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Abstract

For the bilateral Laplace transform

F (x) =
∫ ∞

−∞
extΦ(t)dt, x ∈ R,

which is well defined for any locally summable function Φ(t) such that Φ(t) =
O(e− cosh αt), t →∞, α > 1 we prove the following inversion formula

Φ(x) = lim
n→∞ en

√
n

2π

∞∑

k=0

(−n)kex(n+k+1)

k!
F (−n− k − 1), x ∈ R.

Here the convergence is with respect to Lp-norm, 3
2 ≤ p < ∞, or almost everywhere.

Under additional condition on Φ to be represented by the Fourier transform of L1-
function the limit is uniform for all x ∈ R. Special attention is given to the Hilbert
case p = 2. As a consequence the related results are formulated for the Mellin
transform of real variable.
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1 Introduction and preliminary results

In this paper we mainly deal with the bilateral Laplace transform [3], [7] of the real
variable

F (x) =

∫ ∞

−∞
extΦ(t)dt, x ∈ R, (1.1)

where a complex-valued locally summable function Φ(t) is defined on R, such that integral
(1.1) is convergent in a definite sense. We will establish integral and series expansions
for a class of functions Φ, which will drive us to the so-called real inversion formula for
transformation (1.1), i.e. we will find some inversion for the bilateral Laplace transform
F (x) when x is real.

As far as we aware there is a gap in real inversion theory for the case of the bilateral
Laplace and Mellin transforms of real variables. The latter transformation (cf. [6]) can
be easily obtained from (1.1) by the simple substitution et = y. Indeed, as a result we
arrive at the following Mellin integral

F (x) =

∫ ∞

0

yx−1Φ(log y)dy, x ∈ R. (1.2)

If Φ(t) is an even (an odd) function on R then F (x) is even (odd) and can be represented,
correspondingly, by the following real transformations

F (x) = 2

∫ ∞

0

cosh xt Φ(t)dt, (1.3)

F (x) = 2

∫ ∞

0

sinh xt Φ(t)dt. (1.4)

Further, if we consider transformation (1.1) F (z), where z belongs to the vertical strip
σ1 < Rez < σ2 in a complex plane we treat the bilateral Laplace transform under certain
conditions as an analytic function in the interior of the strip. Moreover, for its inversion we
may employ the theory of Fourier integrals to get an inversion formula with the integration
over a vertical line in the complex plane. The boundedness properties of the bilateral
Laplace transform of a complex variable can be deduced from those of the one-side Laplace
transform, where the integration is realized over R+. For instance, when 0 < x < ∞ then
for the one-side Laplace transform

F (x) =

∫ ∞

0

e−xtΦ(t)dt

we have

Φ(x) = lim
n→∞

(−1)n

n!

(n

x

)n+1

F (n)
(n

x

)
,
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where F (n) means n-th derivative of F . This is the familiar Post-Widder real inversion
formula for the one-side Laplace transform (see [3], [7]).

There are different approaches to obtain real inversion formulas for the one-side
Laplace transform and its iterations, which structurally form a class of more general
convolution transforms of the Fourier and Mellin type with hypergeometric functions as
the kernel. We mention here the familiar Stieltjes transform, the Meijer transform, the
Weierstrass transform, etc [3]. We note that, for example in [2], [3], [7] the method of
the Mellin-Barnes integral representations [4] is applied, where the corresponding infinite
product expansions for the ratio of Euler’s Gamma-functions [1] are employed. Concern-
ing the probabilistic approach to get real inversion formulas see [5].

We start to give some sufficient conditions of the existence of the bilateral Laplace
transform (1.1) and to obtain its estimate for all x ∈ R.

Lemma 1. Let Φ(t) ∈ Lloc(R) be such that Φ(t) = O(e− cosh αt), t →∞, α > 1. Then
the bilateral Laplace transform (1.1) exists, where the corresponding integral converges
absolutely and uniformly on any compact set of R. Moreover, the following estimate is
true

|F (x)| ≤ C
2|x|/α

α
Γ

( |x|
α

)
, x ∈ R, (1.5)

where C > 0 is a constant being independent of x and Γ(z) is Euler’s Gamma-function.
Proof. Indeed, by the straightforward estimation we derive

|F (x)| ≤
∫ ∞

−∞
ext |Φ(t)| dt < C

∫ ∞

−∞
exte− cosh αtdt

=
2C

α

∫ ∞

0

e− cosh t cosh

(
xt

α

)
dt =

2C

α
Kx/α(1), (1.6)

where Kν(z) is the modified Bessel function [1], which has the following integral repre-
sentations

Kν(z) =

∫ ∞

0

e−z cosh u cosh νudu, (1.7)

Kν(z) =
1

2

(x

2

)ν
∫ ∞

0

e−t−x2

4t t−ν−1dt. (1.8)

Hence by using (1.8) we easily get the estimate Kν(1) ≤ 2|ν|−1Γ (|ν|) , ν ∈ R. Combining
with (1.6) we get the desired estimate (1.5). ¤

We denote by Lp(R; ω(t)dt) the Lebesgue spaces with respect to the measure ω(t)dt
equipped with the norm

||f ||Lp(R;ω(t)dt) =

(∫ ∞

−∞
|f(t)|pω(t)dt

)1/p

, 1 ≤ p < ∞. (1.9)
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Let us assume that Φ ∈ L2(R; et2dt). This Hilbert space evidently contains all functions
satisfying conditions of Lemma 1. In fact, we have

∫ ∞

−∞
|Φ(t)|2 et2dt ≤ C

∫ ∞

−∞
et2−2 cosh αtdt < ∞.

Lemma 2. Let Φ ∈ L2(R; et2dt). Then the bilateral Laplace transform (1.1) exists as
a Lebesgue integral and defines an infinitely smooth function, i.e. F ∈ C∞(R). Moreover,

all derivatives dn

dxn

(
e−x2/2F (x)

)
, n ∈ N0 belong to L2(R; dt) and satisfy the following

inequality

∫ ∞

−∞

∣∣∣∣
dn

dxn

(
e−x2/2F (x)

)∣∣∣∣
2

dx ≤ 2πn! ||Φ||2
L2(R;et2dt)

, n = 0, 1, 2, . . . . (1.10)

Proof. We have

e−x2/2F (x) =

∫ ∞

−∞
Φ(t)et2/2e−

(x−t)2

2 dt.

Hence, it is not difficult to verify that on any compact set of R we can differentiate through
with respect to x in the latter integral. As a result we obtain

dn

dxn

(
e−x2/2F (x)

)
=

∫ ∞

−∞
Φ(t)et2/2 dn

dxn

(
e−

(x−t)2

2

)
dt

= (−1)n2−n/2

∫ ∞

−∞
Φ(t)et2/2e−

(x−t)2

2 Hn

(
x− t√

2

)
dt,

where Hn(y), n ∈ N0 is the system of Hermite polynomials [6]. Applying the Schwarz
inequality, making elementary substitutions and taking into account the value of the
normalized factor for the Hermite polynomials we derive the estimate

∣∣∣∣
dn

dxn

(
e−x2/2F (x)

)∣∣∣∣
2

≤ 2−n

∫ ∞

−∞
|Φ(t)|2et2e−

(x−t)2

2 dt

×
∫ ∞

−∞
e−

(x−t)2

2 H2
n

(
x− t√

2

)
dt = 2−n+ 1

2

∫ ∞

−∞
|Φ(t)|2et2e−

(x−t)2

2 dt

×
∫ ∞

−∞
e−y2

H2
n (y) dy = n!

√
2π

∫ ∞

−∞
|Φ(t)|2et2e−

(x−t)2

2 dt. (1.11)

Hence integrating through with respect to x in (1.11) we change the order of integration
via Fubini’s theorem and we get the inequality

∫ ∞

−∞

∣∣∣∣
dn

dxn

(
e−x2/2F (x)

)∣∣∣∣
2

dx ≤ n!
√

2π

∫ ∞

−∞
|Φ(t)|2et2

∫ ∞

−∞
e−

(x−t)2

2 dxdt



REAL INVERSION FORMULA 5

= 2πn!

∫ ∞

−∞
|Φ(t)|2et2dt,

which yields (1.10). ¤

2 Real inversion formulas

The main result of this section is the following
Theorem 1. Let Φ satisfy conditions of Lemma 1. Then Φ admits the representation

Φ(x) = lim
n→∞

en

√
n

2π

∞∑

k=0

(−n)kex(n+k+1)

k!
F (−n− k − 1), x ∈ R, (2.1)

where F (−n− k − 1) are values of the bilateral Laplace transform (1.1) in integers. The
convergence in (2.1) is with respect to Lp-norm of the space Lp(R; dt), 3

2
≤ p < ∞ and

almost everywhere. If Φ ∈ L∗(R), i.e. can be represented by the Fourier transform of
integrable function, then the convergence is uniform.

Proof. We denote by

Φn(x) =
∞∑

k=0

(−1)k(nex)k+n+1

n! k!
F (−n− k − 1). (2.2)

Hence employing the asymptotic Stirling formula for factorials [1]

n! ∼
√

2πn nn e−n, n →∞, (2.3)

we observe that Φn(x) is equivalent to the expression under the limit sign in (2.1) when
n → ∞. Further we will appeal to (1.5) in order to estimate the series in (2.2) for all
x ∈ R, n ∈ N. In fact, invoking more general asymptotic Stirling formula for Gamma-
functions [1]

Γ(z) = O
(
zz−1/2e−z

)
, |z| → ∞, (2.4)

we obtain (α > 1)
∣∣∣∣∣
∞∑

k=0

(−nex)k

k!
F (−n− k − 1)

∣∣∣∣∣ ≤
∞∑

k=0

(nex)k

k!
|F (−n− k − 1)|

≤ C2(n+1)/α−1

∞∑

k=0

(2nex)k

k!
Γ

(
n + k + 1

α

)
< Cn,α

∞∑

k=1

(2nex+1−1/α)k

kk(1−1/α)−n−1
< ∞,

where Cn,α > 0 is a constant. Therefore we substitute in (2.2) the value of coefficients
F (−n− k − 1) via integral (1.1) and we change the order of integration and summation
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due to the absolute and uniform convergence. Calculating the inner series we arrive at
the integral representation

Φn(x) =
(nex)n+1

n!

∞∑

k=0

(−nex)k

k!

∫ ∞

−∞
e−(n+k+1)tΦ(t)dt

=
nn+1

n!

∫ ∞

−∞
e−nex−t

e(x−t)(n+1)Φ(t)dt. (2.5)

Let us consider first the case p = 2. Since evidently Φ ∈ L1(R; dt) ∩ L2(R; dt) and
it possesses by the Fourier transform Φ̂(τ) = 1√

2π
F (iτ) ∈ L2(R; dτ) we treat (2.5) as

a Fourier convolution with integrable function e−net
et(n+1) ∈ L1(R; dt) for each n ∈ N.

Hence taking into account the value of Euler’s integral for Gamma-functions and applying
the Plancherel identity for Fourier transforms [6, Theorem 65] we write

Φn(x) =
1

n!
√

2π

∫ ∞

−∞
Γ(n + 1 + iτ)Φ̂(τ)e−(x+log n)iτdτ. (2.6)

Moreover, invoking the Parseval equality and elementary inequality |Γ(n + 1 + iτ)| ≤
Γ(n + 1) = n! we easily get

∫ ∞

−∞
|Φn(x)|2dx =

∫ ∞

−∞

∣∣∣∣
Γ(n + 1 + iτ)

n!

∣∣∣∣
2 ∣∣∣Φ̂(τ)

∣∣∣
2

dτ

≤
∫ ∞

−∞

∣∣∣Φ̂(τ)
∣∣∣
2

dτ =

∫ ∞

−∞
|Φ(x)|2dx.

In the same manner
∫ ∞

−∞
|Φn(x)− Φ(x)|2dx =

∫ ∞

−∞

∣∣∣∣
Γ(n + 1 + iτ)

niτn!
− 1

∣∣∣∣
2 ∣∣∣Φ̂(τ)

∣∣∣
2

dτ, (2.7)

and the right-hand side of the latter integral tends to zero when n →∞ via the dominated
convergence theorem and Stirling’s formula (2.3). Consequently, we have proved (2.1) in
the mean square convergence sense and we establish the real inversion formula for the
bilateral Laplace transform for this case.

For general p ∈ [3/2,∞) we return to (2.5). Hence since Φn, Φ ∈ Lp(R; dx) we invoke
the Schwarz inequality and take into account (2.7) to obtain

∫ ∞

−∞
|Φn(x)− Φ(x)|pdx ≤

(∫ ∞

−∞
|Φn(x)− Φ(x)|2(p−1)dx

)1/2

×
(∫ ∞

−∞
|Φn(x)− Φ(x)|2dx

)1/2

. (2.8)
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Meanwhile, employing (2.5), the Minkowski and generalized Minkowski inequalities with
the value of the integral

nn+1

n!

∫ ∞

−∞
e−net

et(n+1)dt = 1,

we find

(∫ ∞

−∞
|Φn(x)− Φ(x)|2(p−1)dx

) 1
2(p−1)

≤ ||Φ||L2(p−1)(R;dx) +

(∫ ∞

−∞
|Φn(x)|2(p−1)dx

) 1
2(p−1)

≤ 2||Φ||L2(p−1)(R;dx) < ∞, p ≥ 3

2
.

Consequently, combining with (2.7), (2.8) we get

∫ ∞

−∞
|Φn(x)−Φ(x)|pdx ≤

[
2||Φ||L2(p−1)(R;dx)

]p−1
(∫ ∞

−∞
|Φn(x)− Φ(x)|2dx

)1/2

→ 0, n →∞,

and (2.1) is proved in the mean convergence sense for p ≥ 3/2.
In order to establish the convergence almost everywhere we appeal to the Stirling

formula (2.3) and we write

|Φn(x)− Φ(x)| ≤ nn+1

n!

∫ ∞

−∞
e−nex−t

e(x−t)(n+1) |Φ(t)− Φ(x)| dt

≤ M
√

n

∫ ∞

−∞
egn(x−t) |Φ(t)− Φ(x)| dt, (2.9)

where M > 0 is an absolute constant and gn(y) = n(1−ey)+(n+1)y, gn(0) = 0. It is easy
to prove by ordinary calculus that −∞ < gn(y) < gn(y0) y ∈ R, where y0 = log

(
1 + 1

n

)
is

the point where it attains its maximum value gn(y0) = (n+1) log
(
1 + 1

n

)− 1 < 1
n
, n ∈ N.

Moreover, gn(y) is steadily increasing for −∞ < y ≤ y0 and steadily decreasing for
y0 < y < ∞. Thus splitting up the latter integral in (2.9) we have

|Φn(x)− Φ(x)| ≤ M

[
√

n

∫

|t−x|<1/n

+
√

n

∫ |t−x|<δ

|t−x|>1/n

+
√

n

∫

|t−x|>δ

]
egn(x−t) |Φ(t)− Φ(x)| dt

= M [I1 + I2 + I3] (2.10)

for any finite δ > 2/n, n ∈ N. For the first integral we find that

I1 ≤
√

n

∫

|t−x|<1/n

e1/n |Φ(t)− Φ(x)| dt ≤ e√
n

n

∫

|t−x|<1/n

|Φ(t)− Φ(x)| dt
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= o

(
1√
n

)
, n →∞

almost for all x ∈ R since Φ ∈ L1(R). Further, we show that when |y| > δ then gn(y) < 0.
Indeed, for y < −δ it follows from the discussion above. When y > δ we write

gn(y) = y + n(1 + y − ey) = y − n

∞∑

k=2

yk

k!
< y(1− ny

2
) < 0.

Hence for 0 < δ ≤ 1, n = 1, 2, . . . , we obtain

n egn(y) <
n

1− gn(y)
=

1

ey − 1− y + (1− y)/n
<

1

e−δ − 1 + δ
, y < −δ,

n egn(y) <
1

eδ − 1− δ
, y > δ,

and when δ > 1 it gives correspondingly

n egn(y) < eδ, y < −δ,

n egn(y) <
1

eδ − 2δ
y > δ,

for all n ∈ N. Therefore for the third integral we derive

I3 ≤ 1√
n

∫

|t−x|>δ

n egn(x−t)|Φ(t)|dt +
√

n|Φ(x)|
∫

|t−x|>δ

egn(x−t)dt.

Hence invoking the above estimates of the kernel egn(x−t) we get that the first integral
of the latter inequality is less or equal of C(x, δ)/

√
n, where C(x, δ) > 0 is a constant

depending on x and δ. Thus it tends to zero when n → ∞. The second integral can be
treated as follows. In fact, since g′n(y) = 1 + n− ney 6= 0 for |y| > δ with integration by
parts we deduce

√
n|Φ(x)|

∫

|t−x|>δ

egn(x−t)dt =
|Φ(x)|√

n

∫

|y|>δ

egn(y) g′n(y)dy

1 + 1/n− ey

=
|Φ(x)|√

n

egn(y)

1 + 1/n− ey

∣∣∣∣
|y|>δ

+
|Φ(x)|√

n

∫

|y|>δ

egn(y)+y dy

(1 + 1/n− ey)2

≤ |Φ(x)|
[
O

(
1√
n

)
+

e√
n

∫

|y|>δ

eydy

(1 + 1/n− ey)2

]
= |Φ(x)|

[
O

(
1√
n

)

− e√
n

1

1 + 1/n− ey

∣∣∣∣
|y|>δ

]
= |Φ(x)| O

(
1√
n

)
, n →∞.
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The second integral remains

I2 ≤ e√
n

n

∫ |y|<δ

|y|>1/n

|Φ(x + y)− Φ(x)| dy =
1√
n

o (1) , δ → 0.

Now we first find a positive δ such that I2 is sufficiently small and then we let n → ∞.
Returning to (2.10) we conclude the convergence almost everywhere in (2.1).

However, if the Fourier transform Φ̂(τ) ∈ L1(R; dτ) then we find

|Φn(x)− Φ(x)| ≤ 1√
2π

∫ ∞

−∞

∣∣∣∣
Γ(n + 1 + iτ)

niτn!
− 1

∣∣∣∣
∣∣∣Φ̂(τ)

∣∣∣ dτ ≤
√

2

π
||Φ̂||L1(R;dτ).

This yields immediately the uniform convergence in (2.1). Finally we substitute Φn(x)
given by integral (2.5) into (1.1) and we change the order of integration by virtue of
Fubini’s theorem. Taking n > −x− 1 and making elementary substitutions we arrive at
the equality

Fn(x) =

∫ ∞

−∞
extΦn(t)dt =

nn+1

n!

∫ ∞

−∞
Φ(y)

∫ ∞

−∞
e−net−y

e(t−y)(n+1)+xtdtdy

=
Γ(n + 1 + x)

n! nx
F (x).

Consequently, via Stirling’s formula we have the limit equality limn→∞ Fn(x) = F (x),
which holds for all x ∈ R. ¤

As a corollary we formulate the corresponding result for the Mellin transform of real
variable (see (1.2))

G(x) =

∫ ∞

0

h(t)tx−1dt. (2.11)

Theorem 2. Let h be locally integrable on R+ and satisfy the condition h(t) =

O(e−
1
2
(tα+t−α)), log t → ∞, α > 1. Then the Mellin transform (2.11) exists, where

the corresponding integral converges absolutely and uniformly on any compact set of R.
Besides h(x) admits the representation

h(x) = lim
n→∞

en

√
n

2π

∞∑

k=0

(−n)kxn+k+1

k!
G(−n− k − 1), x ∈ R+.

Here the series converges absolutely and the limit is with respect to Lp-norm in Lp(R+; dt), 3
2

<
p < ∞ and almost everywhere. Finally, if h(ex) ∈ L∗(R), then the limit is uniform.

Finally we prove
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Theorem 3. Let Φ, Ψ satisfy conditions of Lemma 1 with α > 2 and F, G be their
Laplace transforms (1.1). Then the following equality takes place

∫ ∞

−∞
Φ(x)Ψ(x)dx = lim

n→∞
en

√
n

2π

∞∑

k=0

(−n)k

k!
F (−n− k − 1)G(n + k + 1), (2.12)

where the integral and series converge absolutely. In particular, if Φ(x) is even (odd) on
R then for transforms (1.3), (1.4) it holds

∫ ∞

0

|Φ(x)|2dx = lim
n→∞

en

√
n

8π

∞∑

k=0

(−n)k

k!
|F (n + k + 1)|2. (2.13)

Proof. Appealing to equalities (2.1), (2.2) and inverting the order of integration and
summation we derive

∫ ∞

−∞
Φn(x)Ψ(x)dx = en

√
n

2π

∞∑

k=0

(−n)k

k!
F (−n− k − 1)G(n + k + 1). (2.14)

This is indeed possible since by virtue of Lemma 1 for each n ∈ N the series

∞∑

k=0

nk

k!
|F (−n− k − 1)G(n + k + 1)| = O

( ∞∑

k=1

(4en)k

kk(1−2/α)−n−1

)
< ∞, α > 2.

Hence taking into account the estimate
∣∣∣∣
∫ ∞

−∞
[Φn(x)− Φ(x)] Ψ(x)dx

∣∣∣∣ ≤ ||Ψ||L2(R;dx)||Φn − Φ||L2(R;dx) → 0, n →∞,

we pass to the limit through the equality (2.14) and we prove (2.12). Equality (2.13)
follows immediately letting Ψ = Φ and using the evenness properties of the original and
appropriate transforms (1.3), (1.4). ¤
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