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Abstract. Constraints are given on the depth of diagonal subalgebras in

generalized triangular matrix algebras. The depth of the top subalgebra

B ∼= A/radA in a finite, connected, acyclic quiver algebra A over an alge-
braically closed field K is then computed. Also the depth of the primary

arrow subalgebra 1K + radA = B in A is obtained. The two types of subalge-

bras have depths 3 and 4 respectively, independent of the number of vertices.
An upper bound on depth is obtained for the quotient of a subalgebra pair.

1. Introduction

Given a subalgebra pair, one extracts a (minimum) depth from a comparison
of n-fold tensor products of the subalgebra pair with one another in a meaningful
way. The interesting case is when an (n+ 1)-fold tensor product divides a multiple
of the n-fold tensor product in the sense of Krull-Schmidt unique factorization into
indecomposable bimodules, or more generally as a bimodule isomorphism with a
direct summand. The bimodule structures on the n-fold tensor products are natu-
rally any one of four possibilities as left and right modules over the subalgebra or
overalgebra. The least restrictive of these conditions is two-sided over the subalge-
bra and we fix the depth in the situation mentioned above to be 2n+ 1; for mixed
bimodules, we have the left and right depth 2n conditions [3]. The most stringent
condition, as bimodules of the overalgebra, is H-depth 2n− 1 [16], and is useful to
ordinary depth gauging as well when the overalgebra has nice bimodules such as a
separable algebra (see Proposition 2.1 below).

Comparing the tensor-square of an algebra extension with the overalgebra as
mixed bimodules leads to a characterization of the Galois extension [12, 14, 13].
Thus not unexpectedly the depth two condition placed on Hopf subalgebras is
equivalent to the normality condition with respect to the adjoint actions [4]. The
depth three condition is satisfied by a subalgebra B ⊆ A when, in a suitably
nice category of bimodules, A contains all Be-indecomposables that can possibly
appear up to isomorphism in decompositions of tensor products A ⊗B · · · ⊗B A
[4, 15]. Semisimple complex subalgebra pairs of each depth n ∈ N are noted in [8]
via bipartite graphs and inclusion matrices for K0(B)→ K0(A).

In the paper [3] it was shown that the depth of a finite group algebra extension is
bounded by twice the index of the normalizer of the subgroup in the group. In the
papers [7, 8, 3, 9, 10] the depth of certain group algebra extensions are computed;
for example, [10] computes the depth of all the subgroups of PSL(2, q) viewed
as complex group algebras. In [8] the complex group algebras associated to the
permutation groups are shown to have depth d(Sn, Sn+1) = 2n − 1; in [3], this
same result is shown to not depend on the ground ring.
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It was noted in the paper [15] that a subalgebra B in a finite-dimensional alge-
bra A has finite depth d(B,A) if Be has finite representation type; below we note
that this holds if Ae has finite representation type. In addition it is possible in
algebras without involution that a subalgebra having left depth 2n may not have
right depth 2n. Moreover, the matrix power inequality characterizing depth n sub-
algebra pairs of semisimple complex algebras in [7, 8] breaks down in the presence
of indecomposables of length greater than one. For these reasons, it becomes in-
teresting to begin a study of depth of subalgebras in path algebras of quivers. A
reasonable place to start is with acyclic quivers for whose path algebras there is
a classic theorem about which have finite representation type in terms of Dynkin
diagrams and the underlying graphs [1]. This paper computes the depth of the top
and arrow subalgebras of the path algebra of a finite, connected, acyclic quiver. In
Section 3 we note constraints on the depth of a diagonal subalgebra of a generalized
matrix ring. We also note an inequality of depth in case the subalgebra contains
ideals of the overalgebra, perhaps useful in computing depth of certain subalgebras
of bounded quiver algebras. In the last Section 6 of concluding remarks we discuss
other subalgebras of certain quiver algebras and their depth.

2. Preliminaries on depth

Given a unital associative ring R and unital R-modules M and N , we say that
M divides N and write M |N if N ∼= M ⊕ ∗ as R-module for some (unnamed)
complementary module. If there are natural numbers r and s such that N | rM =
M⊕· · ·⊕M and M | sN , then M and N are H-equivalent (or similar), as R-modules;
denoted by M ∼ N . Note that this is indeed an equivalence relation. In this case
their endomorphism rings EndMR and EndNR are Morita equivalent with Morita
context bimodules Hom (MR, NR) and Hom (NR,MR) (with module actions and
Morita pairings given by composition).

If M and N are in a category of finitely generated R-modules having unique
factorization into indecomposables, then M and N have the same indecomposable
constituents if and only if M and N are H-equivalent modules. If F is an additive
endofunctor of the category of R-modules, then M ∼ N implies F (M) ∼ F (N);
which in practice means that H-equivalent bimodules may replace one another in
certain H-equivalences of tensor products. In addition, M ∼ N and U ∼ V implies
M ⊕ U ∼ N ⊕ V .

Throughout this paper, let A be a unital associative ring and B ⊆ A a subring
where 1B = 1A. Note the natural bimodules BAB obtained by restriction of the
natural A-A-bimodule (briefly A-bimodule) A, also to the natural bimodules BAA,

AAB or BAB , which are referred to with no further notation. Equivalently we
denote the proper ring extension A ⊇ B occasionally by A |B. (Often results are
valid as well for a ring homomorphism B → A and its induced bimodules on A.)

Let C0(A,B) = B, and for n ≥ 1,

Cn(A,B) = A⊗B · · · ⊗B A (n times A)

For n ≥ 1, the Cn(A,B) has a natural A-bimodule structure given by a(a1 ⊗ · · · ⊗
an)a′ = aa1⊗· · ·⊗ana′. Of course, this bimodule structure restricts to B-A-, A-B-
and B-bimodule structures as we may need them. Let C0(A,B) denote the natural
B-bimodule B itself. Recall from [3, 15] that a subring B ⊆ A has right depth 2n
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if

(1) Cn+1(A,B) ∼ Cn(A,B)

as natural A-B-bimodules; left depth 2n if the same condition holds as B-A-
bimodules; if both left and right conditions hold, it has depth 2n; and depth 2n+ 1
if the same condition holds as B-bimodules. If condition (1) holds in its strongest
form as A-A-modules for n ≥ 1 the subring B ⊆ A is said to have H-depth 2n− 1;
H-depth is investigated in [16].

Note that if the subring has left or right depth 2n, it automatically has depth
2n + 1 by restriction to B-bimodules. Also note that if the subring has depth
2n+ 1, it has depth 2n+ 2 by tensoring the H-equivalence by −⊗B A or A⊗B −.
The minimum depth (or just depth when the context makes it clear) is denoted by
d(B,A); if B ⊆ A has no finite depth, write d(B,A) =∞. There is hidden in this
a subtlety: if there is a subring B ⊆ A of left depth 2n but not of right depth 2n,
then it has depth 2n+ 1, left and right depth 2n+ 2, and nevertheless its minimum
depth is 2n. There is not a published example of such a subring at present (but a
search for this must occur outside the class of QF extensions [15, Th. 2.4]). Note
too that if B ⊆ A has H-depth 2n− 1, it has depth 2n by restriction.

In practice one only need check half of the condition in (1) to establish depth 2n
or 2n+1 of a ring extension A ⊇ B. This is due to the fact that it is always the case
that Cn(A,B) |Cn+1(A,B) for n ≥ 1 via appropriate face and degeneracy maps in
the relative homological bar complex; e.g. the A-A-epimorphism a1 ⊗ a2 7→ a1a2
is split by the B-A-monomorphism a 7→ 1 ⊗B a, whence C1(A,B) |C2(A,B) as
B-A-bimodules.

For a k-algebra B let Be denote B⊗k Bop. For a finite dimensional dimensional
algebra A let nA denote the cardinal number of isomorphism classes of indecom-
posable finitely generated A-modules. Of course each of the Be-modules Cn(A,B)
are finitely generated when A is a finite dimensional algebra.

Proposition 2.1. Let B ⊆ A be a subring pair of finite dimensional algebras.
If Be has finite representation type, then d(B,A) ≤ 1 + 2nBe . If Ae has finite
representation type, then d(B,A) ≤ 2nAe . If A ⊗ Bop has finite representation
type, then d(B,A) ≤ 2nA⊗Bop .

Proof. If Be has finite representation type, it is shown in [15] that subring depth
d(B,A) is finite based on two basic facts. First, a finitely generated module M over
a finite dimensional algebra divides a multiple of another module N if and only if
their Krull-Schmidt unique factorization into indecomposable modules possess the
indecomposable constituents satisfying Indec (M) ⊆ Indec (N); then M and N are
H-equivalent iff Indec (M) = Indec (N). Secondly, from Cn(A,B) |Cn+1(A,B) we
obtain IndecCn(A,B) as sequence of subsets of a finite number of indecomposables
that grows with n.

If Ae has finite representation type, then one applies the same argument with
growing IndecCn(A,B), this time as A-A-bimodules, which shows that CN+1(A,B)
and CN (A,B) are H-equivalent after at most N = nAe steps. Then the minimum H-
depth dH(B,A) ≤ 2N−1, and one notes by restricting modules that d(B,A) ≤ 2N .
The last statement is proven similarly using the definition of even depth. �

Corollary 2.2. Suppose B ⊆ A is a subalgebra pair where either A or B is a
separable algebra. Then depth d(B,A) is finite.
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3. Constraints on subring depth in triangular matrix rings

Let R and S be unital associative rings. Suppose SMR is a unital S-R-bimodule
as suggested by the notation. There is a triangular matrix ring, denoted by A,
associated with this data,

(2) A :=

(
R 0
M S

)
with the obvious matrix addition and multiplication, which defines a well-known
class of examples in the demonstration of independence of axioms in ring theory
such as left and right noetherian property of rings.

Note the subring of diagonal matrices in A is isomorphic (and identified) with
R × S. The obvious split epimorphism of rings A → R × S is denoted by π :(

r 0
m s

)
7→ (r, s). The mapping π is of course an isomorphism if M = 0.

Also note the orthogonal idempotents e1 = (1R, 0) and e2 = (0, 1S), where A =
e1A⊕ e2Ae1 ⊕Ae2.

Let R′ be a unital subring of R, and S′ a unital subring of S. Then B := R′×S′
is a subalgebra of diagonal matrices in A. We will be interested in the depth
d(B,A). At first we will dispose of the case M = 0 and note that d(R′ × S′, R ×
S) = max {d(R′, R), d(S′, S)}. (This proposition should be compared with [8, Prop.
3.15].)

Proposition 3.1. The depth of a subalgebra of a direct product of rings is given
by

d(R′ × S′, R× S) = max {d(R′, R), d(S′, S)}.

Proof. Let A = R× S and B = R′ × S′. Note that the central orthogonal idempo-
tents e1, e2 ∈ B ⊆ A. It follows that there is the following isomorphism of n-fold
tensor products (any n ∈ N ),

(3) Cn(A,B) ∼= Cn(R,R′)⊕ Cn(S, S′)

asB-B-, A-B- andB-A-bimodules up to a trivial extension of for exampleR-module
to A-module by S ·x = 0, all elements x in the module. Such a decomposition holds
as well for bimodule homomorphisms between n- and n+ 1-fold tensor products.

Let 2m + 1 ≥ max {d(R′, R), d(S′, S)}. Then the righthand-side of (3) where
n = m+ 1 divides a multiple of the m-fold tensor product of the same form, then
so does the lefthand-side. Hence d(B,A) ≤ 2m + 1. If both depths d(R′, R) and
d(S′, S) are even, the same argument replacing 2m+1 with 2m suffices to establish
d(B,A) ≤ max {d(R′, R), d(S′, S)}. Note that the argument works for 0-fold tensor
product and depth one case too. The reverse inequality follows from applying the
central idempotents to Cn(A,B) ∼ Cn+1(A,B). �

Next we continue the notation B = R′ × S′ and A as the triangular matrix ring
formed from the rings R, S and the bimodule SMR 6= 0. Let M denote a category
of modules or bimodules, where left and right subscripts denote the rings in action.

Lemma 3.2. As abelian categories,

BMB
∼= R′MR′ ⊕ R′MS′ ⊕ S′MR′ ⊕ S′MS′

Proof. This isomorphism is induced on objects by BVB 7→ e1V e1⊕e1V e2⊕e2V e1⊕
e2V e2. Conversely, an object (W1,W2,W3,W4) on the right side is sent to a matrix
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W1 W2

W3 W4

)
with left action by row vectors (r, s) and right action by column

vectors

(
r′

s′

)
. A B-bimodule homomorphism f : V → W commutes with e1, e2

from left and right, so that f sends eiV ej into eiWej for all i, j = 1, 2. Conversely,
a morphism of 2 × 2 matrices as before commutes with row and column vectors,
and so is a B-bimodule homomorphism. �

We now apply the lemma to the B-bimodules, the n-fold tensor products of the
triangular matrix ring A over the diagonal subalgebra B.

Lemma 3.3. For integer n ≥ 1, e1Cn(A,B)e1 = Cn(R,R′), e1Cn(A,B)e2 = 0,
e2Cn(A,B)e2 = Cn(S, S′) and

(4) e2Cn(A,B)e1 =

n−1∑
r=0

⊕ Cr(S, S
′)⊗S′ M ⊗R′ Cn−1−r(R,R

′)

Proof. For a1, . . . , an ∈ A, the computations follow from e1a1 ⊗B · · · ⊗B an =
e1a1e1 ⊗ · · · ⊗B an = · · · = e1a1 ⊗B · · · ⊗B e1an; moreover, a1 ⊗B · · · ⊗B ane2 =
a1 ⊗B · · · ⊗B e2ane2 = · · · = a1e2 ⊗B · · · ⊗B ane2; furthermore, e1a1 ⊗B · · · ⊗B
ane2 = 0 by referring to the last computation and noting e1Ae2 = 0. Naturally,
Cn(e1A,B) = Cn(R,R′) since B = R′ × S′ and S′ acts as zero, so the relative
tensor product is given by factoring out by only the nonzero relations; the same is
true of Cn(Ae2, B) = Cn(S, S′).

Finally, the last equation follows from e2a1⊗B · · ·⊗Bane1 = (e2a1e2+e2a1e1)⊗B
· · · ⊗B (e2ane1 + e1ane1) = · · · =

∑n
i=1 a1e2 ⊗B · · · ⊗ e2aie1 ⊗B · · · ⊗B e1an. This

follows from cancellations of the type · · · ⊗ aie1 ⊗B · · · ⊗B e2aj ⊗B · · · = 0 since
e1ak = e1ake1, ake2 = e2ake2 for all ak ∈ A and of course e1e2 = 0. �

Let dodd(B,A) be the smallest odd number greater than or equal to d(B,A),
which we call the odd depth of the subring B ⊆ A. If the depth is finite and already
odd, then dodd(B,A) = d(B,A), and otherwise dodd(B,A) = d(B,A)+1. In other
words, a ring extension A |B has dodd(B,A) = 2n+1 if the natural B-B-bimodules
Cn+1(A,B) ∼ Cn(A,B) and n is the smallest such natural number.

Theorem 3.4. The odd depth dodd(B,A) satisfies the inequalities,

(5) d(B,R⊕ S) ≤ dodd(B,A) ≤ dodd(R′, R) + dodd(S′, S) + 1

Proof. If B ⊆ A has depth 2n+ 1, then there is q ∈ N such that Cn+1(A,B)⊕V ∼=
qCn(A,B) for some B-B-bimodule V . It follows that eiCn+1(A,B)ei ⊕ eiV ei ∼=
qeiCn(A,B)ei for i = 1, 2, so that Cn+1(R,R′) | qCn(R,R′) and Cn+1(S, S′) | qCn(S, S′).
It follows that R′ ⊆ R and S′ ⊆ S both have depth 2n + 1. Then max {d(R′, R),
d(S′, S)} ≤ dodd(B,A). This completes the proof of the first of the two inequalities.

Next let R′ ⊆ R and S′ ⊆ S have depths 2n + 1 and 2m + 1 respectively.
This means that for each integer s ≥ 1 and r ≥ 0 there is q ∈ N such that
Cn+s(R,R

′) | qCn+r(R,R′) as B-B-bimodules (and similarly for S′ ⊆ S). Consider
Cn+m+2(A,B) as a natural B-B-bimodule. By the lemma, Cn+m+2(A,B) ∼=

Cn+m+2(R,R′)⊕ Cn+m+2(S, S′)⊕
n+m+1∑
i=0

⊕Ci(S, S′)⊗S′ M ⊗R′ Cn+m+1−i(R,R
′)
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which divides as B-B-bimodules (due to the depth hypotheses) a multiple of

Cn+m+1(R,R′)⊕ Cn+m+1(S, S′)⊕
n+m∑
j=0

Cj(S, S
′)⊗S′ M ⊗R′ Cn+m−j(R,R

′),

which is isomorphic to a multiple of Cn+m+1(A,B). Hence B ⊆ A has depth
2(n + m + 1) + 1 = 2n + 2m + 3. This establishes that d(B,A) ≤ dodd(B,A) ≤
dodd(R′, R) + dodd(S′, S) + 1. �

Note that the proof shows that if R′ ⊆ R and S′ ⊆ S are subrings of finite depth,
then so is B ⊆ A, and conversely.

3.1. Quotient Algebras and Depth Bounds. Let B ⊆ A be an arbitrary alge-
bra extension and let I ⊆ B be an A-ideal. For purposes of expedient notation we
write BI := B/I and similarly for AI . The main purpose of this section is to give
some depth bounds for BI ⊆ AI as another algebra extension. It turns out that if
d(B,A) is finite, then so is d(BI , AI).

Recall that if the extension B ⊆ A has odd depth 2n+ 1 (even depth 2n) then

Cn+1(A,B) ∼ Cn(A,B)

as B-bimodules (A-B-bimodules), which is equivalent to saying that there’re two B-
B-homomorphisms f : Cn+1(A,B)→ mCn(A,B) and g : mCn(A,B)→ Cn+1(A,B)
such that g ◦ f = id.

Lemma 3.5 (π and σ properties). Suppose that B ⊆ A and I ⊆ B are as above.
We define the following maps:

π : Cn(A,B)→ Cn(AI , BI)

: a1 ⊗ . . .⊗ an 7→ a1 ⊗ . . .⊗ an.

σ : Cn+1(A,B)→ Cn+1(AI , BI)

: a1 ⊗ . . .⊗ an+1 7→ a1 ⊗ . . .⊗ an+1.

These two maps are well-defined and will be k-linear as well as satisfying

π(r♥s) = rπ(♥)s and σ(r♦s) = rσ(♦)s,

∀r, s ∈ R, ∀♥ ∈ Cn(A,B) and ∀♦ ∈ Cn+1(A,B).

As will be necessary in our next result we ”raise π to the mth power” in that we
define π′ : mCn(A,B)→ mCn(AI , BI) in the obvious way:

(♥i) 7→ (π(♥i)).

The important thing to note however is that π′(r♥is) = rπ′(♥i)s, where r, s ∈ R
and ♥i ∈ mCn(A,B), furthermore π′ is k-linear over elements of mCn(A,B).

Theorem 3.6. Suppose that B ⊆ A is an algebra extension with depth 2n+1 (2n),
suppose also that I ⊆ B ⊆ A is an A-ideal. Then BI ⊆ AI also has depth 2n + 1
(2n). Indeed we can say d(BI , AI) ≤ d(B,A).

Proof. We prove the odd case because it involves B-bimodules and the proof can
be extended to the even case with A-B-bimodules. First, because B ⊆ A has
depth 2n + 1 we have B-bimodule maps f : Cn+1(A,B) → mCn(A,B) and g :
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mCn(A,B) → Cn+1(A,B) such that g ◦ f = id, where m ≥ 1. We’d like first to
find an BI -bimodule map

f̃ : Cn+1(AI , BI)→ mCn(AI , BI)

and secondly another BI -bimodule map

g̃ : mCn(AI , BI)→ Cn+1(AI , BI)

such that g̃ ◦ f̃ = id.

We define f̃ as follows:

(6) f̃(a1 ⊗ . . .⊗ an) := π′ ◦ f(a1 ⊗ . . .⊗ an)

We must show that f̃ is well-defined, and to that end with some 1 ≤ p ≤ n let
ap = y, that is ap = y + t, for t ∈ I. Thus

f̃(a1 ⊗ . . .⊗ ap ⊗ . . .⊗ an) = π′f(a1 ⊗ . . .⊗ y + t⊗ . . .⊗ an)

= π′f(a1 ⊗ . . .⊗ y ⊗ . . .⊗ an) + π′f(a1 ⊗ . . .⊗ t⊗ . . .⊗ an)

= π′f((a1 ⊗ . . .⊗ y ⊗ . . .⊗ an))

= f̃(a1 ⊗ . . .⊗ y ⊗ . . .⊗ an)

since π′f(a1⊗. . .⊗ap−1⊗t⊗ap+1⊗. . .⊗an) = π′f(a1⊗. . .⊗t1⊗1⊗ap+1⊗. . .⊗an)
etc until we have π′(tpf(1⊗ . . .⊗ 1⊗ ap+1 ⊗ . . .⊗ xn)) = tp(π

′f(1⊗ . . .⊗ an)) = 0
(where each ti ∈ I). This all follows because I ⊆ B is an A-ideal with the properties
of lemma (3.5) in effect. Repeating such a process over all 1 ≤ p ≤ n the map will
be well-defined.

Now we describe g̃:

(7) g̃((a1 ⊗ . . .⊗ an+1)i) := σ ◦ g((a1 ⊗ . . .⊗ an+1)i)

Proving that g̃ is well-defined is so similar to the (6) case it can be considered a
minor exercise. Furthermore we should notice that g̃ ◦π′ = σ ◦ g straight off. Using

(6) and (7) we demonstrate that g̃ ◦ f̃ = id:

g̃ ◦ f̃(a1 ⊗ . . .⊗ an) = g̃ ◦ π′ ◦ f(a1 ⊗ . . .⊗ an)

= σ ◦ g ◦ f(a1 ⊗ . . .⊗ an)

= σ ◦ id(a1 ⊗ . . .⊗ an)

= a1 ⊗ . . .⊗ an

�

Corollary 3.7. Given a chain of A-ideals J0 ⊆ J1 ⊆ . . . ⊆ B we have

. . . ≤ d(BJ1 , AJ1) ≤ d(BJ0 , AJ0) ≤ d(B,A)

Proof. The second isomorphism theorem tells us that (B/J0)/(J1/J0) ∼= B/J1.
Apply our last theorem to see that the depth of (B/J0)/(J1/J0) ⊆ (A/J0)/(J1/J0)
is less than or equal to the depth of (B/J0) ⊆ (A/J0), but then we’re done. �
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4. Depth of top subalgebra in path algebra of acyclic quiver

Let Q = (V,E, s, t) denote a finite connected acyclic quiver with vertices V of
cardinality |V | = n and oriented edges E such that |E| < ∞, where an oriented
edge or arrow is denoted by α : a→ b, or (a|α|b) ∈ E, where a = s(α) and b = t(α)
define the source and target mappings E → V , respectively. Since Q is acyclic,
there is no loop in E, i.e., no arrow β ∈ E such that s(β) = t(β); moreover, there
are no other cycles, i.e., paths (a|α1, . . . , αr|a) of length r > 1 beginning at a vertex
a and ending there (where all αi ∈ E and s(αi+1) = t(αi), i = 1, . . . , r − 1).

Let K be an algebraically closed field and let A = KQ be the path algebra on the
quiver A [1, 17] with basis the set of all paths, including stationary paths denoted
by εa = (a||a) for each a ∈ V , such that the product of two basis elements is given
by the following concatenation formula:

(8) (a|α1, . . . , αr|b)(c|β1, . . . , βs|d) = δbc(a|α1, . . . , αr, β1, . . . , βs|d).

The product on A is given by this formula and linearization, which clearly makes A
into a graded algebra where As denotes the K -vector subspace spanned by paths of
length s, a complete set of primitive orthogonal idempotents are {εa|a ∈ V } ∈ A0

and the radical ideal is radA = A1 ⊕A2 ⊕ · · · , also known as the arrow ideal.
There is always a numbering of the vertices from 1, . . . , n such that (i|α|j) ∈ E

implies i > j [17, cor. 8.6]. The vertex n is then a source and 1 a sink. With such a
numbering the algebra A = KQ is embeddable in a lower triangular matrix algebra
[1, Lemma 1.12] of the form,

(9) A =


ε1(KQ)ε1 0 · · · 0
ε2(KQ)ε1 ε2(KQ)ε2 · · · 0

...
...

...
εn(KQ)ε1 εn(KQ)ε2 · · · εn(KQ)εn


Note that εi(KQ)εi ∼= K for each i = 1, . . . , n since there are no cycles. For

example, if the quiver Q has no multiple arrows between vertices and its underlying
graph is a tree, then there is at most one path between two points i > j, so that
dim εi(KQ)εj ≤ 1, and A = KQ is isomorphic to a subalgebra of the full triangular
matrix algebra Tn(K ) =

∑
n≥i≥j≥1 K eij (in terms of matrix units eij).

Another example: if Q = (V,E) where V = {1, 2} and E = {α, β : 2→ 1}, then

(10) A = KQ =

(
K 0
K 2 K

)
From the result of the previous section, we note that with M = K 2, and B =
K ε1 + K ε2, the depth of B in A is bounded by

(11) 1 ≤ d(B,A) ≤ 3.

For this algebra, one constructs from nilpotent Jordan blocks of order m an infi-
nite sequence of indecomposable A-modules [1, pp. 75-76], a tame Kronecker alge-
bra [2, V111.7]. The algebra A = KQ has finite representation type if and only if the
underlying (multi-) graph of Q is one of the Dynkin diagrams An(n ≥ 1), Dn(n ≥
4), E6, E7, E8: see for example [1, Gabriel’s Theorem, 5.10] or [2, VIII.5.2].

Coming back to the algebra A in (9), note that A has n augmentations ρi : A→
K given by ρi(λ1, . . . , λn) = λi. Let A+

i denote ker ρi, and for a subalgebra B ⊆ A,
let B+

i denote ker ρi∩B. Denote the n A-simples of dimension one by ρiK , and the
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n2 Ae-simples by K ij where a ·1 · b = ρi(a)ρj(b)1 for all a, b ∈ A and i, j = 1, . . . , n.
We have the following

Lemma 4.1. Suppose B ⊆ A is a subalgebra of an algebra with augmentations
ρ1, . . . , ρn. If B ⊆ A has right depth 2, then AB+

i ⊆ B
+
i A for each i = 1, . . . , n. If

B ⊆ A has left depth 2, then B+
i A ⊆ AB

+
i for each i = 1, . . . , n.

Proof. We prove the statement about a subalgebra having left depth two, namely,
A⊗BA | qA as B-A-bimodules. To this apply the additive functor −⊗A ρiK , which
results in A/AB+

i | qK as left B-modules. The annihilator of qK restricted to B
is of course B+

i , which then also annihilates A/AB+
i , so B+

i A ⊆ AB+
i . This holds

for each i = 1, . . . , n. The opposite inclusion is similarly shown to be satisfied by a
right depth 2 extension of augmented algebras. �

The next theorem computes the depth d(B,A) of the top subalgebra A/radA ∼=
K n, or subalgebra of diagonal matrices, in the path algebra A of an acyclic quiver
as given in (9).

Theorem 4.2. Suppose the number of vertices n > 1 in the quiver Q, A = KQ
and B = K n. Then depth d(B,A) = 3.

Proof. If the subalgebra in question has depth 1, it has depth 2. But if it has left
depth 2, the lemma above applies, so that B+

i A ⊆ AB
+
i for each i = 1, . . . , n. Note

that AB+
i are all the lower triangular matrices of the form in (9) having only 0’s

on column i; similarly, B+
i A are the triangular matrices having only zeroes on row

i. It follows that εjAεi = 0 for each j = i+ 1, . . . , n. But εj(KQ)εi consists of all
the paths from j to i. Since this holds for each i, Q consists of n points with no
edges; thus we have contradicted the assumption that Q is connected. The same
contradiction is reached assuming B ⊂ A has right depth 2.

Next it is shown that BA⊗BAB divides a multiple of BAB . Let dim εiAεj = nij .
Then it is clear from (9) and simple matrix arithmetic that BAB ∼= ⊕n≥i≥j≥1nijK ij .

Now
A⊗B A = ⊕ni,j=1⊕i≥k≥j εiAεk ⊗B εkAεj

since each εj ∈ B and for each r 6= k, εkεr = 0. It follows that BA ⊗B AB ∼=
⊕n≥i≥j≥1mijK ij where mij =

∑
i≥k≥j niknkj . Since nii = 1 for each i, it follows

that mij ≥ nij ; moreover, nij = 0 implies mij = 0, since otherwise there is a path
from i to j via some k such that i ≥ k ≥ j.

From the last remark it follows that there is q ∈ N such that A ⊗B A | qA as
B-B-bimodules. Thus the minimum depth d(B,A) = 3. �

5. Depth of arrow subalgebra in acyclic quiver algebra

In this section we compute the depth of the primary arrow subalgebra B =
K 1A ⊕A1 ⊕A2 ⊕ · · · = K 1A + radA in the path algebra A of an acyclic quiver Q,
which is of the form

(12) A =


K 0 · · · 0

ε2(KQ)ε1 K · · · 0
...

...
...

εn(KQ)ε1 εn(KQ)ε2 · · · K


Note that B is a local algebra and augmented algebra with one augmentation
ε : B → K equal to the canonical quotient map B → B/radB ∼= K . We denote
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the B-simple by K ε as a pullback module. Again there are n augmentations of A
denoted by ρi defining n simple A-B-bimodules denoted by iK ε, i = 1, . . . , n.

Lemma 5.1. The natural B-B-bimodule A is indecomposable.

Proof. It suffices to show that EndBAB is a local ring [1, 17]. Let F ∈ EndBAB
and choose an ordered basis of A given by I = 〈ε1, . . . , εn, α1, . . . , αm〉 where the
length of the path αi is less than or equal to the length of αi+1, all i = 1, . . . ,m−1.
Consider the matrix with K -coefficients, M = (Mα

β )α,β∈I of F relative to I; then

F (α) =
∑
β∈IM

α
β β.

Given a path of length r ≥ 1, (i|α|j) ∈ Ar, note that F (α) = αF (εj) = F (εi)α,
so that ∑

β∈I

Mα
β β =

∑
γ∈I

Mεj
γ αγ =

∑
δ∈I

Mεi
δ δα.

It follows that M
εj
γ = 0 for paths (j|γ|k) and Mεi

δ = 0 for all paths (`|δ|i). Also
Mα
β = 0 for all path β 6∈ εiAεj , i.e. not a path from i to j. Finally deduce that

Mα
β = 0 if β ∈ εiAεj but β 6= α and Mα

α = Mεi
εi = M

εj
εj .

For i 6= j and α ∈ εkAεi, note that αF (εj) = F (αεj) = 0, so that
∑
β∈IM

εj
β αβ =

0 implies M
εj
β = 0 whenever s(β) = i. In particular, M

εj
εi = 0. It follows that the

set of F ∈ EndBAB has the form of a triangular matrix algebra with constant
diagonal, like B, and is a local algebra. �

Theorem 5.2. The depth of the primary arrow subalgebra B in the path algebra
A defined above is d(B,A) = 4.

Proof. We first compute A ⊗B A and show d(B,A) > 3. Note that two paths of
nonzero length, α, β where s(α) = i satisfy α⊗B β = εi⊗B αβ, which is zero unless
t(α) = s(β). It follows that

A⊗B A = ⊕ni=1K εi ⊗B εi ⊕ni=2 ⊕i−1j=1εi ⊗B εiAεj ⊕i 6=j K εi ⊗B εj .
It is obvious that the first two summations above are isomorphic as B-B-bimodules
to BAB . Note that when i 6= j, for all paths α, β,

αεi ⊗B εj = 0 = εi ⊗B εjβ
since αεi ∈ B is either zero or a path ending at i, whence αεiεj = 0. It follows
that A⊗B A ∼= A⊕ n(n− 1)εK ε as B-B-bimodules; moreover, as A-B-bimodules,
we note for later reference

(13) AA⊗B AB ∼= AAB ⊕⊕ni=1(n− 1)iK ε

By lemma, BAB is an indecomposable, but the B-B-bimodule A ⊗B A contains
another nonisomorphic indecomposable, in fact εK ε, so that as B-bimodules, A⊗B
A⊕ ∗ 6∼= qA for any multiple q by Krull-Schmidt.

Now we establish that the subalgebra B ⊆ A has right depth 4 by comparing
(13) with the computation below:

A⊗B A⊗B A = ⊕ni=1 K εi⊗ εi⊗ εi⊕ni=2⊕i−1j=1 εi⊗ εi⊗ εiAεj ⊕i 6=j 6=k K εi⊗ εj ⊗ εk
∼= A⊕ (n2 − 1) 1K ε ⊕ · · · ⊕ (n2 − 1) nK ε

as A-B-bimodules, where i 6= j 6= k symbolizes i 6= j, j 6= k or i 6= k. It is clear
that since no new bimodules appear in a decomposition of AA ⊗B A ⊗B AB as
compared with AA ⊗B AB , that there is q ∈ N (in fact q = n + 1 will do) such
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that A⊗BA⊗BA | qA⊗BA as A-B-bimodules. It follows that the minimum depth
d(B,A) = 4. �

It is easy to see from the proof that as natural B-A bimodules A⊗BA⊗BA | (n+
1)A ⊗B A for very similar reasons. Note the general fact that AAB or BAA are
indecomposable modules if EndAAB ∼= AB , the centralizer subalgebra of B in A,
is a local algebra.

6. Concluding Remarks

It is well-known and easily computed from (12) that the path algebra KQ of the
quiver

Q : n −→ n− 1 −→ · · · −→ 2 −→ 1

is the lower triangular matrix algebra Tn(K ). Then we have shown above that for
the subalgebras B1 = Dn(K ) equal to the set of diagonal matrices, and B2 = Un(K )
defined by

(14) Un(K ) = {


a 0 0 · · · 0
a21 a 0 · · · 0
a31 a32 a · · · 0
...

...
an1 an2 an3 · · · a

 |a, aij ∈ K }

the depths are given by d(Dn(K ), Tn(K )) = 3 and d(Un(K ), Tn(K )) = 4. Both are
not dependent on the order n of matrices.

This situation is different for another interesting series of subalgebras within
Tn(K ) given by

(15) Jn(K ) = {


a1 0 0 · · · 0
a2 a1 0 · · · 0
a3 a2 a1 · · · 0
...

...
an an−1 an−2 · · · a1

 |a1, . . . , an ∈ K }

also known as the Jordan algebra. This is isomorphic as algebras to K [x]/(xn), a
Gorenstein dimension zero local ring. Notice that U2(K ) = J2(K ), so

d(J2(K ), T2(K )) = 4.

The interesting fact worth mentioning here is that d(J3(K ), T3(K )) ≥ 6. This is
based on computations comparing A ⊗B A and A ⊗B A ⊗B A as B-B-bimodules,
since a new 2-dimensional indecomposable turns up in the tensor-cube of the ring
extension.

The following seems to be an interesting problem not accessible by the techniques
of the previous sections:

(16) d(Jn(K ), Tn(K )) = ?
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