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Abstract

We show that in a sense of distributions

lim
ε→0+

1
π2

τ sinhπτ

∫ ∞

ε
Kiτ (y)Kix(y)

dy

y
= δ(τ − x),

where δ is the Dirac distribution, τ, x ∈ R and Kν(x) is the modified Bessel function.
The convergence is in E ′(R) for any even ϕ(x) ∈ E(R), which is a restriction to R of
an analytic function ϕ(z) in a horizontal strip Ga = {z ∈ C : |Im z| ≤ a, a > 0} and
satisfies the condition ϕ(z) = O (z−αΓ(iz + 1/2)) , |Re z| → ∞, α > 1 uniformly
in Ga. The result is applied to prove the representation theorem for the inverse
Kontorovich-Lebedev transformation on distributions.
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1 Introduction

In this paper we study a natural extension to spaces of distributions for the inverse
Kontorovich-Lebedev transform [4], [7]

F (y) =

∫ ∞

−∞
Kiτ (y)f(τ)dτ, y > 0, (1.1)
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modifying our previous version of this transformation given in [5], which is based on the
following expansion

f(x) =
1

π2
lim

ε→0+

∫ ∞

0

Kix(y)
1

y1−ε

∫ +∞

−∞
τ sinh(πτ)Kiτ (y)f(τ)dτdy, (1.2)

where the limit is understood in the weak topology of distributions with compact supports
E ′(R). These results were initiated by the pioneer paper [8] and by evaluation of con-
crete distributions (cf. in [2]) useful in various applications of the Kontorovich-Lebedev
transform.

As it is known [1], [4], [6], [7], the kernel Kiτ (y) belongs to a class of the modified Bessel
functions Kν(z), Iν(z), which are linear independent solutions of the Bessel differential
equation

z2d2u

dz2
+ z

du

dz
− (z2 + ν2)u = 0. (1.3)

They can be given by formulas

Iν(z) =
∞∑

k=0

(z/2)ν+2k

Γ(ν + k + 1)k!
, (1.4)

where Γ(w) is Euler’s Gamma-function [1],

Kν(z) =
π

2 sin πν
[I−ν(z)− Iν(z)] , (1.5)

when ν 6= 0,±1,±2, . . . , and Kn(z) = limν→n Kν(z), n = 0,±1,±2, . . . . The function
Kν(z) is called also the Macdonald function. It is even with respect to ν and has the
following integral representations (cf., in [1], [3])

Kν(z) =

∫ ∞

0

e−z cosh t cosh νtdt =
1

2

∫ ∞

0

e−z(t+t−1)/2tν−1dt. (1.6)

Useful relations are [1]

z
∂

∂z
Kν(z) = νKν(z)− zKν+1(z), (1.7)

∫ ∞

0

Iξ(x)Kν(x)
dx

x
=

1

ξ2 − ν2
, Reξ > |Reν|, (1.8)

Iν(z) =
1√

πΓ(ν + 1/2)

(z

2

)ν
∫ 1

−1

e−zx(1− x2)ν− 1
2 dx, Re ν > −1

2
. (1.9)

These functions have the asymptotic behaviour [1], [7]

Kν(z) =
( π

2z

)1/2

e−z[1 + O(1/z)], z →∞, (1.10)
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Iν(z) =
ez

√
2πz

[1 + O(1/z)], z →∞, (1.11)

and near the origin
Kν(z) = O

(
z−|Reν|) , z → 0, (1.12)

K0(z) = − log z + O(1), z → 0, (1.13)

Iν(z) = O(zReν), ν 6= 0, z → 0. (1.14)

We also mention here the value of their Wronskian [1]

W (Kν(z), Iν(z)) = Kν(z)I ′ν(z)− Iν(z)K ′
ν(z) = −1

z
, z 6= 0, ν ∈ C (1.15)

and symbol ′ denotes the derivative with respect to z. When the index of the Macdonald
function is pure imaginary, i.e. ν = iτ, τ ∈ R then Kiτ (y), y > 0 is real-valued.

The main object of this work is to study a distributional version of the Kontorovich-
Lebedev transformation (1.1) and to prove a representation theorem involving the follow-
ing kernel function

Kε(τ, x) =
1

π2
τ sinh πτ

∫ ∞

ε

Kiτ (y)Kix(y)
dy

y
, ε > 0. (1.16)

We will prove that Kε(τ, x) converges to a shifted Dirac distribution δ(τ−x) when ε → 0+
in the sense of the convergence in E ′(R). This property can be interpreted as a certain
orthogonality of the modified Bessel functions with pure imaginary subscripts.

We note that E ′(R) is a dual space of E(R), which in turn, is a metrizable locally
convex space of infinitely differentiable functions ϕ(x) with the topology generated by the
collection of seminorms

γp,K(ϕ) ≡ sup
x∈K

| Dp
xϕ(x) |< ∞, (1.17)

where p is a non-negative integer number, K is a compact set on R, and Dx = d
dx

.
Along this paper by C we will denote a positive constant not necessarily the same in

each occurrence.

2 Orthogonality of the Macdonald functions

The main result of this section is the following
Theorem 1. Let ϕ ∈ E(R) be an even function, which is a restriction to R of an

analytic function ϕ(z) in a horizontal strip Ga = {z ∈ C : |Im z| ≤ a, a > 0} satisfying
the condition ϕ(z) = O (z−αΓ(1/2 + iz)) , |Re z| → ∞, α > 1 uniformly in Ga. Then in
E ′(R)

lim
ε→0+

Kε(τ, x) = δ(τ − x), τ, x ∈ R. (2.1)
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More precisely, for each ϕ under conditions of the theorem we have the equality

lim
ε→0+

〈Kε(·, x), ϕ〉 = ϕ(x), x ∈ R, (2.2)

where the convergence is in the countably multinorm space E(R).
Proof. By using relation (1.12.3.3) in [3] we calculate the integral with respect to y

in (1.16). Then invoking (1.5) with the definition of Wronskian, the kernel Kε(τ, x) can
be represented as follows (|τ | 6= |x|)

Kε(τ, x) =
ετ sinh πτ

π2(τ 2 − x2)
[Kix(ε)K

′
iτ (ε)−Kiτ (ε)K

′
ix(ε)]

=
ετ sinh πτ

π2(τ 2 − x2)
W (Kix(ε), Kiτ (ε)) =

εiτ

2π(τ 2 − x2)
[W (Kix(ε), I−iτ (ε))

−W (Kix(ε), Iiτ (ε))] . (2.3)

Diagonal values |τ | = |x| of the kernel (1.16) can be easily find by its continuity on R2

as a function of two variables. In fact, for each ε > 0 the integral by y is absolutely and
uniformly convergent with respect to (τ, x) on any compact subset of R2 by virtue of the
inequality (see (1.6)) |Kν(y)| ≤ KReν(y) and asymptotic behavior (1.10). Our goal is to
show that under conditions of the theorem there exists a nonnegative integer r such that

max0≤p≤r sup
x∈[−x0,x0]

|Dp
x(ϕ− ϕε)| → 0, ε → 0+, (2.4)

where x0 > 0 and we denote by

ϕε(x) = 〈Kε(·, x), ϕ〉, ε > 0. (2.5)

We observe that (2.5) is a regular distribution. Indeed, taking into account the evenness
of ϕ we can write it in the form

ϕε(x) =
ε

π2

∫ ∞

−∞

τ sinh πτ

τ 2 − x2
W (Kix(ε), Kiτ (ε)) ϕ(τ)dτ

=
ε

2π2

∫ ∞

−∞

[
1

τ − x
+

1

τ + x

]
sinh πτW (Kix(ε), Kiτ (ε)) ϕ(τ)dτ

=
ε

π2

∫ ∞

−∞

sinh πτ

τ − x
W (Kix(ε), Kiτ (ε)) ϕ(τ)dτ

=
ε

2πi
P.V.

∫ ∞

−∞
W (Kix(ε), Iiτ (ε))

ϕ(τ)

τ − x
dτ
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− ε

2πi
P.V.

∫ ∞

−∞
W (Kix(ε), I−iτ (ε))

ϕ(τ)

τ − x
dτ = ϕ1ε(x)− ϕ2ε(x), (2.6)

where both integrals ϕjε(x), j = 1, 2 are understood in the principal Cauchy value. We
also satisfy their absolute convergence. We take for instance, integral ϕ1ε(x). We have

ϕ1ε(x) =
ε

2πi
lim

δ→0+

(∫ −δ

−∞
+

∫ ∞

δ

)
W

(
Kix(ε), Ii(τ+x)(ε)

) ϕ(τ + x)

τ
dτ

Hence it is sufficient to guarantee the estimate
∫

|τ |≥M

∣∣∣∣W
(
Kix(ε), Ii(τ+x)(ε)

) ϕ(τ + x)

τ

∣∣∣∣ dτ < ∞, ε > 0, x ∈ [−x0, x0],

where M > x0 ≥ |x| is large enough. In fact, from (1.9) we immediately obtain the
following estimates of the modified Bessel function and its derivative with respect to an
argument

|Iν(y)| ≤ Γ(Reν + 1/2)

Γ(Reν + 1)|Γ(ν + 1/2)|e
y
(y

2

)Reν

, y > 0, Reν > −1

2
, (2.7)

|I ′ν(y)| ≤ Γ(Reν + 1/2)

Γ(Reν + 1)|Γ(ν + 1/2)|
( |ν|

y
+ 1

)
ey

(y

2

)Reν

. (2.8)

Consequently, taking into account conditions of the theorem we derive
∫

|τ |≥M

∣∣∣∣W
(
Kix(ε), Ii(τ+x)(ε)

) ϕ(τ + x)

τ

∣∣∣∣ dτ ≤ Ceε

[(
2

y
+

1

M

)
|Kix(ε)|+ |K ′

ix(ε)|
M

]

×
∫

|τ |≥M

dτ

(|τ | − x0)α
< ∞, α > 1.

Analogously we treat ϕ2ε(x). Thus (2.5) is a regular distribution and we have the rep-
resentation (2.6). It is easily seen by an elementary substitution in the integral that
ϕ1ε(x) = −ϕ2ε(−x). Hence we have ϕε(x) = −ϕ2ε(x)− ϕ2ε(−x) and we will prove that

max0≤p≤r sup
x∈[−x0,x0]

∣∣∣Dp
x

(ϕ

2
+ ϕ2ε

)∣∣∣ → 0, ε → 0 + . (2.9)

Taking then into account the evenness of ϕ we will conclude (2.4) and therefore will
achieve our goal.

In order to establish (2.9) we will appeal to analytic properties of ϕ(z) in the strip
Ga. Precisely, via Cauchy’s theorem we take a big positive R and a small δ > 0 to write
the equality

ε

2πi

(∫ −δ

−R

+

∫ R

δ

+

∫ R+ia

R

+

∫ −R+ia

R+ia

+

∫ −R

−R+ia

)
W

(
Kix(ε), I−i(z+x)(ε)

) ϕ(z + x)

z
dz
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+
ε

2π

∫ 0

π

W
(
Kix(ε), I−i(δeiθ+x)(ε)

)
ϕ

(
δeiθ + x

)
dθ = 0. (2.10)

Hence letting R →∞ we observe that integrals over (R, R + ia) and (−R + ia,−R) tend
to zero due to asymptotic behavior of the function ϕ in the strip Ga. Then we let δ → 0
to obtain (see (2.6))

ϕ2ε(x) = − ε

2π
lim

δ→0+

∫ 0

π

W
(
Kix(ε), I−i(δeiθ+x)(ε)

)
ϕ

(
δeiθ + x

)
dθ

+
ε

2πi

∫ ∞

−∞
W (Kix(ε), Ia−iτ (ε))

ϕ(τ + ia)

τ − x + ia
dτ, a > 0. (2.11)

Meanwhile, we can pass to the limit when δ → 0+ under the integral sign in (2.11) via
the dominated convergence theorem. Hence invoking the evenness of the function Kix(ε)
with respect to x and combining with the value of the Wronskian (1.15) we derive the
equality

ϕ2ε(x) +
ϕ(x)

2
=

ε

2πi

∫ ∞

−∞
W (Kix(ε), Ia−iτ (ε))

ϕ(τ + ia)

τ − x + ia
dτ. (2.12)

Hence differentiating through (2.12) with respect to x we put derivatives inside the integral
via the uniform convergence on the compact [−x0, x0] to find

Dp
x

(ϕ

2
+ ϕ2ε

)
=

ε

2πi

p∑

l=0

p!

(p− l)!

∫ ∞

−∞
W

(
Dp−l

x Kix(ε), Ia−iτ (ε)
)

× ϕ(τ + ia)

(τ − x + ia)l+1
dτ. (2.13)

In the meantime, appealing to representations (1.6) and assuming 0 < ε < 1 we have the
uniform estimates

∣∣Dp−l
x Kix(ε)

∣∣ ≤
∫ ∞

0

e−
ε
2
et

tp−ldt =

∫ ∞

ε/2

e−u logp−l

(
2u

ε

)
du

u

≤
∫ 1/2

ε/2

logp−l

(
2u

ε

)
du

u
+

∫ ∞

1/2

e−u
(
log 2u + log ε−1

)p−l du

u
= O

(
logp−l+1 ε−1

)
.

Analogously, for p > l we obtain

ε
∣∣Dp−l

x K ′
ix(ε)

∣∣ ≤ ε

∫ ∞

0

e−
ε
2
et

ettp−ldt = 2(p− l)

∫ ∞

0

e−
ε
2
et

tp−l−1dt

= O
(
logp−l ε−1

)
.



KONTOROVICH - LEBEDEV TRANSFORM 7

When p = l evidently (see (1.6), (1.12))

ε
∣∣Dp−l

x K ′
ix(ε)

∣∣ = ε |K ′
ix(ε)| < ε

∫ ∞

0

e−ε sinh t cosh tdt = 1.

Combining with estimates (2.7), (2.8) we return to (2.13) to derive

max0≤p≤r sup
x∈[−x0,x0]

∣∣∣Dp
x

(ϕ

2
+ ϕ2ε

)∣∣∣ ≤ max0≤p≤r sup
x∈[−x0,x0]

ε

2π

p∑

l=0

p!

(p− l)!

×
∫ ∞

−∞
|Dp−l

x Kix(ε)I
′
a−iτ (ε)|

|ϕ(τ + ia)|
|τ − x + ia|l+1

dτ + max0≤p≤r sup
x∈[−x0,x0]

ε

2π

p∑

l=0

p!

(p− l)!

×
∫ ∞

−∞
|Dp−l

x K ′
ix(ε)Ia−iτ (ε)| |ϕ(τ + ia)|

|τ − x + ia|l+1
dτ ≤ C

(ε

2

)a

eε log ε−1

max0≤p≤r

p∑

l=0

p!

(p− l)!
a−l logp−l ε−1

∫ ∞

−∞

(|a− iτ |+ ε) |Γ(iτ − a + 1/2)|
|Γ(a− iτ + 1/2)||τ + ia|α|τ − x + ia|dτ

+C
(ε

2

)a

eεmax0≤p≤r

p∑

l=0

p!

(p− l)!
a−l logp−l ε−1

∫ ∞

−∞

|Γ(iτ − a + 1/2)|
|Γ(a− iτ + 1/2)||τ + ia|α dτ

< Cεa

(
log ε−1 +

1

a

)r (
log ε−1 + 1

) → 0, ε → 0 + .

The latter integrals are indeed bounded since due to Stirling’s formula for Gamma-
functions [1] ∣∣∣∣

Γ(iτ − a + 1/2)

Γ(a− iτ + 1/2)

∣∣∣∣ = O(|τ |−2a), |τ | → ∞,

and therefore
∫ ∞

−∞

|Γ(iτ − a + 1/2)|
|Γ(a− iτ + 1/2)||τ + ia|α dτ = O(1) + O

(∫

|τ |≥M

dτ

|τ |2a+α

)
= O(1).

Meanwhile, ∫ ∞

−∞

(|a− iτ |+ ε) |Γ(iτ − a + 1/2)|
|Γ(a− iτ + 1/2)||τ + ia|α|τ − x + ia|dτ = O(1)

+O

(∫

|τ |≥M>x0

dτ

|τ |2a+α−1(|τ | − x0)

)
= O(1).

Thus we establish (2.9), which implies (2.4). Theorem 1 is proved.
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3 Representation theorem

We define a complex analog of the Kontorovich-Lebedev transform (1.1) on distributions
f ∈ E ′(R) by

F (z) = 〈f, Ki·(z)〉 , z ∈ C. (3.1)

From representations (1.6) it follows that Kiτ (z) is infinitely differentiable with respect
to τ ∈ R and analytic with respect to z in the right half-plane Rez > 0. Thus E(R)
contains Kiτ (z) for various values of the complex parameter z. We will prove that F (z)
is an analytic function in the right-half plane and satisfies there an appropriate estimate.
Precisely, we have

Theorem 2. For each f ∈ E ′(R) F (z) is analytic on the right half-plane Rez > 0 and
its derivatives

Dp
zF :=

(−1)p

2p

p∑

l=0

(
p

l

)
〈f,Ki· −p+2l(z)〉 , p ∈ N0. (3.2)

Furthermore, the following estimates are true

|F (z)| = O

(
logr+1

(
1

Rez

))
, Rez → 0+, r ∈ N0, (3.3)

|F (z)| = O

(
e−Rez

√
Rez

)
, Rez → +∞. (3.4)

Proof. Let z be an arbitrary fixed point in the right half-plane with Rez ≥ y0 > 0.
Taking a complex increment ∆z 6= 0 such that z, z + ∆z belong to the right half-plane,
we show that F (z) admits a derivative in each inner half-plane. In view of our freedom
to choose y0 arbitrarily close to zero we will establish the analyticity of F (z) on the right
half-plane.

Indeed, invoking definition (3.1) of F (z) we write

F (z + ∆z)− F (z)

∆z
− 〈f,DzKi·(z)〉 = 〈f, Ψ∆z(·)〉 , (3.5)

where

Ψ∆z(τ) =
1

∆z
[Kiτ (z + ∆z)−Kiτ (z)]−DzKiτ (z).

Thus our aim is to verify that there exists an integer r ∈ N0 such that for any compact
T ∈ R

max0≤p≤r sup
τ∈T

|Dp
τΨ∆z(τ)| → 0, |∆z| → 0. (3.6)

To do this we employ again representations (1.6). Hence we put derivatives inside of
the integral via its uniform convergence and after simple manipulations we arrive at the
estimate

|Dp
τΨ∆z(τ)| ≤

∫ ∞

0

tpe−y0 cosh t

∣∣e−∆z cosh t − 1 + ∆z cosh t
∣∣

|∆z| dt
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=

∫ ∞

0

tpe−y0 cosh t

∣∣∣∣∣
∞∑

n=2

(∆z)n−1 coshn t

n!

∣∣∣∣∣ dt ≤
∫ ∞

0

tpe−y0 cosh t

∞∑
n=2

|∆z|n−1 coshn t

n!
dt.

The latter series can be taken out of the integral by virtue of the Levi theorem and we
find

|Dp
τΨ∆z(τ)| ≤

∞∑
n=2

|∆z|n−1

n!

(∫ 1

0

+

∫ ∞

1

)
tpe−y0et/2entdt

≤
∞∑

n=2

|∆z|n−1en

n!
+

∞∑
n=2

|∆z|n−1(n + 1)

(y0/2)n+1

∫ ∞

1

e−ttpdt < C|∆z| → 0, |∆z| → 0.

Thus we establish (3.6). Hence by using an inductive argument we get the existence of
p-th derivative with respect to z. Finally we invoke the relation (cf. [1, 3])

Dp
zKµ(z) =

(−1)p

2p

p∑

l=0

(
p

l

)
Kµ−p+2l(z),

and we come out with (3.2).
In order to prove (3.3) we appeal to the fact that F (z) is a continuous linear functional

on countably multinormed space E(R). Hence there exists a positive constant C and a
nonnegative integer r, which depend on f such that for 0 < Rez < 1 we derive

|F (z)| ≤ C max0≤p≤r sup
τ∈T

|Dp
τKiτ (z)| ≤ Cmax0≤p≤r

∫ ∞

0

e−Rez cosh ttpdt

≤ Cmax0≤p≤r

[∫ 1/2

Rez/2

logp

(
2u

Rez

)
du

u
+

∫ ∞

1/2

e−u logp

(
2u

Rez

)
du

u

]

=

(
logr+1

(
1

Rez

))
, Rez → 0 + .

Analogously, since

∫ ∞

0

e−Rez cosh ttpdt = e−Rez

∫ ∞

0

e−2Rez sinh2(t/2)tpdt

≤ e−Rez

∫ ∞

0

e−Rezt2/2tpdt = 2(p−1)/2Γ

(
p + 1

2

)
e−Rez (Rez)−(p+1)/2 ,

we easily get (3.4). Theorem 2 is proved.
Now we are ready to prove the representation theorem for the Kontorovich-Lebedev

transform (3.1) of real positive variable.
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Theorem 3. Let f ∈ E ′(R) and ϕ ∈ E(R) satisfy conditions of Theorem 1 with α > 2.
Then

lim
ε→0+

〈
1

π2
τ sinh πτ

∫ ∞

ε

F (y)Kiτ (y)
dy

y
, ϕ(τ)

〉
= 〈f, ϕ〉. (3.7)

Proof. Taking into account asymptotic behaviour (1.10), (1.13) of the Macdonald
function, estimates (3.3), (3.4) and elementary inequality (see (1.6)) Kiτ (y) ≤ K0(y) we
conclude that the latter integral in (3.7) is absolutely and uniformly convergent with
respect to τ ∈ R for each ε > 0. Moreover, it can be treated as a Riemann improper
integral. Furthermore, we show that (3.7) is a regular distribution if ϕ satisfies conditions
of Theorem 1 with α > 2. In fact, by using (1.5) and the evenness of ϕ we write

1

π2

〈
τ sinh πτ

∫ ∞

ε

F (y)Kiτ (y)
dy

y
, ϕ(τ)

〉
=

1

2π

∫ ∞

−∞
τϕ(τ)

∫ ∞

ε

Iiτ (y)F (y)
dy

y
dτ. (3.8)

Hence appealing to estimates (2.7), (3.3), (3.4) we easily verify the absolute convergence
of the iterated integral in the right-hand side of (3.8). Precisely, we obtain

∫ ∞

−∞
|τϕ(τ)|

∫ ∞

ε

|Iiτ (y)F (y)| dy

y
dτ < C

∫ ∞

−∞

|τϕ(τ)|
|Γ(iτ + 1/2)|dτ

∫ ∞

ε

ey|F (y)|dy

y

< C

∫ ∞

ε

dy

y3/2

[∫

|τ |<M

|τϕ(τ)|
|Γ(iτ + 1/2)|dτ +

∫

|τ |>M

dτ

|τ |α−1

]
< ∞, α > 2.

Thus the left-hand side of (3.8) is a regular distribution and the corresponding integral
in its right-hand side can be approximated by Riemann’s sums. Therefore invoking (3.1)
we have

1

2π

∫ ∞

−∞
τϕ(τ)

∫ ∞

ε

Iiτ (y)F (y)
dy

y
dτ = lim

N→∞
1

2π

N∑
m=0

xmϕ(xm)

∫ ∞

ε

Iixm(y)F (y)
dy

y

= lim
N→∞

〈
fx,

1

2π

N∑
m=0

τmϕ(τm)

∫ ∞

ε

Iiτm(y)Kix(y)
dy

y

〉
. (3.9)

But in the meantime we will establish that when N →∞
1

2π

N∑
m=0

τmϕ(τm)

∫ ∞

ε

Iiτm(y)Kix(y)
dy

y
= ϕN,ε(x)

converges in E(R) to ϕε(x), which, in turn, is defined by (2.5). Indeed, calling proofs of
Theorems 1, 2 we find (cf. (1.16))

max0≤p≤r sup
x∈[−x0,x0]

|Dp
x(ϕN,ε(x)− ϕε(x))| = max0≤p≤r sup

x∈[−x0,x0]

∣∣∣∣
∫

|τ |>N

Dp
xKε(τ, x)ϕ(τ)dτ

∣∣∣∣
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< C

∫ ∞

ε

dy

y3/2

∫

|τ |>N

dτ

|τ |α−1
→ 0, N →∞, α > 2.

Combining with (3.9) we get

lim
N→∞

〈
fx,

1

2π

N∑
m=0

τmϕ(τm)

∫ ∞

ε

Iiτm(y)Kix(y)
dy

y

〉
= 〈f, ϕε〉 .

Hence appealing to Theorem 1 we arrive at the representation (3.7). Theorem 3 is proved.
As a corollary this immediately yields the uniqueness property for the Kontorovich-

Lebedev transform (3.1).
Corollary 1. If F (y) = G(y), y > 0, where F,G are Kontorovich-Lebedev transforms

of f and g, respectively, then f = g in the sense of equality in E ′(R) for all ϕ from
Theorem 1.
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