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Abstract

We define rank function for Lagrangian matroids in a natural way and characterize
Lagrangian matroids in terms of rank axioms.
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1 Introduction

Sympletic matroids are an important subclass of Coxeter matroids introduced by Gelfand
and Serganova in [6] in order to study stratification on compact homogenous manifolds. They
include ordinary matroids as a subclass and, as them, they can be characterized by its set
of basis (see [2]). As in ordinary matroids, independent sets can be defined as the subsets of
basis and, for the purposes of this paper, we will use a characterization of sympletic matroids
obtained by Chow [5], using an augmentation property that generalizes the one from matroid
theory.

Let I = {1, . . . , n}, I∗ = {1∗, . . . , n∗}, and J = I ∪ I∗, where the union is disjoint. An
involution ∗ is defined on J by setting (i∗)∗ = i, for i∗ ∈ I∗, and extended it to sets in the
obvious way. A set A ⊂ J is said to be admissible if A ∩ A∗ = ∅, and we write Jk for the
collection of admissible k-subsets of J .

A family I of admissible subsets of J is the collection of indepenedent sets of a sympletic
matroid if and only if it is subset-closed and it has the following property:

II If X and Y are members of I such that |X| < |Y | then either:

– there exists y ∈ Y \X such that X ∪ {y} ∈ I, or

– X ∪Y is not admissible , and there exists x /∈ X ∪Y such that both X ∪{x} ∈ I
and (X \ Y ∗) ∪ {x∗} ∈ I.

Defining a sympletic matroid in terms of independents set we can recover the basis set
taking the maximal (for inclusion) independent sets. The number of elements of any base
is called the rank of the matroid and a sympletic matroid of maximal rank, n, is called
Lagrangian. Ordinary matroids can be included in this special class of sympletic matroids
that also verifies a symmetric exchange property [3].

Characterizations of Lagrangian matroids in terms of basis exchange [3] and in terms of
circuits properties [1] show that they have many of the classical matroids behaviour. We seek
for analogous properties for general sympletic matroids Behind their characterization using
indepenendent sets given above also the one in terms of greedy algorithm (see [2]) points to
it.

So, we expect that the characterization obtained here for Lagrangian matroids, in terms
of rank function, can be somehow generalized at least for other classes of sympletic matroids,
as the one coming from graphs constructed by Chow in [5].

2 Results

Let M be a sympletic matroid over J = [n] ∪ [n∗] and I be the set of independents for M
and A = A(J) be the set of admissible subsets of J . The following function defined on
P(J) = {X : X ⊂ J}, is called the rank function on M :

r : P(J) −→ <+
0 , where r(X) = maxI∈I |X ∩ I|, for all X ⊂ J .
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As independent sets are admissible, forallX ∈ P(J), r(X) = r(A), for some A ∈ A
and A ⊂ X; besides, r(X) = maxB∈B|X ∩ B|, where B is the set of basis, because, for any
independent set there is always a base containing it. Finally, r(I) = |I| for any independent
set.

Lemma 2.1 If M is a Lagrangian matroid and r is the rank function on M , then r verifies
the following properties:

1. r(∅) = 0

2. ∀X ∈ P (J), ∀x ∈ J r(X) ≤ r(X + x) ≤ r(X) + 1

3. ∀A ∈ A, ∀x ∈ J

(r(A) = |A| and x /∈ A) ⇒ (x∗ ∈ A or r(A + x) = r(A) + 1 or r(A + x∗) = r(A) + 1)

4. ∀A ∈ A ∀x, y ∈ J

r(A) = r(A + x) = r(A + y) r(A + x∗ + y∗) = r(A) + 1
and ⇒ and

r(A + x + y) = r(A) + 1 |A ∩ {x∗, y∗}| = 1

Proof: We observe that r trivially satisfies the conditions (1), (2). For condition (3) we
need to notice that if I is a maximal independent set (a base) of a Lagrangian matroid and
x /∈ I, then x∗ ∈ I. It only remains for us to justifie the last property.

Let us assume that S ∈ A verifies r(S) = r(S+x) = r(S+y) and r(S+x+y) = r(S)+1.
Let I, I ′ ∈ I be such that r(S) = |S ∩ I| and r(S + x + y) = |(S + x + y) ∩ I ′| and let

X = S ∩ I, Y = (S + x + y) ∩ I ′ and Y1 = S ∩ I ′.
Using the hypothesis one can see that neither x, nor y belong to S and must both belong

to I ′ and so |Y1| = |Y | − 2(= |X| − 1); besides Y1 ∪X ⊂ S so Y1 ∪X is admissible. Using
I2 we know that ∃t ∈ X − Y1 such that Y1 + t is an independent set of the matroid M .

As t ∈ X ⊂ S and Y1 ⊂ S, Y1 + t ⊂ S and r(Y1 + t) = |Y1|+ 1 = |X|.
Let us consider the independent sets Y and Y1 + t:
If (Y1 + t)∪Y was admissible there will be s ∈ Y − (Y1 + t) = {x, y} such that Y1 + t + s

is an independent set. But then |Y1 + t + s| = r(S) + 1 and (Y1 + t + s) ⊂ S + x or
(Y1 + t + s) ⊂ S + y contradicting the hypothesis.

So, being (Y1 + t) ∪ Y not admissible, t = x∗ or t = y∗ and therefore r(S + x∗ + y∗) =
r(S) + 1 and |S ∩ {x∗, y∗}| = 1.

Theorem 2.1 Let J = [n] ∪ [n∗] and let r : P (J) −→ <+
0 verify the following:
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1. r(∅) = 0

2. ∀X ∈ P(J) ∀x ∈ J r(X) ≤ r(X + x) ≤ r(X) + 1

3. ∀S ∈ A ∀x ∈ J

(r(S) = |S| and x /∈ S) ⇒ (x∗ ∈ S or r(S + x) = r(S) + 1 or r(S + x∗) = r(S) + 1)

4. ∀S ∈ A ∀x, y ∈ J

r(S) = r(S + x) = r(S + y) r(S + x∗ + y∗) = r(S) + 1
and ⇒ and

r(S + x + y) = r(S) + 1 |S ∩ {x∗, y∗}| = 1

Then the set I = {S ∈ A : r(S) = |S|} is the set of independent sets of a Lagrangian
matroid.

Proof: Observe that, from (1) and (2), you can deduce that I is a subsetclosed family
and that (3) garantees that there is an admissible set with n elements that belongs to I.

Now, let X and Y be elements of I with |X| < |Y |: we want to show that either
∃y ∈ Y \X : r(X + y) = r(X) + 1 or X ∪ Y is not admissible and ∃z /∈ X ∪ Y : r(X + z) =
r(X) + 1, r((X \ Y ∗) + z∗) = r(X \ Y ∗) + 1 and X + z is admissible.

Let us start by assuming that X ∪Y is admissible and that for all y ∈ Y \X r(X + y) =
r(X).

Since r(X ∪ Y ) ≥ r(Y ) > r(X),
∑

= {S ⊂ Y \X : r(S ∪X) > r(X)} is not empty and,
as r verifies (2),

∑
0 = {S ⊂ Y \X : r(S ∪X) = r(X) + 1} is not empty too. Let Y0 be a

minimal (for inclusion) element of
∑

0.
Under our hypothesis, r(X + y) = r(X), ∀y ∈ Y \X, and so |Y0| > 1. Let y0 and y1 be

distinct elements of Y0 and Z = X∪Y0−{y0, y1}. Now r(X) = r(Z) = r(Z +y0) = r(Z +y1)
and r(Z + y0 + y1) = r(X ∪ Y0) = r(X) + 1 and therefore, by (4), r(Z + y∗0 + y∗1) = r(Z) + 1
and |Z∩{y∗0, y∗1}| = 1. Thus Y ∗0 ∩Z = Y ∗0 ∩(X∪Y0) 6= ∅ and so Y ∗∩(X∪Y )(= Y ∗∩X) 6= ∅,
which is absurd. Therefore ∃y ∈ Y \X r(X + y) = r(X) + 1, i.e., X + y ∈ I

Let us assume now that X ∪ Y is not admissible.
Consider the admissible set T = Y \ (X ∪X∗); T 6= ∅ because |Y | > |X| and X, Y are

both admissible. Take t ∈ T :
If r(X + t∗) = r(X) + 1 make z = t∗; t∗ /∈ X ∪ Y and, since t /∈ X \ Y ∗ and t ∈ Y ,

r((X \ Y ∗) + t) = r(X \ Y ∗) + 1.
On the other hand, if r(X + t∗) = r(X), as t /∈ X and t∗ /∈ X∗, condition (3) implies

that r(X + t) = r(X) + 1 and t ∈ T ⊂ Y \X.

Observation: A Lagrangian matroid M is orthogonal if and only if r verifies the following
condition:

∀B1, B2 ∈ A(E) r(B1) = r(B2) = n⇒ |B1 ∩ [n]| ≡ |B2 ∩ [n]| (mod 2).
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