 —
e
|D£\I,AZ<7_)| S / tPe—Yo cosht|
0
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oo
— / tpe—yo cosht
0

The latter series can be taken out of the integral by virtue of the Levi theorem and we

find
> ’A2|n_1 ! o ot
D p_—yoe'/2 nt
| D2V AL(T)] S; oy ) - 1 tPev0c [ 2eM dt

Az e SN AP (n 4+ 1)
—_—t>
(yo/2)"*

Thus we establish (3.6). Hence by using an inductive argument we get the existence of
p-th derivative with respect to z. Finally we invoke the relation (cf. [1, 3])

DPK,(z) = (_2119),) Xp: (];) Ky pra(2),

i (Az)" 1 cosh™ ¢

o © n—1 n
I dt < / tPe— Yo cosht ’AZ| cosh tdt
n: 0 g

n!

n=2 n=2

<

' / e 'Pdt < C|Az| — 0, |Az] — 0.
n! 1
n=2 n=2

and we come out with (3.2).

In order to prove (3.3) we appeal to the fact that F'(z) is a continuous linear functional
on countably multinormed space £(R). Hence there exists a positive constant C' and a
nonnegative integer r, which depend on f such that for 0 < Rez < 1 we derive

oo
[F(2)] < C maxoeye, sup | DPKon(2)] < Crmaxgeye, / ¢~ Recoshiyn gy
TeT 0

1/2 2u \ du e 2u \ du
<C . log? [ 24 ) &4 —ujgr (L) 2
= matoss [/Rez/Q o8 <Rez> U +/1/26 ©8 (Rez) U

1
= (logr+1 (@)) , Rez = 0+.

00 oo
/ G—Rez cosh Lt — G—Rez / 6—2Rez sinhz(t/Q)tpdt
0 0

Analogously, since

< efRez /OO efReztz/Qtpdt — 2(p71)/2r (p —; 1) efRez (RGZ)_(p+1)/2,
0

we easily get (3.4). Theorem 2 is proved.
Now we are ready to prove the representation theorem for the Kontorovich-Lebedev
transform (3.1) of real positive variable.
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Theorem 3. Let f € £ (R) and ¢ € E(R) satisfy conditions of Theorem 1 with o > 2.
Then

iy (Lrsinnar [ FO)K )Y 010) = (7). (37)

e—0+

Proof. Taking into account asymptotic behaviour (1.10), (1.13) of the Macdonald
function, estimates (3.3), (3.4) and elementary inequality (see (1.6)) K, (y) < Ko(y) we
conclude that the latter integral in (3.7) is absolutely and uniformly convergent with
respect to 7 € R for each € > 0. Moreover, it can be treated as a Riemann improper
integral. Furthermore, we show that (3.7) is a regular distribution if ¢ satisfies conditions
of Theorem 1 with o > 2. In fact, by using (1.5) and the evenness of ¢ we write

ng <T sinh 77 /:O F(y)Kir(y)C;—y790(T)> = % /oo To(T) /:O IiT(y)F(y)@dT. (3.8)

—oc0 )

Hence appealing to estimates (2.7), (3.3), (3.4) we easily verify the absolute convergence
of the iterated integral in the right-hand side of (3.8). Precisely, we obtain

[ e [ e or < [ iy [ iy

> dy [T(7)] dr
<C/ —[/ ,—d7+/ — | <00, a>2.
e U2 L jrjen TG +1/2)] prj>ar |77

Thus the left-hand side of (3.8) is a regular distribution and the corresponding integral
in its right-hand side can be approximated by Riemann’s sums. Therefore invoking (3.1)
we have

—/ To(T / Lir(y) F(y )dydf— lim —chmso Tom / Imm(y)F(y)d—y

= 4, <fr’ ZWP Tin) /OO wm<y)Km(y)%>. (3.9)

But in the meantime we will estabhsh that when N — oo
mey/mmmm7=wm>

converges in £(R) to (), which, in turn, is defined by (2.5). Indeed, calling proofs of
Theorems 1, 2 we find (cf. (1.16))

maxo<p<, SUp DY (pne(r) — ¢e(2))] = maxo<pe,  sup
T€[—x0,20] z€[—x0,20]

/ DY (7, z)p(T)dT
|T|>N
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< d d
<C’/ 3_/y2/ %—)O,NHO0,0(>2.
e Y \T|>N|7—|

Combining with (3.9) we get

N—oo

N 00 d
lim <fx% Zme(Tm)/ Im(y)Km(y)?y> = (f, )
m=0 €

Hence appealing to Theorem 1 we arrive at the representation (3.7). Theorem 3 is proved.

As a corollary this immediately yields the uniqueness property for the Kontorovich-

Lebedev transform (3.1).

Corollary 1. If F(y) = G(y), y > 0, where F,G are Kontorovich-Lebedev transforms

of f and g, respectively, then f = g in the sense of equality in € (R) for all ¢ from
Theorem 1.

—
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