
May 30 2008 18:43 Proceedings Trim Size: 9in x 6in proceedings˙ADP08

RICH PHENOMENA IN A NETWORK OF TWO RINGS

COUPLED THROUGH A ‘BUFFER’ CELL

FERNANDO ANTONELI

Departamento de Matemática Pura
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We study curious dynamical features that appear in a network of two unidirec-
tional rings coupled asymmetrically through a ‘buffer’ cell. One example of such
phenomena was presented by Golubitsky, Nicol and Stewart (Some curious phe-
nomena in coupled cell systems, J. Nonlinear Sci. 14 (2) (2004) 207–236), where
they have shown simulation results in which two rings of cells, coupled asymmet-
rically through a ‘buffer’ cell, appear to exhibit rotating wave states with incom-
mensurate frequencies. In this paper, we propose a bifurcation scenario where the
phenomena presented by Golubitsky et. al. is obtained through a sequence of
Hopf bifurcations starting at an equilibrium. We use XPPAUT and MATLAB to
compute numerically the relevant states.
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1. Introduction

We study a network of two unidirectional rings of cells coupled through a

‘buffer’ cell. The first ring is built with three cells and the second one with

five cells, see Figure 1.
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Figure 1. Network of two coupled unidirectional rings, one with three cells and the
other with five, connected through a ‘buffer’ cell b.

Golubitsky et. al.
3, present one simulation of this network where cells

in each ring appear to exhibit rotating wave states with well defined fre-

quencies, and the ‘buffer’ cell appears to be rotating at incommensurate

frequencies. They suggest that these states lie on thin tori, not closed

loops, and their conjecture is that as so they are presumably quasiperiodic.

In this paper we present numerical simulations showing a sequence of

three Hopf bifurcations which preceed the appearance of such phenomena.

Specifically, we consider a one-parameter family of coupled cell systems

with structure consistent with the network in Figure 1 which has a sta-

ble equilibrium for certain values of the parameter. By variation of the

parameter we numerically compute a cascade of three Hopf bifurcations:

the first from the equilibrium, the second from a periodic solution and the

third from a quasi-periodic solution. In particular, the solution shown by

Golubitsky et. al.
3 arises by further variation of the parameter.

2. Coupled Cell Networks Formalism

Coupled cell networks can be represented by directed graphs whose nodes

are identified with dynamical systems or ‘cells’ and whose edges (‘arrows’)

represent the couplings between them. Identical cells/couplings are repre-
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sented with the same node/arrow type. For a survey, overview and exam-

ples, see Golubitsky and Stewart 5.

In Figure 1, the nodes in the two networks are the circles and represent

cells. All cells have identical internal dynamics and are represented by

circles. There are three different types of edges, drawn as different styles

of arrows and different tips.

2.1. Symmetries in a coupled cell system

Coupled dynamical systems often possess a group of symmetries Γ. A sym-

metry is a transformation that sends solutions to solutions. A symmetry of

a network is a pair of permutations, one on the cells and one on the arrows,

that preserves the network structure. The permutation action of the sym-

metry group of the network on the cells induces an action of the symmetry

group Γ on the phase space X of the coupled cell system by permuting the

coordinates.

A coupled cell system

dx

dt
= f(x),

where x ∈ X and f is smooth, has symmetry γ if and only if satisfies the

equivariance condition:

f(γx) = γf(x), ∀x ∈ X, γ ∈ Γ.

Symmetry is an important concept in the study of networks.

2.2. ‘Interior symmetry’ in a coupled cell system

The concept of ‘interior symmetry’ was introduced in Golubitsky, Pivato

and Stewart 4. It represents an intermediate class between the class of

general networks and the class of symmetric networks. In this case, there

is a group of permutations that acts in a subset of cells but not on the

entire set of cells, that partially preserves the network structure (cell- and

edges-types) and that permutes cell coordinates.

The network in Figure 1 is an example of Z3 × Z5 ‘interior symmetry’.

This means that if consider the subnetwork formed by ignoring the cou-

plings from cell x1 to the ‘buffer’ cell and from cell y5 to the ‘buffer’ cell,

then the resulting network is Z3×Z5-symmetric. This is a consequence of a

general characterization of a coupled cell network with ‘interior symmetry’

(see Proposition 3.3 in Antoneli, Dias and Paiva 1).
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3. Numerical Simulations

The simulation is performed using Matlab
8 and XPPAUT

2. We consider

as internal dynamics of the nine cells the function given by:

g(u) = µ u −
1

10
u2 − u3

and we use linear coupling.

The simulated coupled cell system is thus:

ẋj = g(xj) + c (xj − xj+1) + d b j = 1, . . . , 3

ḃ = g(b) + λ (x1 + y5)

ẏj = g(yj) + c (yj − yj+1) + d b j = 1, . . . , 5

(1)

where c, d, λ are parameters, and the indexing assumes x4 = x1 and

y6 = y1. Note that if λ = 0, then the coupled cell system (1) has global

symmetry Z3 × Z5.

We simulate solutions of this system in the two cases, λ = 0 (symmetric)

and λ 6= 0 (‘interior symmetric’) and compare the two situations.

We use XPPAUT to compute some bifurcation branches for the coupled

cell system (1). We set c = 0.75, d = 0.2, and we vary the parameter

µ. In Figure 2 we show a sequence of three Hopf bifurcations (valid for

λ = 0 and λ 6= 0) given by XPPAUT and in what follows we will present

the corresponding state for each branch and comment on the properties of

the solutions obtained for each branch.
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Figure 2. Schematic (partial) bifurcation diagram for the coupled cell system (1),
around the equilibrium (0, 0, 0, 0, 0, 0, 0, 0, 0), varying the bifurcation parameter µ, set-
ting c = 0.75 and d = 0.2. Solid lines represent a stable equilibrium, dashed lines
correspond to unstable equilibrium. Solid curves represent stable periodic orbits. See
text for details.
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The solutions corresponding to the first branch are explained using the

Equivariant Hopf Theorem for coupled cell systems in the symmetric case,

and the analog for coupled cell systems with ‘interior symmetry’.

The Equivariant Hopf Theorem provides states with spatio-temporal

symmetries corresponding to subgroups of the symmetry group of the net-

work, which have two dimensional fixed point subspaces (see Golubitsky

and Stewart 6). The interior symmetry-breaking Hopf bifurcation Theo-

rem (see Antoneli, Dias and Paiva 1) provides states whose linearization on

certain subsets of cells, near bifurcation, are superpositions of synchronous

states with states having spatio-temporal symmetries, corresponding to

subgroups of the ‘interior symmetry’ group of the network, which have

two dimensional fixed point subspaces. In Figure 3 (left), it is shown a

time series solution of the coupled cell system (1) for λ = 0, representing a

rotating wave state in the five-cells ring, that bifurcated at a Hopf point,

HB1, from the trivial equilibrium branch. In Figure 3 (right), it is shown

a time series solution of the coupled cell system (1) for λ = 0.1, repre-

senting the superposition of a rotating wave state in the five-cells ring and

a synchronous periodic state in the three-cells ring, bifurcating at a Hopf

point, HB1, from the trivial equilibrium branch. In the schematic bifurca-

tion diagram of Figure 2, the above solutions for λ = 0 and λ = 0.1 of the

coupled cell system (1), correspond to the first Hopf bifurcating branch,

with ‘symmetry type’ Z3 × Z̃5.
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Figure 3. Simulation of the coupled system (1). Time series from the nine cells. (Left)
Cells in the three cell ring are at equilibria and cells in the five cell ring show a rotating
wave, for the symmetric case (λ = 0); (Right) Cells in the three cell ring are in synchrony
with the ‘buffer‘ cell and cells in the five cell ring show a rotating wave, for the ‘interior
symmetric’ case (λ = 0.1).
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By further variation of the parameter µ, there is a secondary Hopf

bifurcation point, labeled HB2, where the time series of the cells x1, x2, x3,

appear to show a Z3 rotating wave state. However, the full solution of the

coupled cell system (1) is quasi-periodic. In Figure 4, we show, in the

left panel, the individual time series of the nine cells, for the case λ = 0

and on the right panel we plot cell x1 vs cells y5, where the quasi-periodic

behavior is indicated by the non-closed curve that fills the square densely.

In Figure 5, we present, in the left panel, the individual time series of the

nine cells, for the case λ = 0.1, note that the ‘buffer’ cell appears to exhibit

a quasi-periodic state or a periodic orbit with very long period. On the right

panel, we plot cell x1 vs cells y5, where the behavior is similar to the case

λ = 0. These two figures represent, in the schematic bifurcation diagram of

Figure 2, states corresponding to the the second Hopf bifurcating branch,

with ‘symmetry type’ Z̃3 × Z̃5. Continuing the variation of parameter µ,
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Figure 4. Simulation of the coupled system (1). (Left) Time series from the nine cells
for λ = 0; (right) x1 vs y5 for λ = 0.

we find a third Hopf bifurcating point, HB3. Near this bifurcation point,

we don’t see any significant qualitative change on the dynamical features

of the cells in comparison with the behavior plotted in Figures 4,5. The

curious behavior exhibited by the coupled cell system studied in Golubitsky

et al
3 (Figure 18), is obtained in this third bifurcating branch but further

away from HB3. In Figures 6 and 7, we plot, on the left panel, the time

series for the nine cells and on the right panel cell x1 vs cell y5, for the

cases λ = 0 and λ = 0.1, respectively. The numerics strongly suggests

that this dynamical feature needs a relaxation oscillationa phenomena to

aSolutions with long periods of quasi-static behavior interspersed with short periods of
rapid transition.
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Figure 5. Simulation of the coupled system (1). (Left) Time series from the nine cells
for λ = 0.1; (right) x1 vs y5 for λ = 0.1.

occur. Relaxation oscillations are studied in the context of the canard

phenomenon 7. Canard theory is usually applied in the study of ordinary

differential equations where there are two time scales (usually denoted by

fast-slow systems). In the example studied in this paper, it is not explicitly

imposed a structure of two time scales.

In Table 1, we summarize the information, computed by XPPAUT, re-

lated to the schematic (partial) bifurcation diagram in Figure 2, and de-

scribe the dynamical behavior for the coupled system (1) for the different

bifurcating branches.

Table 1. Description of the dynamical behavior of system (1) for variation of parameter µ. See
text for more details.

Bifurcation Point µ⋆ Three cells ring Five cells ring Figure

Hopf Point (HB1) 1.35676275 equilibrium rotating wave 3
Hopf Point (HB2) 1.12500000 rotating wave rotating wave 4,5
Hopf Point (HB3) 0.51823726 rotating wave rotating wave 6,7

(relaxation oscillations) (relaxation oscillations)

4. Conclusion

In this paper we present numerical simulations showing dynamical features

of a network of two unidirectional rings coupled through a ‘buffer’ cell.

We use XPPAUT and MATLAB to compute a partial bifurcation dia-

gram and the corresponding dynamical states in each bifurcating branch.
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Figure 6. Simulation of the coupled system (1). (Left) time series from the nine cells;
(right) x1 vs cell y5 for λ = 0.
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Figure 7. Simulation of the coupled system (1). (Left) time series from the nine cells;
(right) x1 vs cell y5 for λ = 0.1.

We suggest a bifurcation scenario that explains the curious phenomena

shown by Golubitsky et al
3 (Figure 18). More specifically, we present evi-

dence that such type of solution can arise through a sequence of three Hopf

bifurcations. In the last branch of solutions, we observe a transition from

small amplitude solutions to large amplitude relaxation oscillations.
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