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Abstract

We construct a family of irreducible representations of the quantum plane and
of the quantum Weyl algebra over an arbitrary field, assuming the deformation
parameter is not a root of unity. We determine when two representations in this
family are isomorphic, and when they are weight representations, in the sense of
[1].

1 Introduction

Assume throughout that F is a field of arbitrary characteristic, not necessarily alge-
braically closed, with group of units F∗. Fix q ∈ F∗ with q 6= 1. The quantum plane is
the unital associative algebra

Fq[x, y] = F{x, y}/(yx− qxy) (1.1)

with generators x and y subject to the relation yx = qxy.
Consider the operators τq and ∂q defined on the polynomial algebra F[t] by

τq(p)(t) = p(qt), and ∂q(p)(t) =
p(qt)− p(t)
qt− t

, for p ∈ F[t]. (1.2)

Then the assignment x 7→ τq, y 7→ ∂q yields a (reducible) representation Fq[x, y] →
EndF(F[t]) of Fq[x, y], which is faithful if and only if q is not a root of unity. The
operators τq and ∂q are central in the theory of linear q-difference equations and ∂q is
also known as the Jackson derivative, as it appears in [4]. See e.g. [6], [5, Chap. IV] and
references therein for further details.

The irreducible representations of the quantum plane Fq[x, y] have been classified
in [1] using results from [2]. Following [1] we say that a representation of Fq[x, y] is a
weight representation if it is semisimple as a representation of the polynomial subalgebra
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F[H] generated by the element H = xy. When q is a root of unity all irreducible
representations of Fq[x, y] are finite-dimensional weight representations, and these are
well understood. For example, if F is algebraically closed and q is a primitive n-th root
of unity then the irreducible representations of Fq[x, y] are either 1 or n dimensional.
When q is not a root of unity there are irreducible representations of Fq[x, y] that are
not weight representations, and in particular are not finite dimensional. These turn
out to be the F[H]-torsionfree irreducible representations of Fq[x, y], as they remain
irreducible (i.e. nonzero) upon localizing at the nonzero elements of F[H]. In [1, Cor. 3.3]
the torsionfree representations of Fq[x, y] are classified in terms of elements satisfying
certain conditions, but no explicit construction of these representations is given.

We assume q is not a root of unity, and we give an explicit construction of a 3-
parameter family Vm,n

f of infinite-dimensional representations of Fq[x, y] having the
following properties (compare Propositions 2.4, 2.6 and 2.7):

• m and n are positive integers, and f : Z → F∗ satisfies condition (2.1) below,
which essentially encodes n independent parameters from F∗;

• Vm,n
f is irreducible if and only if gcd(m,n) = 1;

• if (m,n) 6= (m′, n′) then Vm,n
f and Vm′,n′

f ′ are not isomorphic;

• Vm,n
f is a weight representation if and only if m = n;

• if F is algebraically closed and V is an irreducible weight representation of Fq[x, y]

that is infinite dimensional, then V ' V 1,1
f for some f : Z→ F∗.

Thus, in some sense weight and non-weight representations of Fq[x, y] are rejoined in
the family Vm,n

f .
The localization of Fq[x, y] at the multiplicative set generated by x contains a copy

of the q-Weyl algebra, which is the algebra

A1(q) = F{X,Y }/(Y X − qXY − 1) (1.3)

with generators X and Y subject to the relation Y X − qXY = 1 (see (3.1) for details
about this embedding). This is used in Subsection 3.1 to regard the representations
Vm,n
f as infinite-dimensional irreducible representations of A1(q). In contrast with the

action of Fq[x, y] on Vm,n
f when m = n, it turns out that Vm,n

f is never a weight
representation of A1(q) in the sense of [1]. In Subsection 3.2 we pursue a dual approach
by constructing representations Wn

g of A1(q) and then restricting the action from the
q-Weyl algebra to two distinct subalgebras of A1(q) isomorphic to Fq[x, y].

2 A family Vm,n
f of infinite-dimensional irreducible repre-

sentations of Fq[x, y] for q not a root of unity

Assume q ∈ F∗ is not a root of unity. We introduce a family Vm,n
f of infinite-dimensional

representations of Fq[x, y] which are not in general weight representations in the sense
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of [1], but which includes all irreducible infinite-dimensional weight representations of
Fq[x, y] if we further assume F to be algebraically closed.

2.1 Structure of the representations Vm,n
f

Fix positive integers m,n ∈ Z>0 and a function f : Z→ F∗ satisfying

f(i+ n) = qf(i), for all i ∈ Z. (2.1)

Such functions are in one-to-one correspondence with elements of (F∗)n. Let Vm,n
f

denote the representation of Fq[x, y] on the space F[t±1] of Laurent polynomials in t
given by

x.ti = ti+n, y.ti = f(i)ti−m, for all i ∈ Z. (2.2)

Condition (2.1) ensures that the expressions (2.2) do define an action of Fq[x, y] on
F[t±1] as, for all i ∈ Z,

(yx− qxy).ti = (f(i+ n)− qf(i))ti+n−m = 0.

Example 2.1. Fix µ ∈ F∗ and m,n ∈ Z>0. For i ∈ Z let f(i) = µqb
i
nc, where

⌊
i
n

⌋
denotes the largest integer not exceeding i

n . Then f : Z → F∗ satisfies condition (2.1)
and thus there is a representation Vm,n

f of Fq[x, y] on F[t±1] with action

x.ti = ti+n, y.ti = µqb
i
ncti−m, for all i ∈ Z.

We begin the study of the representations Vm,n
f by first considering the case that

the parameters m and n are coprime. The following consequence of (2.1) will be helpful.

Lemma 2.2. Assume gcd(m,n) = 1 and f : Z→ F∗ satisfies (2.1). For k ∈ Z define

sf (k) =
n−1∏
i=0

f(k − im). (2.3)

Then sf (k) = sf (0)qk.

Proof. For j ∈ Z let 0 ≤  < n be the unique integer such that  ≡ jmodn. Then the

formula f(j) = f()q
j−
n can be verified by induction on

∣∣∣ j−n ∣∣∣. Thus,

sf (k) =
n−1∏
i=0

f(k − im) =
n−1∏
i=0

f
(
k − ım

) n−1∏
i=0

q
k−im−k−ım

n .

Since m and n are coprime, the set
{
k − ım | 0 ≤ i < n

}
consists of all the integers from

0 to n− 1, and is thus independent of k. Moreover,

n−1∑
i=0

k − im− k − ım
n

= k +
n−1∑
i=0

−im− k − ım
n

= k +
n−1∑
i=0

−im− (−ım)

n
.
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Hence,

sf (k) = qk
n−1∏
i=0

f (−ım)
n−1∏
i=0

q
−im−(−ım)

n = qksf (0).

Proposition 2.3. Assume gcd(m,n) = 1 and f : Z → F∗ satisfies (2.1). Then the
representation Vm,n

f defined by (2.2) is an irreducible representation of Fq[x, y].

Proof. We begin with a computation: for k ∈ Z we have, by Lemma 2.2,

xmyn.tk = xm

(
n−1∏
i=0

f(k − im)

)
tk−nm = sf (k)tk = sf (0)qktk. (2.4)

Hence, xmyn.p(t) = sf (0)p(qt) for all p ∈ F[t±1].
Let W ⊆ Vm,n

f be a nonzero subrepresentation. If p(t) ∈ W then also p(qt) ∈ W,

by (2.4). As q is not a root of unity, the latter implies that t` ∈W for some ` ∈ Z. The
coprimeness of m and n shows the existence of integers a and b so that an − bm = 1.
By replacing a and b with a + jm and b + jn for a sufficiently large integer j, we can
assume a, b ∈ Z>0. Then xayb.tk = λkt

k+1 for some λk ∈ F∗, showing that tk ∈ W for
all k ≥ `. A similar argument shows that tk ∈ W for all k ≤ `. Hence W = Vm,n

f ,

establishing the irreducibility of Vm,n
f .

Next we describe Vm,n
f in terms of a maximal left ideal of Fq[x, y]. Recall that for

a representation V of Fq[x, y] and an element v ∈ V, the annihilator of v in Fq[x, y] is
annFq [x,y](v) = {r ∈ Fq[x, y] | r.v = 0}, a left ideal of Fq[x, y].

Proposition 2.4. Assume gcd(m,n) = 1 and f : Z→ F∗ satisfies (2.1).

(a) For 1 ∈ Vm,n
f , annFq [x,y](1) = Fq[x, y] (xmyn − sf (0)) and

Vm,n
f ' Fq[x, y]/Fq[x, y] (xmyn − sf (0)) .

(b) For positive integers m′, n′, and f ′ : Z → F∗ satisfying (2.1) (with n replaced by

n′), we have Vm,n
f ' Vm′,n′

f ′ if and only if m = m′, n = n′ and sf ′(0) = qksf (0)
for some k ∈ Z.

Proof. (a) Let θ = xmyn. First we show that

annFq [x,y](1) = Fq[x, y]
(
F[θ] ∩ annFq [x,y](1)

)
. (2.5)

The inclusion ⊇ is clear, so suppose u ∈ annFq [x,y](1). Write u =
∑

i≥0 µix
aiybi =∑

k∈Z uk, where uk =
∑

nai−mbi=k
µix

aiybi . Since uk.1 is in Ftk, it follows that uk ∈

annFq [x,y](1) for all k ∈ Z, and it suffices to prove uk ∈ Fq[x, y]
(
F[θ] ∩ annFq [x,y](1)

)
.
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If nai−mbi = naj −mbj then, as gcd(m,n) = 1, we deduce that (ai, bi) = (aj , bj) +
ξ(m,n) for some ξ ∈ Z. Thus, by the normality of x and y, there are a, b ≥ 0 with
na−mb = k such that uk = xaybw0, where w0 =

∑
j≥0 νjx

ξjmyξjn ∈ F[θ]. Notice that

for any ` ∈ Z, xayb.t` is a nonzero scalar multiple of t`+k, so xaybw0 = uk ∈ annFq [x,y](1)

implies that w0 ∈ annFq [x,y](1). Hence, uk ∈ Fq[x, y]
(
F[θ] ∩ annFq [x,y](1)

)
and (2.5) is

established.
Now (2.4) implies that θ−sf (0) ∈ F[θ]∩annFq [x,y](1). Since F[θ] (θ − sf (0)) is a max-

imal ideal of F[θ] it follows that F[θ]∩annFq [x,y](1) = F[θ] (θ − sf (0)) and annFq [x,y](1) =
Fq[x, y] (θ − sf (0)). This proves (a) as 1 ∈ Vm,n

f generates Vm,n
f .

(b) We observe that the arguments above also show that for tk ∈ Vm,n
f , annFq [x,y](t

k) =

Fq[x, y]
(
θ − qksf (0)

)
and

Vm,n
f ' Fq[x, y]/Fq[x, y]

(
xmyn − qksf (0)

)
,

for any k ∈ Z. This establishes the if part of (b). For the direct implication, suppose

Vm,n
f ' Vm′,n′

f ′ . We have, for a, b ≥ 0 and tk ∈ Vm,n
f ,

xayb.tk =

(
b−1∏
i=0

f(k − im)

)
tk+na−mb

and
∏b−1
i=0 f(k − im) 6= 0. This implies that xayb is diagonalizable on Vm,n

f if and only
if na = mb. As gcd(m,n) = 1 this amounts to having (a, b) = ξ(m,n) for some ξ ≥ 0.

Since Vm,n
f ' Vm′,n′

f ′ , then xm
′
yn
′

is diagonalizable on Vm,n
f and similarly xmyn is

diagonalizable on Vm′,n′

f ′ . By the relation above we conclude that (m,n) = (m′, n′).

Moreover, the eigenvalues of xmyn on Vm,n
f are of the form qksf (0), whereas sf ′(0) is an

eigenvalue of xm
′
yn
′

= xmyn on Vm′,n′

f ′ . Hence sf ′(0) = qksf (0) for some k ∈ Z, which
concludes the proof.

Remark 2.5. By Proposition 2.4 above, for gcd(m,n) = 1 and f : Z → F∗ satisfy-
ing (2.1), the isomorphism class of Vm,n

f depends only on m, n and sf (0) ∈ F∗.
Fix λ ∈ F∗. Since gcd(m,n) = 1 there is a unique fλ : Z→ F∗ such that (2.1) holds

and fλ(km) = λ if k = 0 and fλ(km) = 1 if −(n − 1) ≤ k ≤ −1. Then sfλ(0) = λ,
Vm,n
fλ
' Fq[x, y]/Fq[x, y] (xmyn − λ) and, for λ′ ∈ F∗, Vm,n

fλ
' Vm,n

fλ′
if and only if

λ/λ′ ∈ 〈q〉, where 〈q〉 is the subgroup of F∗ generated by q.
If F contains an n-th root of λ, say µ, there is a more natural construction for

the irreducible representation Fq[x, y]/Fq[x, y] (xmyn − λ). Define fµ(i) = µqb
i
nc, as in

Example 2.1. Then sfµ(0) = qkµn = qkλ, for some k ∈ Z. It follows from Proposition 2.4
that Vm,n

fµ ' Fq[x, y]/Fq[x, y] (xmyn − λ) and Vm,n
fµ depends only on m, n and λ, and

not on the particular n-th root of λ that was chosen.

Finally we consider the general case of arbitrary m,n ∈ Z>0.
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Proposition 2.6. Let m,n ∈ Z>0 be arbitrary, with d = gcd(m,n), and assume f :
Z→ F∗ satisfies (2.1). Then there is a direct sum decomposition

Vm,n
f '

d−1⊕
k=0

V
m/d,n/d
fk

(2.6)

into irreducible representations, where fk(i) = f(k + id), for 0 ≤ k < d and i ∈ Z.
Moreover, suppose m′, n′ ∈ Z>0, and f ′ : Z→ F∗ satisfies (2.1) (with n replaced by

n′). If Vm,n
f ' Vm′,n′

f ′ then m = m′ and n = n′.

Proof. For 0 ≤ k < d, the subspace tkF[t±d] of Vm,n
f is readily seen to be invariant under

the actions of x and y, and we have Vm,n
f =

⊕d−1
k=0 t

kF[t±d]. Thus, next we argue that

the subrepresentation tkF[t±d] is isomorphic to V
m/d,n/d
fk

, where fk(i) = f(k+ id) for all

i ∈ Z. First notice that fk(i+ n/d) = f(k + id+ n) = qf(k + id) = qfk(i), so V
m/d,n/d
fk

is defined. Consider the map φ : V
m/d,n/d
fk

→ tkF[t±d] given by φ(p)(t) = tkp(td),

for all p ∈ F[t±1]. In particular, φ(ti) = tk+id for i ∈ Z. Still viewing tkF[t±d] as a
subrepresentation of Vm,n

f , we have:

φ(x.ti) = φ(ti+n/d) = tk+id+n = x.tk+id = x.φ(ti),

φ(y.ti) = φ(fk(i)t
i−m/d) = f(k + id)tk+id−m = y.tk+id = y.φ(ti).

Since φ is clearly bijective, the calculations above show that φ is an isomorphism of

representations, and Vm,n
f '

⊕d−1
k=0 V

m/d,n/d
fk

. The fact that each summand V
m/d,n/d
fk

is
irreducible follows from gcd(m/d, n/d) = 1 and Proposition 2.3, which will be estab-
lished independently.

Finally, assume Vm,n
f ' Vm′,n′

f ′ for positive integers m′ and n′, and f ′ : Z → F∗

satisfying f ′(i+ n′) = qf ′(i), for all i ∈ Z. Then, up to isomorphism, Vm,n
f and Vm′,n′

f ′

have the same composition factors, and in particular the same composition length. This

proves that d = gcd(m,n) = gcd(m′, n′) and that V
m/d,n/d
f0

' V
m′/d,n′/d
f ′k

for some k. By

Proposition 2.4, which will also be established independently, we have m/d = m′/d and
n/d = n′/d, so m = m′ and n = n′.

2.2 Weight representations of the form Vm,n
f

Let us now determine when Vm,n
f is a weight representation in the sense of [1]. Recall

that this occurs when Vm,n
f is semisimple as a representation over the polynomial sub-

algebra F[H], where H = xy. Assume first that m = n = 1 and fix λ ∈ F∗. The map
fλ defined in Remark 2.5 is given by fλ(i) = λqi for all i ∈ Z, and the corresponding
representation V 1,1

fλ
' Fq[x, y]/Fq[x, y] (H − λ) is irreducible. Since H.ti = xy.ti = λqiti

for all i, the decomposition V 1,1
fλ

=
⊕

i∈Z F ti shows that V 1,1
fλ

is semisimple over F[H].
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Moreover, for ν ∈ F∗, V 1,1
fλ
' V 1,1

fν
if and only if λ/ν ∈ 〈q〉, the multiplicative subgroup

of F∗ generated by q, by Proposition 2.4. In case F is algebraically closed, these are
all the infinite-dimensional irreducible weight representations of Fq[x, y], by [1, Cor.
3.2]. Combined with Proposition 2.4(b) the above yields the classification of irreducible
weight representations in the family Vm,n

f .

Proposition 2.7. Assume gcd(m,n) = 1 and f : Z → F∗ satisfies (2.1). Then Vm,n
f

is a weight representation if and only if m = n = 1.

For completeness, we include a brief and direct proof of Proposition 2.7 not assuming
that F is algebraically closed, a condition that was used implicitly at the end of the
previous paragraph.

Proof. Assume first that m = n = 1. Then since f satisfies (2.1) we have f = fλ
for λ = f(0) and the discussion above shows that Vm,n

f is a weight representation of

Fq[x, y]. Conversely, suppose Vm,n
f is a weight representation of Fq[x, y]. Then clearly

dimF F[H].v < +∞ for any v ∈ Vm,n
f . Notice that, for all i ∈ Z, H.ti = xy.ti =

f(i)ti+n−m. Thus, for ` ∈ Z, H`.ti = ζti+`(n−m) for some ζ ∈ F∗. But then the
condition dimF F[H].1 < +∞ immediately implies m = n, and hence m = n = 1, as
gcd(m,n) = 1.

Remark 2.8. Given arbitrary positive integers m and n, and f satisfying (2.1), the
representation Vm,n

f is a weight representation if and only if m = n. The direct impli-
cation follows from the proof of Proposition 2.7. For the converse implication, recall
that Vm,m

f is the direct sum of m representations of the form V 1,1
fk

, for 0 ≤ k < m, by
Proposition 2.6, so the claim follows as each of these is a weight representation.

3 Connections with the representation theory of the q-
Weyl algebra A1(q)

We continue to assume q ∈ F∗ is not a root of unity. Let A1(q) be the q-Weyl algebra
given by generators X and Y and defining relation Y X − qXY = 1, as in (1.3). It is
straightforward to show that {xk | k ≥ 0} is a right and left Ore set consisting of regular
elements of Fq[x, y], and we denote the corresponding localization by Fq[x±1, y]. The
calculation(
x−1(y − 1)

)
x− qx

(
x−1(y − 1)

)
= x−1yx− q(y − 1)− 1 = qy − q(y − 1)− 1 = q − 1

shows that there is an algebra map

A1(q)→ Fq[x±1, y], with X 7→ x, Y 7→ 1
q−1x

−1(y − 1). (3.1)

To see that the map in (3.1) is injective we can argue as follows. The multiplicative
subset {Xk | k ≥ 0} of A1(q) is a right and left Ore set of regular elements and we
denote the corresponding localization by Â1(q). Then the map in (3.1) extends to a
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map Â1(q)→ Fq[x±1, y], which has an inverse Fq[x±1, y]→ Â1(q) with x±1 7→ X±1 and

y 7→ (q − 1)XY + 1. It follows that (3.1) induces an isomorphism Â1(q) ' Fq[x±1, y],
and in particular (3.1) is injective. In view of the above we will identify X with x, Y
with 1

q−1x
−1(y − 1) and A1(q) with the corresponding subalgebra of Fq[x±1, y]. Since

y = (q − 1)XY + 1 = Y X −XY , we have the embeddings

Fq[x, y] ⊆ A1(q) ⊆ Fq[x±1, y] = Â1(q). (3.2)

3.1 Extension of the representations Vm,n
f to A1(q)

Our aim in this subsection is to extend the action of Fq[x, y] on Vm,n
f to an action of

the q-Weyl algebra A1(q). Assume thus that m,n are positive integers and f : Z→ F∗
satisfies (2.1). If ρm,nf : Fq[x, y]→ EndF(Vm,n

f ) is the representation of Fq[x, y] on Vm,n
f ,

we first observe that ρm,nf (x) is an invertible linear map on Vm,n
f , a fact which is clear

from (2.2). Therefore ρm,nf extends to the localization Fq[x±1, y], and Vm,n
f can be seen

as a representation of Fq[x±1, y] with x−1.ti = ti−n for all i ∈ Z. Now we get an action
of A1(q) on Vm,n

f = F[t±1] by restricting ρm,nf :

X.ti = x.ti = ti+n,

Y.ti =
1

q − 1
x−1(y − 1).ti =

1

q − 1
(f(i)ti−m−n − ti−n), for all i ∈ Z. (3.3)

In our next result we view Vm,n
f as a representation of A1(q), as above.

Proposition 3.1. Assume gcd(m,n) = 1 and f : Z→ F∗ satisfies (2.1). Then:

(a) Vm,n
f defined by (3.3) is an irreducible representation of A1(q).

(b) For positive integers m′, n′, and f ′ : Z → F∗ satisfying (2.1) (with n replaced by

n′), we have Vm,n
f ' Vm′,n′

f ′ as representations of A1(q) if and only if m = m′,

n = n′ and sf ′(0) = qksf (0) for some k ∈ Z.

(c) Vm,n
f is not semisimple as a representation over the polynomial subalgebra of A1(q)

generated by XY ; hence, Vm,n
f is not a weight representation of A1(q) in the sense

of [1].

Proof. Part (a) and the direct implication in (b) follow from the embedding (3.2), and
from Propositions 2.3 and 2.4.

Suppose now f ′ : Z→ F∗ satisfies (2.1), and there is k ∈ Z so that sf ′(0) = qksf (0).
Then by Proposition 2.4 there is an isomorphism φ : Vm,n

f → Vm,n
f ′ as representations

of Fq[x, y]. For v ∈ Vm,n
f we have φ(v) = φ(xx−1.v) = x.φ(x−1.v), thus φ(x−1.v) =

x−1.φ(v). Whence φ is an isomorphism of representations of Fq[x±1, y]. The other
implication in (b) now follows from (3.2).

Observe that XY = 1
q−1(y − 1), so the polynomial subalgebra of A1(q) generated

by XY is just F[y]. Given 0 6= v ∈ Vm,n
f , the formula y.ti = f(i)ti−m for i ∈ Z implies

dimF F[y].v = +∞. Hence, Vm,n
f is not semisimple over F[y] = F[XY ], and therefore it

is not a weight representation of A1(q) in the sense of [1].
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Remark 3.2. In [3] the authors introduce Whittaker representations for generalized
Weyl algebras. For the cases covered in this note, a representation V is a Whittaker
representation for Fq[x, y] (respectively, for A1(q)) if V is generated by an element
v ∈ V which is an eigenvector for the action of x ∈ Fq[x, y] (respectively, for the action
of X ∈ A1(q)). Since m,n ≥ 1, it is immediate that the operators x, y ∈ Fq[x, y]
(respectively, X,Y ∈ A1(q)) have no eigenvectors in Vm,n

f , so Vm,n
f is not a Whittaker

representation for the quantum plane (respectively, for the q-Weyl algebra).

3.2 The representations Wn
g of A1(q) and their restriction to Fq[x, y]

We will now use a similar idea to construct representations of the q-Weyl algebra on
the Laurent polynomial algebra F[t±1]. Fix positive integers m,n ∈ Z>0 and a function
g : Z→ F. Then the formulas

X.ti = ti+n, Y.ti = g(i)ti−m, for all i ∈ Z (3.4)

yield a representation of A1(q) on F[t±1] if and only if m = n and g satisfies

g(i+ n) = qg(i) + 1, for all i ∈ Z. (3.5)

We denote the corresponding representation of A1(q) by Wn
g . Notice that for all i ∈ Z

XY.ti = g(i)ti, (Y X −XY ).ti = (g(i+ n)− g(i)) ti = ((q − 1)g(i) + 1) ti, (3.6)

so Wn
g is a weight representation of A1(q) in the sense of [1].

Remark 3.3. It follows from the computations at the beginning of Section 3 that
the element Y X −XY is normal in A1(q) and it is sometimes referred to as a Casimir
element, in spite of not being central. The equality Y X−XY = (q−1)XY +1 shows that
Y X −XY and (q− 1)XY + 1 generate the same subalgebra of A1(q) and thus a weight
representation of A1(q) could be defined in an equivalent manner as a representation
which is semisimple over the subalgebra generated by the Casimir element Y X −XY .

Our first observation is the analogue of Proposition 2.6.

Lemma 3.4. Let n ∈ Z>0 and assume g : Z→ F satisfies (3.5). There is a direct sum
decomposition

Wn
g '

n−1⊕
k=0

W1
gk
, (3.7)

where gk(i) = g(k + in), for 0 ≤ k < n and i ∈ Z.

Proof. For 0 ≤ k < n, the subspace tkF[t±n] is invariant under the actions of X and Y
and Wn

g =
⊕n−1

k=0 t
kF[t±n]. Moreover, the map φ : W1

gk
→ tkF[t±n] given by φ(p)(t) =

tkp(tn), for all p ∈ F[t±1] is easily checked to be an isomorphism.
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In view of the above, it is enough to study the structure of the representations
W1
g , where g : Z → F satisfies g(i + 1) = qg(i) + 1 for all i ∈ Z. Equivalently,

g(i) = g(0)qi + [i]q, where [i]q = qi−1
q−1 for all i ∈ Z.

Proposition 3.5. Let g, g′ : Z→ F satisfy (3.5) with n = 1. Then:

(a) W1
g 'W1

g′ if and only if g(0) = g′(i) for some i ∈ Z;

(b) W1
g is irreducible if and only if g(0) /∈ {[i]q | i ∈ Z} ∪

{
− 1
q−1

}
.

Proof. For (a), suppose W1
g 'W1

g′ . By (3.6) the eigenvalues of XY on W1
g are g(i), for

i ∈ Z and similarly the eigenvalues of XY on W1
g′ are g′(i), for i ∈ Z. Thus, g and g′

must have the same image and in particular g(0) = g′(i) for some i ∈ Z. Conversely, if
the latter holds then the map φ : W1

g →W1
g′ given by φ(p)(t) = tip(t) for all p ∈ F[t±1]

is an isomorphism.
For (b), first observe that for i ∈ Z we have g(0) = [i]q ⇐⇒ g(−i) = 0. Thus,

if g(0) = [i]q for some i ∈ Z, then t−iF[t] is invariant under the actions of X and Y ,
so W1

g is not irreducible in this case. Next observe that g(0) = − 1
q−1 ⇐⇒ g is not

injective ⇐⇒ g is constant. It follows that if g(0) = − 1
q−1 , then (t−1)F[t±1] is a proper

subrepresentation and hence W1
g is not irreducible. This proves the direct implication

in (b). For the converse, by the observations above, we can assume that g(i) 6= 0 for
all i ∈ Z and that g is injective. Let S be a nonzero subrepresentation of W1

g . By
repeatedly applying the operator X to a chosen nonzero element of S, we will obtain a
nonzero element of S ∩ F[t]. Let p be one such element, chosen so that it has minimum
degree, say p =

∑d
k=0 akt

k, with ad 6= 0. Since g(i) 6= 0 for all i ∈ Z, the minimality of
p implies that a0 6= 0. Then

S ∩ F[t] 3 (XY − g(d)).p =

d−1∑
k=0

(g(k)− g(d))akt
k.

By the minimality of p we must have (XY − g(d)).p = 0. Hence, g(0) = g(d) and the
injectivity of g gives d = 0. It follows that t0 ∈ S and thus S = W1

g .

Now that we understand the representations Wn
g , we will consider their restriction

to Fq[x, y] via each of the two embeddings

σ : Fq[x, y]→ A1(q), x 7→ X, y 7→ Y X −XY = (q − 1)XY + 1; (3.8)

τ : Fq[x, y]→ A1(q), x 7→ Y X −XY = (q − 1)XY + 1, y 7→ Y. (3.9)

We consider first the restriction relative to σ. In this case, the action of Fq[x, y] on
Wn
g is given by

x.ti = ti+1, y.ti = ((q − 1)g(i) + 1) ti, for all i ∈ Z. (3.10)

Lemma 3.6. Consider the restriction map σ given in (3.8) to view the representations
Wn
g as representations of Fq[x, y].
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(a) Let n ∈ Z>0 and assume g : Z → F satisfies (3.5). Then Wn
g '

⊕n−1
k=0 W

1
gk

as
representations of Fq[x, y], where gk(i) = g(k + in), for 0 ≤ k < n and i ∈ Z.

(b) Let g, g′ : Z → F satisfy (3.5) with n = 1. Then W1
g ' W1

g′ as representations of
Fq[x, y] if and only if g(0) = g′(i) for some i ∈ Z.

(c) Assume g : Z → F satisfies (3.5) with n = 1. Then W1
g has trivial socle as a

representation of Fq[x, y], i.e., it has no irreducible Fq[x, y]-subrepresentations.

Proof. Part (a) follows directly from Lemma 3.4 and part (b) follows from the proof of
Proposition 3.5(a), as the argument for the direct implication in Proposition 3.5(a) used
only the restriction of the action to the subalgebra generated by XY , which coincides
with the subalgebra generated by Y X −XY .

For part (c), suppose by way of contradiction that S is an irreducible Fq[x, y]-
subrepresentation of W1

g . Let 0 6= s ∈ S. Then x.s 6= 0 and thus Fq[x, y]x.s = S,
which is a contradiction as s /∈ Fq[x, y]x.s.

Remark 3.7. In the conditions of Lemma 3.6, it can be checked that W1
g has maximal

Fq[x, y]-subrepresentations if and only if g is constant.

Now we consider the restriction of Wn
g to Fq[x, y] relative to τ , as defined in (3.9).

In this case, the action of Fq[x, y] on Wn
g is given by

x.ti = ((q − 1)g(i) + 1) ti, y.ti = g(i)ti−1, for all i ∈ Z. (3.11)

Lemma 3.8. Consider the restriction map τ given in (3.9) to view the representations
Wn
g as representations of Fq[x, y].

(a) Let n ∈ Z>0 and assume g : Z → F satisfies (3.5). Then Wn
g '

⊕n−1
k=0 W

1
gk

as
representations of Fq[x, y], where gk(i) = g(k + in), for 0 ≤ k < n and i ∈ Z.

(b) Let g, g′ : Z → F satisfy (3.5) with n = 1. Then W1
g ' W1

g′ as representations of
Fq[x, y] if and only if g(0) = g′(i) for some i ∈ Z.

(c) Assume g : Z → F satisfies (3.5) with n = 1. If g(0) /∈ {[i]q | i ∈ Z} then W1
g

has trivial socle as a representation of Fq[x, y], i.e., it has no irreducible Fq[x, y]-
subrepresentations. If g(0) = [i]q for some i ∈ Z then Ft−i is the unique irreducible
Fq[x, y]-subrepresentation of W1

g.

Proof. The proof is the same as the proof of Lemma 3.6, except for part (c). For
this part, suppose that S is an irreducible Fq[x, y]-subrepresentation of W1

g . If there
is 0 6= s ∈ S such that y.s 6= 0, then we obtain a contradiction as in the proof of
Lemma 3.6(c), showing that no such irreducible Fq[x, y]-subrepresentation of W1

g exists.
If g(0) /∈ {[i]q | i ∈ Z} then g(i) 6= 0 for all i ∈ Z, so y.s 6= 0 for all s 6= 0 and the
first claim follows. Now suppose g(0) = [i]q for some i ∈ Z. Then g(k) = 0 ⇐⇒ k =
−i. In particular, x.t−i = t−i and y.t−i = 0, so that Ft−i is an irreducible Fq[x, y]-
subrepresentation of W1

g . If S is any irreducible Fq[x, y]-subrepresentation of W1
g , then

the argument above implies that y.s = 0 for all s ∈ S, and this in turn implies that
S ⊆ Ft−i, which establishes the second claim in (c).
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