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In the analysis of stability in bifurcation problems it is often assumed that the (ap-
propriate reduced) equations are in normal form. In the presence of symmetry, the
truncated normal form is an equivariant polynomial map. Therefore, the determina-
tion of invariants and equivariants of the group of symmetries of the problem is an
important step. In general, these are hard problems of invariant theory, and in most
cases, they are tractable only through symbolic computer programs. Nevertheless, it is
desirable to obtain some of the information about invariants and equivariants without
actually computing them, for example, the number of linearly independent homoge-
neous invariants or equivariants of a certain degree. Generating functions for these
dimensions are generally known as “Molien functions”.

In this work we obtain formulas for the number of linearly independent homoge-
neous invariants or equivariants for Hopf bifurcation in terms of characters. We also
show how to construct Molien functions for invariants and equivariants for Hopf bifur-
cation. Our results are then applied to the computation of the number of invariants
and equivariants for Hopf bifurcation for several finite groups and the continuous group
O(3).

1. Introduction

Symmetry appears naturally in several important physical models and in many
cases the collection of all the symmetries of the problem forms a compact Lie group.
Moreover, there is a fully symmetric solution that loses stability as a parameter
is varied, and this loss of stability is due to the crossing of eigenvalues through
the imaginary axis. When the eigenvalues are zero a steady-state bifurcation is
expected to happen – that is, a bifurcation from the group-invariant equilibrium to
equilibria with less symmetry. When the eigenvalues are imaginary, the bifurcation
expected is a Hopf bifurcation to periodic solutions. A Lyapunov-Schmidt or center-
manifold reduction reduces the bifurcation problem to equations on the sum of
the generalised eigenspaces of these eigenvalues. Moreover, the generalised center
subspace is invariant under the action of the symmetry group and the Lyapunov-
Schmidt reduction or the center-manifold reduction can be performed in such a way
that the reduced equations commute with the restricted action of the symmetry
group. See for example Golubitsky and Schaeffer [14] and Carr [3]; see also the
texts [5, 15,16,27] on symmetric bifurcation theory.

∗Centro de Matemática, Departamento de Matemática Pura, Universidade do Porto, Porto,
4169-007, Portugal

†School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, United
Kingdom

Mathematics Subject Classification: 37G40, 37C80, 13A50.

1



2 F. Antoneli, A.P.S. Dias, P.C. Matthews
We are led to consider the following situation. Let a compact Lie group G act

linearly on Rn and let

ẋ = F (x, λ) with F (0, 0) = 0 (1.1)

be a G-equivariant bifurcation problem on Rn. That is, F : Rn ×Rm → Rn is a
family of smooth maps satisfying

F (g v, λ) = g F (v, λ)

for all g ∈ G and the Jacobian matrix J = dF(0,0) has only zero or purely imaginary
eigenvalues.

The simplest case is when we have a one-parameter family in equation (1.1). In
codimension-one steady-state bifurcation, the kernel of the Jacobian at the group-
invariant solution is left invariant by the group of symmetries and generically the
restriction of its action to the kernel is absolutely irreducible. See Golubitsky et
al. [16, Proposition XIII 3.2]. For codimension-one Hopf bifurcation, the imaginary
eigenspace of the Jacobian at the group-invariant solution is left invariant by the
group of symmetries and generically the restriction of its action to the center sub-
space is simple – the sum of two absolutely irreducible representations, or irreducible
but not absolutely irreducible. See [16, Proposition XVI 1.4]. In this case, there is
a natural action of the circle group S1 on the center subspace that commutes with
the action of G. See [16, Lemma XVI 3.2]. Then one is naturally led to consider
the representation theory of G× S1.

Because of the multiplicity of the eigenvalues, the linearised problem is highly
degenerate – there is no preferred direction within the eigenspace. This degeneracy
is partially resolved by the nonlinear terms, which are constrained by the symme-
try; terms which respect the symmetry are said to be equivariant. In a particular
problem, one can specify the action of the group on the center eigenspace and con-
struct equivariant polynomials of a given degree. These equivariant polynomials are
generally called “truncated normal forms” and are a fundamental tool in the study
of the structure of the local bifurcations, e.g., existence, growth and stability of
branches.

The notion of normal form of a vector field near a singularity is relatively old: it
was developed for the purpose of simplifying Hamiltonian vector fields as occurring
in celestial mechanics. The general definition of normal form for an arbitrary vector
field near an equilibrium point was proposed by Takens [28] in 1974 and already
used for the analysis of bifurcation phenomena. The intrinsic characterisation of a
normal form of Elphick et al. [8] (see also [16, p. 284]) roughly says that a general
polynomial vector field (of degree k) that commutes with the action of a certain
group on the center eigenspace is a “generic vector field in normal form”.

In order to construct a generic vector field in normal form for a given group
representation on a vector space V , one needs to know the invariant theory for that
particular action. For a fixed (but arbitrary) k one has to construct a basis of the
space of equivariant homogeneous polynomial mappings of degree i for every i 6 k
and then write a general equivariant polynomial mapping of degree k as a linear
combination of those basis elements with real coefficients. An important requisite
to achieve this is to be able to find the number of linearly independent invariant
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homogeneous polynomial functions of a certain fixed degree and the number of
linearly independent equivariant homogeneous polynomial mappings of a certain
fixed degree.

Formulas for the number of invariants and equivariants are useful, because in a
specific problem they can be used to confirm that all possible invariants or equiv-
ariants have been found. This knowledge is particularly important in algorithmic
invariant theory, where the normal form (up to an arbitrary but fixed degree) is
constructed by symbolic computation. In those applications, the formulas for the
numbers of invariants and equivariants are used to check completeness of the com-
puted basis of invariants or equivariants up to a certain degree. For more details
on algorithmic invariant theory with applications in equivariant bifurcation theory,
see Gatermann [12,13].

Formulas for the number of possible equivariant terms, using only the characters
(traces) of the representations, are known for the case of a stationary bifurcation,
see Sattinger [27]. In this paper we obtain new character formulas for the case of
Hopf bifurcation, that will be helpful for those working in the area of equivariant
bifurcation theory.

The use of character formulas has a number of advantages over working with
the matrices of the representation. The characters of a representation are unique,
but the matrices themselves are not. Secondly, the characters of the irreducible
representations of many finite groups are tabulated, and are much easier to work
with than the matrices. Finally, calculation with characters is now a standard fea-
ture in some computer algebra packages (e.g., GAP [11]). Thus, using our character
formulas we are able to find the numbers of invariants and equivariants for Hopf
bifurcation quickly and easily.

Another result of this paper is the adaptation of the usual formalism of Hilbert-
Poincaré series and their underlying Molien formulas to work properly in complex
coordinates since it is well known that one may simplify notation and computations
by using the complex coordinates. See for example Menck [23].

Structure of the Paper

In Section 2 we review the two most important approaches to the calculation of
the number of invariants and equivariants – character formulas and Hilbert-Poincaré
series – and state our new results for the case of Hopf bifurcation. In Section 3 we
introduce representation theory and characters and set up the notation for the rest
of the paper. Our main new character formulas for the numbers of invariants and
equivariants for Hopf bifurcation are proved in Section 4. In Section 5 we prove our
generalisation of the Molien theorem to the case of Hopf bifurcation. Finally, in the
Section 6, we present some application of our formulas, obtaining several (old and
new) results for the numbers of invariants and equivariants for finite groups and for
the symmetry group of the sphere.
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2. Statement of the Main Results

In what follows we will review the two approaches to the calculation of the number
of invariants and equivariants and state our new results. In the first part, we consider
the character formulas and in the second part, the Hilbert-Poincaré series.

2.1. Character Formulas for Invariants and Equivariants

Let V be a finite-dimensional vector space over the field K = R or K = C. Let us
denote by Pk

V the vector space of all homogeneous polynomials of degree k and by
~Pk

V the vector space of all homogeneous polynomial maps of degree k on V . Define

PV =
∞⊕

k=0

Pk
V and ~PV =

∞⊕
k=0

~Pk
V .

Under the point-wise product PV becomes a graded commutative algebra over K
and since the product of a polynomial mapping by a polynomial function is again
a polynomial mapping it follows that ~PV is a module over the ring of polynomial
functions PV .

Now suppose that a compact Lie group G acts linearly on V . The homomorphism
G→ GL(V ) that sends g to the linear transformation corresponding to the action
of g on V is a (real or complex) representation of G on V . Here GL(V ) is the group
of invertible linear transformations V → V . Throughout we denote by g the linear
transformation corresponding to the action of g ∈ G on V and by abuse of language
we also call V a representation of G.

A polynomial function f : V → K is G-invariant if

f(g v) = f(v)

for all g ∈ G and v ∈ V . The set of all G-invariant homogeneous polynomial
functions of degree k on V is denoted by Pk

V (G) and it is a subspace of Pk
V , since

it is the set of fixed-points of a linear action. The space PV (G) of G-invariant
polynomial functions is a sub-algebra of the algebra of all polynomial functions PV

on V and Pk
V (G) = PV (G) ∩ Pk

V .
Similarly, a polynomial mapping F : V → V is G-equivariant if

g F (v) = F (g v)

for all g ∈ G and v ∈ V . The set of all G-equivariant homogeneous polynomial
mappings of degree k on V is denoted by ~Pk

V (G) and it is a subspace of ~Pk
V , since it is

also the set of fixed-points of a linear action. The space of G-equivariant polynomial
mappings from V to V is a module over the ring PV (G) and ~Pk

V (G) = ~PV (G)∩ ~Pk
V .

We note that for every k > 0 the vector spaces Pk
V (G) and ~Pk

V (G) are finite-
dimensional since Pk

V and ~Pk
V are finite-dimensional vector spaces.

Given a linear action of a compact Lie group G on a finite-dimensional vector
space V , the corresponding character is the function χ : G→ K given by

χ(g) = tr(g) for all g ∈ G .
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The action of G on V induces a natural action on Pk

V and the corresponding char-
acter is denoted by χ(k).

The following theorem is a well known result in invariant theory. See for example,
Sattinger [27, Theorem 5.10].

Theorem 2.1 (Sattinger). Let G be a compact Lie group acting linearly on a
vector space V with corresponding character χ. Then

dimPk
V (G) =

∫
G

χ(k)(g) dµG(g)

dim ~Pk
V (G) =

∫
G

χ(k)(g)χ(g) dµG(g)

(2.1)

where dµG(g) is the normalised invariant measure of G.

In bifurcation theory, all representations are real with the complex representa-
tions arising due to extra structure such as the complex structure induced by a
circle action in the Hopf case. Specifically, when considering symmetric Hopf bifur-
cation there is a natural action of the circle group S1 on V that commutes with
the action of G, which in turn, induces a complex structure on V such that G×S1

acts by unitary matrices.
Now there are two different ways to apply Theorem 2.1 in the case of Hopf

bifurcation. In the first form, we consider the unitary action of G× S1 on V (as a
complex vector space) and we obtain the dimensions of the vector spaces Pk

V (G×S1)
and ~Pk

V (G×S1), of the complex valued invariant polynomial functions on a complex
vector space V and V -valued equivariant polynomial mappings on a complex vector
space V , respectively. In the second form, we consider V as a real vector space, which
we denote by V R, carrying an orthogonal representation of G × S1 and then we
obtain the dimensions of the spaces Pk

V R(G × S1) and ~Pk
V R(G × S1), of the real

valued invariant polynomial functions on a real vector space V R and V R-valued
equivariant polynomial mappings on a real vector space V R, respectively.

However, the (truncated) normal forms for bifurcation problems are always real
polynomial mappings and therefore, when computing the number of invariants and
equivariants for normal form theory one should, in principle, disregard any extra
structure and consider V as a real representation of G. Therefore, the second form
of application of Theorem 2.1 is the one we are interested in.

The most common case of symmetric Hopf bifurcation is when V R = U ⊕U with
U a real representation of G [16, Chapter XVI]. In that case V (as a complex vector
space) can be identified with the complexification V = U ⊗R C of U . The circle
group S1 acts on C by

θ · z = eiθz (θ ∈ S1, z ∈ C) (2.2)

and G× S1 acts on V = U ⊗R C by

(g, θ) · (u⊗ z) = (g u)⊗ (eiθz) (g ∈ G, θ ∈ S1, u ∈ U, z ∈ C) . (2.3)

Due to this special structure it is possible to obtain character formulas for the
number of invariants and equivariants that depend only on the representation of
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G on U . Thus we do not need to worry about the form of the action of G× S1 to
compute the character.

In order to state our result we need to establish a couple of conventions. Let V
be a complex vector space (not necessarily of the form V = U ⊗R C) and denote by
V R the underlying real vector space of V . Denote by ~Pk

V R,V (G× S1) the complex
vector space of homogeneous polynomial mappings h : V R → V of degree k which
are equivariant with respect to the actions of G × S1 (by real matrices) on V R

and the action of G × S1 (by complex matrices) on V , respectively. The main
advantage of working with the space ~Pk

V R,V (G × S1) rather than with ~Pk
V R(G ×

S1), is that one can write a vector field in normal form as linear combination of
homogeneous polynomial mappings with complex coefficients which is in complete
agreement with the standard practice of writing normal forms for (non-symmetric)
Hopf bifurcations. If we denote by dimC

~Pk
V R(G × S1) the complex dimension of

the space ~Pk
V R,V (G× S1) then

dimR
~Pk

V R(G× S1) = 2 dimC
~Pk

V R(G× S1) , (2.4)

see Section 4 for details.
We state now our first main result.

Theorem 2.2. Let G be a compact Lie group acting linearly on a real vector space
U and denote by χ the corresponding character. Let V = U ⊗R C where G × S1

acts on V = U ⊗R C by (2.3). Then

dimR P2k
V R(G× S1) =

∫
G

χ(k)(g)2 dµG(g) ,

dimR P2k+1
V R (G× S1) = 0

(2.5)

and

dimC
~P2k+1

V R (G× S1) =
∫

G

χ(k+1)(g)χ(k)(g)χ(g) dµG(g) ,

dimC
~P2k

V R(G× S1) = 0 ,

(2.6)

where dµG(g) is the normalised invariant measure of G and χ(k) is the correspond-
ing character of the induced action of G on Pk

U .

This result can be generalised to a group of the form G × Tn where Tn is the
n-dimensional torus. This is relevant for the study of non-resonant multiple Hopf
mode-interaction where the n-torus action comes from n independent frequencies
w1, . . . , wn associated to purely imaginary eigenvalues of the Jacobian matrix. For
more details, see Remark 4.1 in Section 4.

In order to effectively apply Theorem 2.1 and Theorem 2.2, we need to calculate
the character χ(k) associated to the action of G on the space of homogeneous
polynomials. We use the very simple and well known recursive formula

k χ(k)(g) =
k−1∑
i=0

χ(gk−i)χ(i)(g) . (2.7)
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For completeness, we include the proof of this formula in Section 4 since we could
not find it in the literature.

The character formulas for the dimensions of invariants and equivariants are very
convenient when G is a finite group, since they can be explicitly evaluated using
GAP [11]. Examples of the application of these formulas are given in Section 6.

2.2. Hilbert-Poincaré Series and Molien Formulas

The Hilbert-Poincaré series and their underlying Molien formulas are another
method to compute the numbers of invariants and equivariants. In fact, they are
widely used in algorithmic invariant theory [12, 13]. We start by reviewing the
classical Molien theorem.

As before, let V be a finite-dimensional vector space over the field K = R or
K = C. The Hilbert-Poincaré series ΦV

G of the graded vector space PV (G) is the
generating function for the dimension of the vector space of invariants at each
degree defined by

ΦV
G(t) =

∞∑
k=0

dimPk
V (G) tk .

Similarly, the Hilbert-Poincaré series ΨV
G of the graded vector space ~PV (G) is

defined by

ΨV
G(t) =

∞∑
k=0

dim ~Pk
V (G) tk .

The following theorem goes back to Molien [24] for ΦV
G when G is a finite group.

Sattinger [27] extended to the case when G is a compact Lie group and introduced
the formula for ΨV

G.

Theorem 2.3 (Molien). Let G be a compact Lie group acting linearly on V . Then

(i) the Hilbert-Poincaré series of PV (G) is given by

ΦV
G(t) =

∫
G

1
det(1− gt)

dµG(g) , (2.8)

(ii) the Hilbert-Poincaré series of ~PV (G) is given by

ΨV
G(t) =

∫
G

χ(g−1)
det(1− gt)

dµG(g) , (2.9)

where χ is the character afforded by the G-action on V and dµG(g) is the normalised
invariant measure of G. If the action of G on V is orthogonal then g−1 = gt and
χ(g−1) = χ(g) = tr(g).

We are interested in counting the number of real invariants and equivari-
ants on a complex vector space V (not necessarily of the form V = U ⊗R

C) without changing to real coordinates. Let {v1, . . . , vm} be a basis of V
(over C). Then {v1, . . . , vm; iv1, . . . , ivm} is a basis of V R over R. Denote by
{x1, . . . , xm; y1, . . . , ym} the coordinates of a vector v ∈ V R relative to this ba-
sis and let zj = xj + iyj for j = 1, . . . ,m. Thus any polynomial f on V R can be
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written either as a linear combination of monomials which are products of powers
of the real coordinates xj and yj , or as a linear combination of monomials which
are products of powers of the complex coordinates zj and zj . Now one can mod-
ify the definition of the Hilbert-Poincaré series and obtain a new Molien theorem
that counts invariants and equivariants in the coordinates z, z. This was done by
Forger [9] for the case of invariants.

Let Pr,s
V R(G) denote the vector space of G-invariant homogeneous polynomial

functions on the variables z, z and bidegree (r, s). The bigraded Hilbert-Poincaré
series of PV R(G) is the generating function of two variables given by

ΦV R

G (z, z) =
∞∑

r,s =0

dimR Pr,s
V R(G) zrzs .

Theorem 2.4 (Forger). Let G be a compact Lie group acting linearly on a complex
vector space V . Then the bigraded Hilbert-Poincaré series of PV R(G) is given by

ΦV R

G (z, z) =
∫

G

1
det(1− gz) det(1− gz)

dµG(g) (2.10)

where dµG(g) is the normalised invariant measure of G.

Let ~Pr,s
V R,V

(G) be the vector space of V -valued G-equivariant homogeneous poly-
nomial mappings on the variables z, z and bidegree (r, s). As before, we denote by
dimC

~Pr,s
V R(G) the complex dimension of the space ~Pr,s

V R,V
(G). The bigraded Hilbert-

Poincaré series of ~PV R,V (G) is the generating function of two variables given by

ΨV R

G (z, z) =
∞∑

r,s =0

dimC
~Pr,s

V R(G)zrzs .

Our second main result gives an integral formula for the bigraded Hilbert-
Poincaré series of ~PV R,V (G).

Theorem 2.5. Let G be a compact Lie group acting linearly on a complex vector
space V . Then the bigraded Hilbert-Poincaré series of ~PV R,V (G) is given by

ΨV R

G (z, z) =
∫

G

χ
(
g−1

)
det(1− gz) det

(
1− gz

) dµG(g) (2.11)

where χ is the character afforded by the representation of G on V and dµG(g) is
the normalised invariant measure of G.

Finally, a combination of Theorems 2.4 and 2.5 to the special case where V =
U ⊗R C with U a real representation of G gives our third main result, which has
direct application to the computation of the number of invariants and equivariants
for Hopf bifurcation.

Theorem 2.6. Let G be a compact Lie group acting linearly on a real vector space
U and let V = U ⊗R C. Let G× S1 act on V as in equation (2.3). Then:
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(i) the bigraded Hilbert-Poincaré series for PV R(G× S1) is given by

ΦV R

G×S1 (z, z) =
1
2π

∫ 2π

0

ΦV R

G

(
eiθz, e−iθz

)
dθ (2.12)

where ΦV R

G is the bigraded Hilbert-Poincaré series for PV R(G).

(ii) the bigraded Hilbert-Poincaré series for ~PV R(G× S1) is given by

ΨV R

G×S1 (z, z) =
1
2π

∫ 2π

0

e−iθΨV R

G

(
eiθz, e−iθz

)
dθ (2.13)

where ΨV R

G is the bigraded Hilbert-Poincaré series for ~PV R(G).

We illustrate the above results with an example.

Example 2.7. Consider the symmetry group D4 of the square. This group is gen-
erated by the permutations g = (1234) and κ = (12)(34) and the conjugacy classes
are {e}, {g2}, {g, g3}, {κ, g2κ} and {gκ, g3κ}. A two-dimensional representation of
D4 is obtained by considering the standard action of D4 as rotations and reflections
in the plane: let T (g) denote the matrix for the rotation through 2π/4 and T (κ)
the matrix of the reflection in the y-axis. Thus

T (g) =
(

0 −1
1 0

)
, T (κ) =

(
−1 0
0 1

)
.

Note that D4 acts on U = R2 irreducibly. The Hilbert-Poincaré series for PU (D4)
and ~PU (D4), are:

ΦU
D4

(t) =
1
8

(
1

(1− t)2
+

1
(1 + t)2

+
2

1 + t2
+

4
1− t2

)
,

ΨU
D4

(t) =
1
8

(
2

(1− t)2
− 2

(1 + t)2

)
.

In order to apply Theorem 2.6 to the action of D4 × S1 on V = U ⊗R C, where
θ ∈ S1 acts on C by multiplication by eiθ, we need first to consider the action
of D4 on V = C2 generated by the same matrices T (g) and T (κ). The bigraded
Hilbert-Poincaré series for PV R(D4) and ~PV R(D4) are:

ΦV R

D4
(z, z) =

1
8

(
1

(1− z)2 (1− z)2
+

1
(1 + z)2 (1 + z)2

+
2

(1 + z2)
(
1 + z2

) +
4

(1− z2)
(
1− z2

)) ,

ΨV R

D4
(z, z) =

1
8

(
2

(1− z)2 (1− z)2
− 2

(1 + z)2 (1 + z)2

)
.
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Then the bigraded Hilbert-Poincaré series for the number of invariants for D4×S1

is

ΦV R

D4×S1 (z, z) =
1
2π

∫ 2π

0

ΦV R

D4

(
eiθz, e−iθz

)
dθ .

This integral can be evaluated by making the change of variable u = eiθ and the
applying Cauchy’s Residue Theorem. The details are omitted here since this is a
standard technique in complex variable theory. The result is

ΦV R

D4×S1 (z, z) =
1 + z3z3

(1− zz)(1− z2z2)2

= 1 + zz + 3z2z2 + 4z3z3 + 7z4z4 + · · · .

In the same way we can evaluate the bigraded Hilbert-Poincaré series for the number
of equivariants for D4 × S1

ΨV R

D4×S1 (z, z) =
1
2π

∫ 2π

0

e−iθ ΨV R

D4

(
eiθz, e−iθz

)
dθ

and the result is

ΨV R

D4×S1 (z, z) =
z

(1− zz)3

= z + 3z2z + 6z3z2 + 10z4z3 + · · · .

Hence, the numbers of independent invariants of degree (2, 4, 6, 8) are (1, 3, 4, 7),
and the numbers of independent equivariants of degree (3, 5, 7) are (3, 6, 10). In
fact we can use the binomial theorem to show that the number of equivariants of
degree 2k + 1 is (k + 1)(k + 2)/2. Also note that ΦV R

G×S1(z, z) is a function of the
variable zz and ΨV R

G×S1(z, z) is z times a function of the variable zz. This is simply
a reflection of the general fact that a G× S1-invariant polynomial has even (total)
degree in the coordinates z, z and a G×S1-equivariant polynomial has odd (total)
degree in the coordinates z, z with z being of one degree higher than z.

3. Background and Notation

In this section we review some important concepts concerning the representation
theory of compact Lie groups. For details, see for example James et al. [21] for finite
groups and Bröcker et al. [2] for compact Lie groups.

3.1. Representation Theory

Let G be a compact Lie group acting linearly on a finite-dimensional real or
complex vector space V . Thus this action corresponds to a representation T of the
group G on the vector space V through a linear homomorphism from G to the group
GL(V ) of invertible linear transformations on V . We denote by g v the action of
the linear transformation T (g) of an element g ∈ G on a vector v ∈ V .

A subspace W of V is invariant under G if gW ⊆ W for all g ∈ G; in this case,
we say that W is sub-representation and the action of G on V can be restricted
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to an action of G on W . The action is said to be reducible if V possesses a proper
invariant subspace. Otherwise it is said to be irreducible. A representation T of G is
absolutely irreducible if the only linear maps on V commuting with G are the scalar
multiples of the identity. Two representations of a group G on the vector spaces
V1 and V2 are called equivalent if there exists a non-singular linear transformation
S : V1 → V2 such that S(g v1) = g S(v1) for all g ∈ G and all v1 ∈ V1.

Let two representations of a group G be given on the vector spaces V1 and V2,
respectively. Then there is natural representation of G on the direct sum V1 ⊕ V2

given by g (v1 +v2) = g v1 +g v2 and a natural representation on the tensor product
V1 ⊗ V2 given by g (v1 ⊗ v2) = g v1 ⊗ g v2. By iteration of these constructions one
obtains actions of G on the k-th direct sum

⊕
k Vk and k-th tensor powers V ⊗k of

a representation V of G. Also, by restriction, one obtains representations of G on
the k-th symmetric tensor power SkV and k-th antisymmetric tensor power AkV
of V , since these are always G-invariant subspaces of V ⊗k. There is also a natural
action on the dual space V ∗ of V given by [g ψ](v) = ψ(g−1 v) for all ψ ∈ V ∗.

Finally, we recall here an important isomorphism which will be used several times
in the rest of the paper:

Sn(V ⊕W ) ∼=
n⊕

i=0

SiV ⊗ Sn−iW , (3.1)

where S0(V ) is the ground field. See for example Fulton and Harris [10, page 473]
for a proof of (3.1).

3.2. The Haar Measure of a Compact Lie Group

Since G is a compact group there exists an invariant measure (unique up to a
constant multiple) µG on G such that∫

G

f(hg) dµ(g) =
∫

G

f(gh) dµ(g) =
∫

G

f(g) dµ(g) =
∫

G

f(g−1) dµ(g)

for any continuous function f on G and for any h ∈ G. We assume that the measure
is normalised so that

∫
G

dµ(g) = 1. In this case dµ(g) is called the Haar measure of
f and the integral with respect with this measure is called normalised Haar integral.
See Bröcker and tom Dieck [2] for the proof and existence of the Haar measure on
a compact Lie group. For finite groups the Haar integral reduces to the “averaging
over the group” formula ∫

G

f(g) dµ(g) =
1
|G|

∑
g∈G

f(g) .

Using the Haar measure it is possible to construct a G-invariant inner product (·, ·)
on V , that is, (g u, g v) = (u, v) for all u, v ∈ V and g ∈ G. See for example [16,
Proposition XII 1.3]. Moreover, we can choose an orthogonal basis with respect to
such a G-invariant inner product where if Mg denotes the matrix representing g at
this basis, then Mg is unitary for all g ∈ G, that is, Mg−1 = M∗

g = M
t

g. Here, M t
g

denotes the transpose matrix of Mg. In particular, if V is real then Mg is orthogonal
for all g ∈ G.
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3.3. Real and Complex Representations

Usually in texts on representation theory, the complex representations are con-
sidered as most fundamental – mainly because of the algebraic completeness of the
field of complex numbers – and then the real representations are defined as a special
class of complex representations. On the other hand, in bifurcation theory, all the
representations are real with the complex ones arising due to extra structure, as for
example, in Hopf bifurcation where the circle action induces a complex structure on
V . Hence we need to set up the notation and terminology in order to transfer results
from complex representations and complex characters to real representations and
real characters.

Let U be a real vector space. The complexification of U is the complex vector
space UC given by the following tensor product over R

UC = U ⊗R C .

The map u 7→ u⊗ 1 allows us to identify U canonically with a subset of UC. If V
is a complex vector space, we can restrict the definition of scalar multiplication to
scalars in R, thereby obtaining a vector space over R. This vector space we denote
by V R and is called the realification of V . Note that the operations (·)C and (·)R
are not inverse to each other: (UC)R has twice the real dimension of U , and (V R)C

has twice the complex dimension of V . More precisely,

(UC)R = U ⊕ iU ∼= U ⊕ U (as real vector spaces) (3.2)

where U means U ⊗ 1 in U ⊗R C and i refers to the real linear mapping
“multiplication-by-i”.

For any complex vector space V let us denote by V the complex vector space
which coincides with V as an additive group, but is endowed with the following
multiplication by complex scalars: c · v̄ = c̄v̄ with c ∈ C and v ∈ V . The vector
space V is called the complex conjugate of V .

Now suppose there is a group G acting linearly on the real vector space U .
Then the action of g ∈ G on U can be extended to an action on V = UC by
g(u ⊗ z) = gu ⊗ z for all z ∈ C and u ∈ U . Moreover, if the circle group S1 acts
on C by equation (2.2), this action commutes with the G-action on U and so we
can extend the action of G on V to an action of G × S1 on V . There is a natural
representation of G × S1 on V given by (g, θ) v̄ = (g, θ) v. By choosing a G × S1-
invariant (hermitian) inner product on V it is easy to see that the representation
of G× S1 on V is equivalent to the representation of G× S1 on V ∗. We then may
consider the action of G× S1 on V ⊕ V given by

θ · (v1, v2) = (eiθv1, e
−iθv2) (θ ∈ S1, v1, v2 ∈ V ) . (3.3)

Conversely, if G acts linearly on a complex vector space V then the realification V R

can be regarded as a real representation of G by “forgetting” the complex structure.
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3.4. Invariant and Equivariant Polynomials

Recall that a function f : V → K is called a homogeneous polynomial function
of degree k on V if there exists a K-valued symmetric k-multi-linear function

f̂ : V × · · · × V︸ ︷︷ ︸
k times

−→ K

such that f(v) = f̂(v, . . . , v) for all v ∈ V . Denote by Lk
s(V ) the space of all K-

valued symmetric multi-linear functions and Pk
V the vector space of all homogeneous

polynomials of degree k on V . The mapping f̂ 7→ f is a natural isomorphism of K-
vector spaces Lk

s(V ) ∼= Pk
V ; the inverse mapping which associates to each polynomial

a K-valued symmetric k-multi-linear function is called polarisation. Similarly, a
mapping F : V → V is called homogeneous polynomial mapping of degree k of V if
there exists a V -valued symmetric k-multi-linear map

F̂ : V × · · · × V︸ ︷︷ ︸
k times

−→ V

such that F (v) = F̂ (v, . . . , v) for all v ∈ V . Denote by Lk
s(V, V ) the space of all

K-valued symmetric multi-linear functions and ~Pk
V the vector space homogeneous

polynomial mappings of degree k on V . The mapping F̂ 7→ F is a natural isomor-
phism of K-vector spaces Lk

s(V, V ) ∼= ~Pk
V which is compatible with the isomorphism

Lk
s(V ) ∼= Pk

V .
There are canonical isomorphisms (for a proof see Goodman and Wallach [17,

page 621])

Hom(SkV ) ∼= Lk
s(V ) and Hom(SkV, V ) ∼= Lk

s(V, V ) . (3.4)

If V ∗ is the dual space of V then there is the canonical isomorphism

V ∗ ⊗W ∼= Hom(V,W ) (3.5)

which maps v∗⊗w to the homomorphism u 7→ v∗(u)w. Combining the isomorphisms
(3.4) and (3.5) with the natural isomorphisms Lk

s(V ) ∼= Pk
V and Lk

s(V, V ) ∼= ~Pk
V of

K-vector spaces we have the canonical identifications

(a) Pk
V

∼= Lk
s(V ) ∼= Hom(SnV ) ∼= (SnV )∗

(b) ~Pk
V

∼= Lk
s(V, V ) ∼= Hom(SnV, V ) ∼= (SnV )∗ ⊗ V .

(3.6)

Now suppose that a compact Lie group G acts linearly on V . This action induces
natural actions of G on the spaces of k-multi-linear functions and mappings Lk

s(V )
and Lk

s(V, V ) respectively; on the spaces of k-homogeneous polynomial functions Pk
V

and mappings ~Pk
V respectively; and on the vector spaces (SnV )∗ and (SnV )∗ ⊗ V .

Moreover, the identifications given by (3.6) are compatible with all these induced
actions and therefore they provide equivalences of representations of G in all these
spaces. In this way, one can identify all these representations and choose a particular
form according to convenience.
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3.5. Character Theory

For proofs of all statements in this subsection, consult [21] for finite groups and [2]
for compact Lie groups.

Recall that two elements g1, g2 ∈ G are conjugate if there is an element h ∈ G
such that g1 = hg2h

−1. Note that conjugacy is an equivalence relation on G and so
partitions G into separate classes, called conjugacy classes. A function f : G → C
is called a class function if it is constant on the conjugacy classes. The character of
a (real or complex) representation T of a group G is the trace

χT (g) = trT (g) for all g ∈ G .

Note that characters are constant on conjugacy classes. In fact, the characters of
the complex irreducible representations form a basis for the vector space of complex
class functions; therefore two complex representations are equivalent if and only if
they have the same character. The character of a one-dimensional representation is
said to be a linear character.

Since all representations of a compact Lie group are equivalent to unitary repre-
sentations (by choosing an invariant inner product) we have tr(Mg−1) = tr

(
Mg

)
.

Then an hermitian inner product can be defined on characters:

〈χ1, χ2〉 =
∫

G

χ1(g)χ2(g) dµG(g) =
∫

G

χ1(g)χ2(g−1) dµG(g) ,

or for finite groups,

〈χ1, χ2〉 =
1
|G|

∑
g∈G

χ1(g)χ2(g) =
1
|G|

∑
g∈G

χ1(g)χ2(g−1)

for any two characters χ1, χ2. With respect to this hermitian inner product, the
characters of irreducible inequivalent representations are orthonormal. In fact, a
more subtle relation is true:

〈χ1, χ2〉 = 〈χ2, χ1〉 . (3.7)

Let V and W be two (real or complex) G-modules, with characters χV and χW ,
respectively. Then

(a) χV⊕W = χV + χW , (b) χV⊗W = χV χW ,

(c) χV ∗ = χV = χV , (d) χ2
V = χS2V + χA2V ,

(e) χV ∗(g) = χV (g−1) , (f) χS2V (g) = 1
2

(
χV (g)2 + χV (g2)

)
.

(3.8)

Usually the irreducible characters are defined for the complex representations
and then the characters of the irreducible real representations are computed from
the complex ones. In order to do this one should be able to decide when a complex
representation has a real form, that is, it is a complexification of an absolutely
irreducible real representation. A necessary condition is that the complex character
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χ must be real valued. However this is not sufficient. The sufficient condition is
supplied by the Frobenius-Schur indicator:

ιχ =
∫

G

χ(g2) dµ(g)

for an irreducible complex character χ. According to the Frobenius-Schur Theorem
we have:

ιχ =


0, if χ is not real valued,
1, if χ can be realised over R,

−1, if χ is real but cannot be realised over R.

3.6. Trace Formula

Recall that the fixed-point subspace of the action of G on V is defined by

Fix(G,V ) = {v ∈ V : g v = v, ∀g ∈ G} .

Since a polynomial function f : V → K is invariant under G if and only if
g f = f where the action of G is defined by (g f)(v) = f(g−1 v), it follows that
Pk

V (G) = Fix(G,Pk
V ). Applying the isomorphism (a) of (3.6) we have the canonical

isomorphism
Pk

V (G) ∼= Fix(G, (SkV )∗) . (3.9)

Since a polynomial mapping F : V → V is equivariant under G if and only if
g F = F where the action of G is defined by (g F )(v) = g F (g−1 v), it follows that
~Pk

V (G) = Fix(G, ~Pk
V ). Applying the isomorphism (b) of (3.6) we have the canonical

isomorphism
~Pk

V (G) ∼= Fix(G, (SkV )∗ ⊗ V ) . (3.10)

The following theorem – whose proof can be found in [16, Theorem XIII 2.3] –
together with the formulas (3.9) and (3.10), provides the fundamental link between
character theory and invariant theory.

Theorem 3.1 (Trace Formula). Let a compact group G act linearly on a vector
space V . Then

dim Fix(G,V ) =
∫

G

χV (g) dµG(g) = 〈χV ,1〉 (3.11)

where χV is the character of the representation of G on V , 1 is the trivial character
of G and dµG(g) is the normalised invariant measure of G.

4. Character Formulas for Invariants and Equivariants

In this section we prove the character formulas for the dimensions of the vector
spaces of polynomial functions of degree k that are invariant or equivariant with
respect to the action of G × S1. The symbol

∫
G

is used to denote the normalised
Haar integral.
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4.1. Proof of Theorem 2.2

Let {v1, . . . , vm} be a basis of V (over C). Then {v1, . . . , vm; iv1, . . . , ivm} is a
basis of V R over R. Denote by {x1, . . . , xm; y1, . . . , ym} the coordinates of a vector
v ∈ V R relative to this basis and let zj = xj + iyj for j = 1, . . . ,m. Thus any
polynomial f on V R can be written either as a linear combination of monomials
which are products of powers of the real coordinates xj and yj , or as a linear
combination of monomials which are products of powers of the complex coordinates
zj and zj . Let us write z = (z1, . . . , zm) and z = (z1, . . . , zm). Then using multi-
indices, any polynomial function f : V R → R can be written as

f(z, z) =
∑
α,β

aαβz
αzβ

where α, β ∈ (Z+
0 )m, zα = zα1

1 zα2
2 . . . zαm

m and the coefficients aαβ may be complex.
Now the action of S1 on V ⊕V is given by equation (3.3) and V R is the subspace

of V ⊕ V such that v1 = v2 and it is invariant under the action of G × S1. Then
f is S1-invariant if for each α, β such that aαβ 6= 0 we have |α| = |β| (where
|α| = α1 + α2 + · · ·+ αm). Therefore f has bidegree (r, r) in z, z.

Similarly, the mapping F : V R → V R has components

Fj(z, z) =
∑
α,β

bαβz
αzβ

where the coefficients bαβ may be complex. In this case, the S1-equivariance is
equivalent to having |α| = |β|+1 if bαβ 6= 0. This is [16, Lemma XVI 9.3]. Therefore
F has components of bidegree (r + 1, r) in z, z.

From these observations we have that

dimP2k+1
V R (G× S1) = 0 and dim ~P2k

V R(G× S1) = 0 ,

for all k > 0. Therefore we just need to compute dimP2k
V R(G × S1) and

dim ~P2k+1
V R (G× S1) for k ∈ Z+

0 .
Let us consider first the formula for the invariants. By equation (3.9) the space

P2k
V R(G× S1) can be identified with the real vector space

Fix
(
G× S1, (S2k(V R))∗

)
.

Since V ⊕ V = UC ⊕ UC and V R = U ⊕ iU we have V ⊕ V = (U ⊕ iU)C as
representations of G× S1. Therefore,

dimR Fix
(
G× S1,

(
Sk
(
V R
))∗)

= dimR Fix
(
G× S1,

(
Sk(U ⊕ iU)

)∗)
= dimC Fix

(
G× S1,

(
Sk
(
V ⊕ V

))∗)
.

Recall that a polynomial on V is invariant under G×S1 if and only if it is invariant
under G and S1. From the formula

S2k(V ⊕ V ) ∼=
2k⊕

a=0

SaV ⊗ S2k−aV
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and because of the S1-action, an invariant polynomial function f has bidegree (r, r)
in z, z. This is equivalent to

Fix
(
S1,
(
S2k

(
V ⊕ V

))∗) ∼=
(
SkV ⊗ SkV

)∗
.

Therefore

Fix
(
G× S1,

(
S2k

(
V ⊕ V

))∗) ∼= Fix
(
G,
(
SkV ⊗ SkV

)∗)
.

Using the Trace Formula (3.11) we have

dimC Fix
(
G,
(
SkV ⊗ SkV

)∗)
=
∫

G

χ(k)(g)χ(k)(g) .

Now, χ is also the character of the representation of G on U and hence it is real
valued. Thus

dimR Fix
(
G× S1,

(
SkV R

)∗)
=
∫

G

χ(k)(g)2 .

For the equivariants, by equation (3.10) we have

~P2k+1
V R (G× S1) ∼= Fix

(
G× S1,

(
S2k+1

(
V R
))∗ ⊗R V R

)
.

Now we make three observations that follow from the trace formula. The first one
is

dimR Fix
(
G× S1,

(
S2k+1

(
V R
))∗ ⊗R V R

)
= dimC Fix

(
G× S1,

(
S2k+1

(
V ⊕ V

))∗ ⊗C

(
V ⊕ V

))
.

The second observation is

dimC Fix
(
G× S1,

(
S2k+1

(
V ⊕ V

))∗ ⊗C

(
V ⊕ V

))
= 2 dimC Fix

(
G× S1,

(
S2k+1

(
V ⊕ V

))∗ ⊗C V
)

and finally

dimC Fix
(
G× S1,

(
S2k+1

(
V R
))∗ ⊗R V

)
= dimC Fix

(
G× S1,

(
S2k+1

(
V ⊕ V

))∗ ⊗C V
)
.

In particular, these observations justify the relation (2.4). Thus

dimR Fix
(
G× S1,

(
S2k+1

(
V R
))∗ ⊗R V R

)
(4.1)

= 2 dimC Fix
(
G× S1,

(
S2k+1

(
V ⊕ V

))∗ ⊗C V
)
.

We compute now

dimC Fix
(
G× S1,

(
S2k+1

(
V ⊕ V

))∗ ⊗C V
)
.
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Proceeding as before, from the formula

S2k+1
(
V ⊕ V

) ∼=
2k+1⊕
a=0

SaV ⊗C S2k+1−aV

and because of the S1-action, an equivariant polynomial mapping F has bidegree
(r + 1, r) in z, z. This is equivalent to

Fix
(
S1,
(
S2k+1

(
V ⊕ V

))∗ ⊗C V
)

∼= (Sk+1V ∗ ⊗C SkV
∗
)⊗C V .

Hence by the fact that V ∼= V ∗ (as representations of G) we have

Fix
(
G× S1,

(
S2k+1

(
V ⊕ V

))∗ ⊗C V
)

∼= Fix
(
G,Sk+1V ⊗C SkV ⊗C V

)
.

Again, by the Trace Formula we obtain

dimC Fix(G,Sk+1V ⊗C SkV ⊗C V ) =
∫

G

χ(k+1)(g)χ(k)(g)χ(g) .

Since χ is also the character of the representation of G on U , it is real valued and
we have

dimC Fix
(
G× S1,

(
S2k+1

(
V ⊕ V

))∗ ⊗C V
)

=
∫

G

χ(k+1)(g)χ(k)(g)χ(g) .

By equation (4.1) we have

dimR Fix
(
G× S1,

(
S2k+1(V R)∗ ⊗R V R

))
= 2

∫
G

χ(k+1)(g)χ(k)(g)χ(g)

and by the relation (2.4) we have

dimC
~P2k+1

V R (G× S1) =
∫

G

χ(k+1)(g)χ(k)(g)χ(g) .

Remark 4.1. Theorem 2.2 can be generalised to a group of the form G×Tn where
Tn is the n-dimensional torus. In this case, G acts on a direct sum U = U1⊕· · ·⊕Un

of real vector spaces andG×Tn acts on V1⊕· · ·⊕Vn with Vi = Ui⊗RC (i = 1, . . . , n)
by

(g, θ1, . . . , θn)(u1 ⊗ z1, . . . , un ⊗ zn) =
(
(gu1)⊗ (eiθ1z1), . . . , (gun)⊗ (eiθnzn)

)
.

A general formula for arbitrary n and k is very complicated, but it is relatively easy
to write down formulas for small values of n by inductively applying the formula
to the decomposition of the symmetric tensor power (3.1). For example, if n = 2
we have U = U1 ⊕ U2 and V = V1 ⊕ V2. Then

S2k(V1 ⊕ V 1 ⊕ V2 ⊕ V 2) ∼=
2k⊕
i=0

(
Si(V1 ⊕ V 1)⊗ S2k−i(V2 ⊕ V 2)

)
.
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From the T2-action we have that an invariant polynomial p(v1, v̄1, v2, v̄2) on V R

has total degree 2k and bidegree (i, i) in v1, v̄1 and bidegree (j, j) in v2, v̄2 where
i+ j = k. That is,

Fix(T2, S2k(V1⊕V 1⊕V2⊕V 2)) ∼=
k⊕

i=0

(
Si(V1)⊗Si(V 1)

)
⊗
(
Sk−i(V2)⊗Sk−i(V 2)

)
.

Hence, if χi denotes the character of G on Ui (i = 1, 2) then the number of G×T2-
invariant polynomials of degree 2k is

dimR P2k
V R(G×T2) =

k∑
i=0

∫
G

χ1,(i)(g)2 χ2,(k−i)(g)2 .

4.2. Proof of the Recursive Formula

Formula (2.7) is known. Since we did not find its proof in the literature, we
include it here for completeness. Let G act unitarily on a finite-dimensional complex
vector space, say W ≡ Cn. Denote by T the representation, χ the corresponding
character and χ(k) the character of the induced action of G on the k-th symmetric
power SkW . Fix g ∈ G. We have that T (g) is diagonalised. Suppose that λ1, . . . , λn

are the eigenvalues of T (g). It follows then that

χ(k)(g) =
∑

λm1
1 . . . λmn

n

where the sum is over all non-negative integers mj satisfying m1 + · · · +mn = k.
We introduce the generating function

f(t) =
1

(1− λ1t) · · · (1− λnt)
.

Observe that f is well defined for t in a sufficiently small neighbourhood of t = 0.
Moreover, all the k-th derivatives at t = 0 exist, and

χ(k)(g) =
fk(0)
k!

.

By induction, it can be shown that

k
fk(0)
k!

=
k−1∑
j=0

(λk−j
1 + · · ·+ λk−j

n )
f j(0)
j!

where f0(0) = 1 and observe that

χ(gj) = λj
1 + · · ·+ λj

n .

Therefore

kχ(k)(g) =
k−1∑
j=0

χ(gk−j)
f j(0)
j!

=
k−1∑
j=0

χ(gk−j)χ(j)(g) .
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Remark 4.2. There are other formulas for the character χ(k):

(i) an explicit but rather unwieldy formula (Sattinger [27, p. 110])

χ(k)(g) =
∑ χi1(g)χi2(g2) · · ·χik(gk)

1i1i1! 2i2i2! · · · kik ik!
(4.2)

where the sum is over all non-negative integers ij satisfying
∑k

j=1 jij = k.

(ii) an alternative explicit formula that makes clear the link between χ(k) and the
symmetric group Sk (GAP Reference Manual [11, p. 770])

χ(k)(g) =
1
k!

∑
σ∈Sk

k∏
n=1

(χ(gn))cn(σ) (4.3)

where cn(σ) is the number of cycles of length n in σ.

5. Hilbert-Poincaré Series and Molien Formulas

In this section we prove the integral formulas for the bigraded Hilbert-Poincaré
Series of ~PV R(G) and the special case when the representation is of real type. We
use the symbol

∫
G

to denote the normalised Haar integral.

5.1. Proof of Theorem 2.5

Recall that taking the z, z coordinates, we obtain that any polynomial f on V R

can be written as a linear combination of monomials which are products of powers
of the complex coordinates zj and zj , that is,

f(z, z) =
∑
α,β

aαβz
αzβ

where α, β ∈ (Z+
0 )m, zα = zα1

1 zα2
2 . . . zαm

m and the coefficients aαβ may be required
to be complex. On the other hand, f can be decomposed as

f(z, z) =
∑
k≥0

fk(z, z)

where
fk(z, z) =

∑
r+s=k fr,s(z, z)

fr,s(z, z) =
∑
|α|=r, |β|=s aαβ z

αzβ .

Here, the polynomial function fr,s(z, z) is homogeneous of degree k (if r + s = k)
and of bidegree (r, s).

Now we define a G-equivariant homogeneous polynomial mapping of bidegree
(r, s) as a G-equivariant homogeneous polynomial mapping whose components are
homogeneous polynomial functions of bidegree (r, s). Let ~Pr,s

V R(G) be the vector
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space of G-equivariant homogeneous polynomial mappings on V R of bidegree (r, s).
Then we have a decomposition into a direct sum of G-invariant subspaces

~Pk
V R(G) =

⊕
k=r+s

~Pr,s
V R(G) .

As before we denote by dimC
~Pr,s

V R the complex dimension of the space ~Pr,s
V R,V

of
V -valued mappings on V R with polynomial components homogeneous of bidegree
(r, s). We have

dimC(SrV ⊗ SsV )∗ ⊗ V = dimC
~Pr,s

V R .

The action of the group G on V induces an action of G on (SrV ⊗ SsV )∗ ⊗ V
and therefore the G-equivariant mappings from V R to V with polynomial com-
ponents homogeneous of bidegree (r, s) are in one-to-one correspondence with the
G-invariant elements of (SrV ⊗SsV )∗⊗V under this induced action. By the Trace
Formula we have

dimC Fix
(
G, (SrV ⊗ SsV )∗ ⊗ V

)
=
∫

G

χ(r,s)(g)χ(g) =
∫

G

χ(r,s)(g)χ(g)

where χ(r,s) is the character of the induced action of G on SrV ⊗ SsV .
The rest of the proof consists in calculating the character χ(r,s) and we follow [9].

Fix g ∈ G and as before let g denote the linear transformation corresponding to the
action of g ∈ G on V . Since g is an unitary matrix it can be diagonalised. Suppose
that V has complex dimension m, and let w1, . . . , wm be a basis of V consisting of
eigenvectors of g, with eigenvalues λ1, . . . , λm. The monomials zαzβ where |α| = r
and |β| = s form a basis of the space of homogeneous polynomials on V ⊕ V of
bidegree (r, s). Moreover, they correspond to the eigenvectors associated with the
eigenvalues λαλ

β
of the induced action of G. Here we use multi-index notation for

λ and λ. Recall that χ(r,s) is the character of the representation of G on the space
of polynomials on V ⊕ V of bidegree (r, s). We obtain

χ(r,s)(g) =
∑

|α|=r, |β|=s

λαλ
β

In what follows, we shall use zλ to denote (zλ1, . . . , zλm) and z λ to denote(
z λ1, . . . , z λm

)
. Multiplying by zrzs and summing over r and s, we obtain the

formal power series

∞∑
r,s =0

χr,s(g)zrzs =
∞∑

r,s =0

∑
|α|=r, |β|=s

(zλ)α
(
z λ
)β

=
m∏

j=1

1
(1− zλj)

m∏
j=1

1(
1− z λj

)
=

1
det(1− zg)

1
det
(
1− z g

) .
Finally, multiplying by χ and using the Trace Formula we obtain the result.
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5.2. Proof of Theorem 2.6

Given (g, θ) ∈ G× S1 and recalling (2.3), we have

det(1− (g, θ)z) = det
(
1− g

(
eiθz

) )
and

χ
(
(g, θ)−1

)
= e−iθχ

(
g−1

)
.

Applying Theorems 2.4, 2.5 and using the fact that the normalised Haar measure
on the circle group S1 is 1

2π dθ, we obtain the formulas of Theorem 2.6.

6. Applications

In this section we present several applications of our formulas to finite groups and
continuous groups. In the case of finite groups we illustrate the use of the computer
algebra package GAP [11] and obtain some general results about invariants and
equivariants of SN × S1. In the continuous group case we show that it is possible
to explicitly evaluate the integrals appearing in the character formulas and in the
Hilbert-Poincaré series for the groups SO(3) and O(3). The symbol

∫
G

is used to
denote the normalised Haar integral.

Let us state some useful facts that will be used to simplify calculations in the
rest of the paper.

Proposition 6.1. Let U be a real representation of G with corresponding character
χ and V = U ⊗R C the representation of G×S1 given by (2.3). Then for each non-
trivial real linear character λ of G the dimensions of the spaces of invariants and
equivariants of the representation corresponding to λχ are equal to the dimensions
of the spaces of invariants and equivariants of the representation corresponding to
χ.

Proof. Let λ be a nontrivial linear character of G and let φ = λχ. Let k ≥ 1. Since
λ is a linear character, we have

φ(k)(g) = λ(g)kχ(k)(g).

Thus

φ2
(k) = λ2kχ2

(k) = χ2
(k),

φ(k+1) φ(k) φ = λ2k+2χ(k+1) χ(k) χ = χ(k+1) χ(k) χ

since λ(g) = ±1 and so λ2k is the trivial character. Hence we have shown that∫
G

χ(k)(g)2 =
∫

G

φ(k)(g)2 ,∫
G

χ(k+1)(g)χ(k)(g)χ(g) =
∫

G

φ(k+1)(g)φ(k)(g)φ(g) .

Remark 6.2. A number of well known results regarding the number of invariants
and equivariants in the absolutely (and nontrivial) irreducible case follow from
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Class 1 (12) (123) (12)(34) (1234)

|Class| 1 6 8 3 6

χ1 1 1 1 1 1

χ2 1 −1 1 1 −1

χ3 2 0 −1 2 0

χ4 3 1 0 −1 −1

χ5 3 −1 0 −1 1

Table 1. Character table of S4. The rows are indexed by the irreducible characters of S4

and the columns are indexed by the conjugacy class representatives.

Class 1 (12) (123) (12)(34) (1234)

|Class| 1 6 8 3 6

χ(g) 3 1 0 −1 −1

χ(g2) 3 3 0 3 −1

χ(g3) 3 1 3 −1 −1

χ(g4) 3 3 0 3 3

χ(2)(g) 6 2 0 2 0

χ(3)(g) 10 2 1 −2 0

χ(4)(g) 15 3 0 3 1

Table 2. Irreducible character χ(g) and derived characters χ(gk) and χ(k)(g) for the
group S4, for the natural character labelled χ4 in Table 1.

Theorem 2.1 and the properties of characters (3.8). There can be no invariant of
degree 1, and there is only one equivariant of first degree, which is simply the
identity mapping. There is a unique independent quadratic invariant, which in the
orthogonal case is

∑m
k=1 x

2
k. This last result follows from the fact that

∫
G
χ(2)(g) =

1, which in turn follows from the Frobenius-Schur theorem.

6.1. Finite Groups

6.1.1. Computer Calculations

We first go through an example of the calculation of the dimensions of the spaces
of invariants and equivariants using characters for a particular group action, and
then summarise the results obtained computationally for several other groups.

Consider the permutation group S4, which has five conjugacy classes containing
elements of the same cycle type. The character table for S4 is given in Table 1. The
group acts on R3 via the ‘natural’ irreducible representation in which the character
χ(g) for each class is obtained by subtracting one from the number of elements fixed
by each permutation; this character is denoted by χ4 in Table 1. From this character
we can find the characters χ(gk) and χ(k)(g). These are listed in Table 2 for k ≤ 4.
From the information in that table it is then possible to calculate the dimensions
of the spaces of invariants and equivariants for stationary and Hopf bifurcation, by
finding the appropriate sums using Theorems 2.1 and 2.2 respectively.
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Since χ is irreducible of real type there is only one quadratic invariant (we refer

to ‘number of invariants’ as an abbreviation for the dimension of the space of
invariants). From the first formula of (2.1), the number of cubic invariants is

I(3) =
1
24

∑
g

χ(3)(g) =
1
24

(10− 6 + 12 + 8) = 1

and the number of quartic invariants is

I(4) =
1
24

∑
g

χ(4)(g) =
1
24

(15 + 6 + 9 + 18) = 2 .

The number of quadratic equivariants is, using the second formula in Theorem 2.1,

E(2) =
1
24

∑
g

χ(2)(g)χ(g) =
1
24

(18− 6 + 12) = 1

and the numbers of cubic and quartic equivariants are

E(3) =
1
24

∑
g

χ(3)(g)χ(g) = 2, E(4) =
1
24

∑
g

χ(4)(g)χ(g) = 2 .

For the case of Hopf bifurcation, there is one quadratic invariant and the numbers
of invariants of degree 4, 6, 8 are found from (2.5) to be

IH(4) =
1
24

∑
g

χ(2)(g)2 = 3, IH(6) =
1
24

∑
g

χ(3)(g)2 = 6,

IH(8) =
1
24

∑
g

χ(4)(g)2 = 13 .

The numbers of equivariants of degree 3, 5, 7 are, using (2.6),

EH(3) =
1
24

∑
g

χ(2)(g)χ(g)2 = 3 ,

EH(5) =
1
24

∑
g

χ(3)(g)χ(2)(g)χ(g) = 9 ,

EH(7) =
1
24

∑
g

χ(4)(g)χ(3)(g)χ(g) = 21 .

Note that the group S4 has another three-dimensional irreducible representation
in which the character χ5(g) is the same as χ(g) except for a sign change of the
elements (1234) and (12). See Table 1 where χ = χ4 and χ5 = χ2χ4. Hence by
Proposition 6.1, the numbers of invariants and equivariants for Hopf bifurcation
in this representation are the same as those given above. Hopf bifurcation in this
representation, which arises from the symmetries of rotations of the cube, was
investigated by Ashwin and Podvigina [1], who also pointed out this equivalence.
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G D I(3) I(4) I(5) E(2) E(3) E(4) E(5) IH(4) IH(6) IH(8) EH(3) EH(5) EH(7)

S3 2 1 1 1 1 1 2 2 2 3 5 2 4 7

S4 3 1 2 1 1 2 2 4 3 6 13 3 9 21

S5 4 1 2 2 1 2 3 4 3 7 19 3 11 33

S6 5 1 2 2 1 2 3 5 3 8 24 3 12 41

A4 3 1 2 1 1 3 3 6 4 10 21 5 16 39

A5 3 0 1 0 0 1 0 2 2 3 6 2 4 9

A5 4 1 2 2 1 2 3 4 3 8 24 3 14 48

A5 5 2 2 4 2 3 8 12 6 24 92 7 46 210

D4 2 0 2 0 0 2 0 3 3 4 7 3 6 10

D5 2 0 1 1 0 1 1 1 2 2 3 2 3 4

D6 2 0 1 0 0 1 0 2 2 3 5 2 4 7

Table 3. Dimensions of vector spaces of invariants I(k) and equivariants E(k) of degree k
for stationary bifurcation, and invariants IH(k) and equivariants EH(k) for Hopf bifurca-
tion, for several symmetric, alternating and dihedral groups. D denotes the dimension of
the irreducible representation.

In Table 3 we show the numbers of invariants and equivariants for stationary
and Hopf bifurcation for a number of finite groups. These results were obtained
by adapting an existing computer program originally written to obtain isotropy
subgroups using characters and trace formulas, see Matthews [22]. The program is
written in the GAP [11] language, where χ(k) can be found from χ with a single
command and the formulas in (2.1), (2.5) and (2.6) can be implemented as inner
products.

For the dihedral groups Dn, for n = 4, 5, 6, we consider the standard irreducible
representation of dimension 2 where the n-cycle (12 . . . n) acts as rotation through
2π/n.

For the alternating group A5, which is isomorphic to the group I of rotations of
the icosahedron, there are unique faithful irreducible representations of dimension
3, 4 and 5, up to quasi-equivalence, that is, equivalence composed with an outer
automorphism of A5. From Table 3 we can see that for stationary bifurcation,
E(2) = I(3) and E(3) = I(4) in the 3- and 4-dimensional representations but
not in the 5-dimensional one. This means that the quadratic and cubic terms are
variational in the 3- and 4-dimensional representations but not in the 5-dimensional
one. This is consistent with the work of Hoyle [19] who found heteroclinic cycles in
the cubic truncation for the 5-dimensional representation.

For the symmetric groups Sn we consider the natural irreducible representation
of dimension n − 1, as in the example above. In this case it is known that for
the stationary bifurcation, for n > 3 there is one equivariant quadratic and two
equivariant cubic terms [7,15]. The dynamics truncated to cubic order is variational,
but since E(4) > I(5) for n = 5, 6 the quartic equivariants are non-variational. For
the case of the Hopf bifurcation with Sn symmetry we see that there are three
cubic equivariants for n = 4, 5, 6. In fact we can show that the number of cubic
equivariants is three for all n > 4; the proof of this will be given in the following
section.
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6.1.2. Invariants and Equivariants of SN × S1

We consider the standard action of SN × S1 on CN given by

σ(z1, . . . , zN ) =
(
zσ−1(1), . . . , zσ−1(N)

)
,

θ(z1, . . . , zN ) =
(
eiθz1, . . . , e

iθzN

)
,

for σ ∈ SN , θ ∈ S1 and z = (z1, . . . , zN ) ∈ CN . This action is obtained by the
complexification of the standard action of SN on RN . Observe that, if we denote
by

V0 = {(z, . . . , z) : z ∈ C} ,
CN,0 = {(z1, . . . , zN ) ∈ CN : z1 + · · ·+ zN = 0}

then
CN = V0 ⊕CN,0

where V0 and CN,0 are irreducible subspaces under the SN × S1-action. Moreover,
SN acts trivially on V0 and SN -simply on CN,0.

Remark 6.3. It is known that the SN -equivariant mappings on CN have a nice
characterisation. Consider the natural inclusion of groups

SN−1 = {σ ∈ SN : σ(1) = 1} ⊂ SN .

A mapping g : CN → CN is SN -equivariant if and only if

g(z) =
(
g1(z), g1((12) z), . . . , g1((1N) z)

)T (6.1)

where g1 : CN → C is SN−1-invariant in the last N − 1-coordinates. Combining
with the S1-action, it follows that g is SN×S1-equivariant if and only if in addition,
g1 satisfies

g1(eiθz) = eiθg1(z) (6.2)

for all z ∈ CN and θ ∈ S1. 3

In order to study codimension-one Hopf bifurcation with SN -symmetry, for the
above SN -simple action, one needs (at least) the most general cubic SN × S1-
equivariant normal form. We start by calculating the number of cubic SN × S1-
equivariants for the action on CN and then on CN,0.

Proposition 6.4. Consider the standard action of SN × S1 on CN . Then

dimC
~P3
CN (SN × S1) =

{
10 if N = 3,
11 if N > 4.

Proof. By Remark 6.3 we have that dimC
~P3
CN (SN ×S1) is equal to the number of

the linearly independent polynomial functions g1 : CN → C of degree 3 that are
SN−1-invariant and satisfy (6.2). Thus

dimC
~P3
CN (SN × S1) = dimC Fix

(
SN−1,

(
S2
(
CN

))∗ ⊗C CN
∗)

.
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By the Trace Formula we have

dimC
~P3
CN (SN × S1) =

∫
SN−1

χCN χCN,(2)

where χCN , χCN,(2) are the characters for the representations of SN−1 on CN and
S2(CN ), respectively. Let

V1 = {(z1, z2, . . . , z2) : z1, z2 ∈ C} ,
V2 = {(0, z2, . . . , zN ) ∈ CN : z2 + · · ·+ zN = 0} .

It follows then that
CN = V1 ⊕ V2

and SN−1 acts trivially on V1 and irreducibly on V2. By the formula for the de-
composition of the symmetric tensor power (3.1) and the fact that S1(Vi) ∼= Vi

(i = 1, 2), we have the following decomposition into SN -modules:

S2(CN ) = S2(V1 ⊕ V2) ∼= S2(V1)⊕ (V1 ⊗ V2)⊕ S2(V2) .

Denote by χV2 the character of the (irreducible) representation of SN−1 on V2 and
χV2,(2) the character of the induced representation of SN−1 on S2(V2). Note that
V1 is two-dimensional and so S2(V1) is three-dimensional. Moreover, SN−1 acts
trivially on V1 and S2(V1). It follows then that

χCN = 2 + χV2 , χCN,(2) = 3 + 2χV2 + χV2,(2) . (6.3)

Now

χCN χCN,(2) =
(
2 + χV2

)(
3 + 2χV2 + χV2,(2)

)
= 6 + 7χV2 + 2χV2,(2) + 2χ2

V2
+ χV2 χV2,(2) .

Since, 2χV2,(2)(g) = χV2(g
2) + χV2(g)

2 for all g ∈ SN−1 and
∫

SN−1
χV2(g

2) = 1, it
follows that∫

SN−1

χCN χCN,(2) =
∫

SN−1

(
6 + 7χV2 + 3χ2

V2
+ χV2(g

2) + χV2 χV2,(2)

)
= 6〈1,1〉+ 7〈χV2 ,1〉+ 3〈χV2 , χV2〉+

∫
SN−1

χV2(g
2) + 〈χV2 , χV2,(2)〉

= 10 + 〈χV2 , χV2,(2)〉 .

Here 1 denotes the trivial irreducible character of SN−1. Observe that

〈χV2 , χV2,(2)〉 =
∫

SN−1

χV2 χV2,(2)

and so by Theorem 2.1, 〈χV2 , χV2,(2)〉 is equal to the number of quadratic equivari-
ants for the standard irreducible representation of SN−1 of dimension N − 2. Thus
if N ≥ 4 we have 〈χV2 , χV2,(2)〉 = 1. It follows then that

dimC
~P3
CN

(
SN × S1

)
=
∫

SN−1

χCN χCN,(2) = 11
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for N ≥ 4. Finally, if N = 3, it follows that V2 = {(0, z2,−z2) : z2 ∈ C} is one-
dimensional and so the action of S2 on V2 is irreducible and nontrivial, and trivial
on S2(V2). Thus in this case we have 〈χV2 , χV2,(2)〉 = 0 and so

dimC
~P3
C3

(
S3 × S1

)
=
∫
S2

χC3 χC3,(2) = 10 + 〈χV2 , χV2,(2)〉 = 10 .

Theorem 6.5. Consider the action of SN × S1 on CN,0 obtained by restriction of
the standard action on CN . Then

dimC
~P3
CN,0(SN × S1) =

{
2 if N = 3,
3 if N > 4.

Proof. By definition

dimC
~P3
CN

(
SN × S1

)
= dimC Fix

(
SN ,

(
S2(CN )

)∗ ⊗ (S1(CN )
)∗ ⊗CN

)
= dimC Fix

(
SN ,

(
S2(V0 ⊕CN,0)

)∗ ⊗ (S1(V0 ⊕CN,0)
)∗ ⊗ (V0 ⊕CN,0

))
By the formula for the decomposition of the symmetric tensor power (3.1) and the
fact that S1(V ) ∼= V , we have the following decomposition into SN -modules:

S2(V0 ⊕CN,0) ∼= S2(V0)⊕
(
V0 ⊗ S1(CN,0)

)
⊕ S2(CN,0) .

Note that V0 is one-dimensional and the action of SN on V0 and S2(V0) is trivial.
Denote by χCN,0 and χCN,0,(2) the characters of the representations of SN on CN,0

and S2(CN,0), respectively. By the Trace Formula we have

dimC
~P3
CN (SN × S1) =

∫
SN

(1 + χCN,0 + χCN,0,(2))(1 + χCN,0)2 .

Now we compute∫
SN

(1 + χCN,0 + χCN,0,(2))(1 + χCN,0)2

= 〈1,1〉+ 3〈χCN,0 ,1〉+ 3〈χCN,0 , χCN,0〉+ 〈χCN,0,(2),1〉

+ 2
∫

SN

χCN,0,(2) χCN,0 +
∫

SN

χ3
CN,0 +

∫
SN

χCN,0,(2)χ
2
CN,0

= 7 +
∫

SN

χ3
CN,0 +

∫
SN

χCN,0,(2) χ
2
CN,0 .

Here we used the orthogonality of irreducible characters, the fact that χCN,0 is
realised over R and so 〈χCN,0,(2),1〉 = 1 and

∫
SN

χCN,0,(2)χCN,0 is the number of
quadratic SN -equivariants which is 1 if N ≥ 3 (see [7, 15]). By formula (2.6) of
Theorem 2.2

dimC
~P3
CN,0(SN × S1) =

∫
SN

χCN,0,(2)χ
2
CN,0 .
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On the other hand, χ3

CN = (1 + χCN,0)3 and hence∫
SN

χ3
CN =

∫
SN

(1 + χCN,0)3

= 〈1,1〉+ 3〈χCN,0 ,1〉+ 3〈χCN,0 , χCN,0〉+
∫

SN

χ3
CN,0

= 4 +
∫

SN

χ3
CN,0 .

Therefore

dimC
~P3
CN (SN × S1)− dimC

~P3
CN,0(SN × S1) =

∫
SN

χ3
CN + 3 .

We finish the proof by computing
∫

SN
χ3

CN . By the Trace Formula∫
SN

χ3
CN = dimC Fix

(
SN ,

(
S1(CN )⊗ S1(CN )

)∗ ⊗CN
)
.

That is,
∫

SN
χ3

CN is equal to the number of quadratic SN -equivariants g on CN

satisfying θg(z) = g(z) for all θ ∈ S1 and z ∈ CN . By Remark 6.3 we have
that g : CN → CN is SN -equivariant and satisfies θg(z) = g(z) if and only if
g(z) = (g1(z), g1((12) z), · · · , g1((1N) z))T where g1 : CN → C is SN−1-invariant
in the last N − 1 coordinates and g1(θz) = g1(z) for all θ ∈ S1 and z ∈ CN . Then
using the same notation as in Proposition 6.4 (recall (6.3)), we have∫

SN

χ3
CN = dimC Fix

(
SN−1, (S1(CN ))∗ ⊗ (S1(CN ))∗

)
=
∫

SN−1

(2 + χV2)
2 = 5 .

Now the result follows from Proposition 6.4.

Remark 6.6. See Rodrigues [25] for the explicit calculation of cubic equivariants
under the above actions of SN × S1.

6.2. Continuous Groups

6.2.1. Character Formulas for O(3) and SO(3)

We apply our results to the calculation of the dimensions of the spaces of in-
variants and equivariants for the groups O(3) and SO(3). Bifurcation with these
symmetry groups is a topic of considerable interest [4, 6, 18,20,26].

We first recall some facts about these groups and their representations, see [16,
XIII, §7] for details. For each l > 0 there is only one (absolutely) irreducible repre-
sentation of SO(3) of dimension 2l + 1 denoted by Vl. Each of these spaces carry
two representations of O(3) called plus and minus representations: on the first one
−I acts trivially and on the second −I acts non-trivially. In applications, the usual
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way that O(3) acts is induced from the natural action on R3. This leads to the rep-
resentation plus for l even and minus for l odd which is called natural representation
of O(3) on Vl.

The character afforded by the irreducible representation of SO(3) on Vl is given
by

χl(Rθ) =
l∑

m=−l

eimθ = 1 + 2
l∑

m=1

cos(mθ) =
cos(lθ)− cos((l + 1)θ)

1− cos(θ)
(6.4)

where θ ∈ [0, π] parametrises the conjugacy classes of SO(3) and represents the
rotation Rθ. The Haar integral of a class function f on SO(3) is (see Wigner [29, p.
156])

1
π

∫ π

0

f(Rθ)(1− cos θ) dθ . (6.5)

The conjugacy classes of O(3) are also parametrised by θ ∈ [0, π], however there
are two classes for each θ: one class is represented by the rotation Rθ and the other
is represented by −I ◦Rθ = −Rθ. In this case the Haar integral of a class function
f on O(3) is

1
2π

∫ π

0

[f(Rθ) + f(−Rθ)](1− cos θ) dθ . (6.6)

Observe that for any representation of O(3) on Vl we have that

dimR P2k
Vl⊗RC(O(3)× S1) = dimR P2k

Vl⊗RC(SO(3)× S1)

dimC
~P2k+1

Vl⊗RC(O(3)× S1) = dimC
~P2k+1

Vl⊗RC(SO(3)× S1) .
(6.7)

To see this note the following. Let χl be the character of an irreducible representa-
tion Vl of O(3). If −I acts trivially on Vl and k ≥ 1, we have

χl,(k)(Rθ) = χl,(k)(−Rθ)

and so∫
O(3)

χ2
l,(k) =

∫
SO(3)

χ2
l,(k),

∫
O(3)

χl,(k+1) χl,(k) χ =
∫
SO(3)

χl,(k+1) χl,(k) χ.

By Theorem 2.2 we have the equalities (6.7).
Now, if −I acts non-trivially on Vl, then the function λ : O(3) → R defined by

λ(g) =
{

1 if g ∈ SO(3),
−1 if g ∈ O(3) \ SO(3),

is a linear character of O(3). Moreover, we have that λχl is an irreducible character
of O(3) where −I acts trivially on Vl. Also, λχl(g) = χl(g) for g ∈ SO(3). By
Proposition 6.1 and the above observation we have the equalities (6.7).

Remark 6.7. Sattinger [26] proved that for SO(3)-symmetric steady-state bifur-
cations posed on an absolutely irreducible space Vl, the quadratic terms vanish for
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odd l, and possess a gradient structure for even l. The gradient structure for the
cubic truncation for O(3)-symmetric steady-state bifurcation on Vl, for any l ≥ 1
was proved by Michel. See Chossat et al. [6]. This can be proven in the following
way. It is shown by Chossat and Lauterbach [4] that for O(3)-symmetric steady-
state bifurcation the number of cubic equivariants E(3) is equal to 1 + [l/3]. Using
(6.4) and (6.5) we obtain the following expressions for l ≥ 1:

∫
SO(3)

χ4
l (Rθ) =

1
π

∫ π

0

[
l∑

m=−l

eimθ

]3

(cos(lθ)− cos((l + 1)θ))) dθ

= 2l + 1

(6.8a)

∫
SO(3)

χ2
l (R2θ) =

1
π

∫ π

0

[
l∑

m=−l

ei2mθ

]2(
1− eiθ

2
− e−iθ

2

)
dθ

= 2l + 1

(6.8b)

∫
SO(3)

χl(R4θ) =
1
π

∫ π

0

l∑
m=−l

ei4mθ

(
1− eiθ

2
− e−iθ

2

)
dθ = 1 (6.8c)

∫
SO(3)

χ2
l (Rθ)χl(R2θ) =

=
1
π

∫ π

0

l∑
m=−l

eimθ
l∑

n=−l

ei2nθ (cos(lθ)− cos((l + 1)θ))) dθ = 1
(6.8d)

∫
SO(3)

χl(Rθ)χl(R3θ) =
1
π

∫ π

0

l∑
m=−l

ei3mθ (cos(lθ)− cos((l + 1)θ))) dθ

= 1− l + 3
[
l

3

] (6.8e)

It follows then by Theorem 2.1 that

I(4) =
∫
O(3)

χl,(4) =
∫
SO(3)

χl,(4) = 1 +
[
l

3

]
.

Similarly, we can use formulas in (6.8) to verify that E(3) = 1 + [l/3]. That is,
E(3) = I(4) = 1+[l/3]. Thus cubic O(3)-equivariants also have a gradient structure.
3

Now using our results we get a similar property for the case of Hopf bifurcation
with O(3) symmetry.

Proposition 6.8. Let O(3) act irreducibly on Vl and denote by χl the corresponding
character. Then

dimR P4
Vl⊗RC(O(3)× S1) = dimC

~P3
Vl⊗RC(O(3)× S1) = l + 1 .
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Proof. Direct computations using formulas in (6.8) give the results. We include
an alternative proof using orthogonality of the characters of O(3) and some well
known decomposition formulas for the symmetric and alternating tensor square of
the representations Vl of O(3).
To prove the first equality, let

EH(3) = dimC
~P3

Vl⊗RC(O(3)× S1) , IH(4) = dimR P4
Vl⊗RC(O(3)× S1) .

By Theorem 2.2 we have

EH(3)− IH(4) =
∫
O(3)

(
χl,(2)χ

2
l − χ2

l,(2)

)
= 〈χl,(2), χl,[2]〉

where χl,[2] denotes the character of O(3) on the antisymmetric tensor square A2(Vl)
of Vl (and as before χl,(2) is the character of O(3) on the symmetric tensor square
S2(Vl) of Vl). The relation between χl,[2] and χl,(2) is given by formula (3.8)(d) and
takes the form

χ2
l = χl,(2) + χl,[2] .

As

S2(Vl) =
l⊕

a=0

V2l−2a = V2l ⊕ V2l−2 ⊕ · · · ⊕ V0

(see for example [10, page 159]), it follows then that

χl,(2) = χ2l + χ2l−2 + · · ·+ χ0 .

Also,
A2(Vl) = V2l−1 ⊕ V2l−3 ⊕ · · · ⊕ V1

(see for example [10, page 160]), and so

χl,[2] = χ2l−1 + χ2l−3 + · · ·+ χ1 .

Therefore 〈χl,(2), χl,[2]〉 = 0.
To prove the second equality observe that by Theorem 2.2 we have

EH(3) =
∫
O(3)

χl,(2)χ
2
l = 〈χl,(2), χ

2
l 〉 .

As χ2
l is the character of the O(3)-module Vl ⊗ Vl and

Vl ⊗ Vl = V0 ⊕ V1 ⊕ · · · ⊕ V2l

(see for example [27, p. 138, Lemma 5.20]), we obtain

χ2
l = χ0 + χl + · · ·+ χ2l

and so
〈χl,(2), χ

2
l 〉 = l + 1 .
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l I(2) I+(3) E+(2) E(3) IH(2) IH(4) IH(6) EH(3) EH(5)

1 1 0 0 1 1 2 2 2 3

2 1 1 1 1 1 3 5 3 9

3 1 0 0 2 1 4 10 4 21

4 1 1 1 2 1 5 17 5 40

5 1 0 0 2 1 6 28 6 69

6 1 1 1 3 1 7 43 7 110

7 1 0 0 3 1 8 62 8 164

8 1 1 1 3 1 9 87 9 234

9 1 0 0 4 1 10 118 10 322

10 1 1 1 4 1 11 155 11 429

Table 4. Dimensions of vector spaces of invariants I(k) and equivariants E(k) of degree
k for stationary bifurcation, and invariants IH(k) and equivariants EH(k) for Hopf bifur-
cation, for the group O(3). For the plus representation of O(3) we denote those by I+(k)
and E+(k) and omit the values for the minus representation if they are zero.

In Table 4 we show the numbers of invariants and equivariants for stationary and
Hopf bifurcation with O(3)-symmetry for l = 1, . . . , 10. For Hopf bifurcation the
values are the same for the plus and minus representations of O(3) on Vl. For steady-
state bifurcation the values for the two representations of O(3) on Vl differ for the
number of cubic invariants and quadratic equivariants. For the plus representation
we have the values denoted by I+(3) and E+(2). For the minus representation these
are zero.

Remark 6.9. As shown above, EH(3) = IH(4) = l + 1, so the cubic equivariants
for Hopf bifurcation can be written as gradients of the quartic invariants. However,
in the case of Hopf bifurcation, this does not constrain the dynamics in the way
that it does for stationary bifurcation. Note that EH(5) and IH(6) increase very
rapidly with l; this increase appears to be of order l3 for large l. 3

6.2.2. Hilbert-Poincaré Series of O(3) and SO(3)

We show how it is possible to explicitly evaluate the Hilbert-Poincaré series for
the groups SO(3) and O(3) for small values of l, for both stationary bifurcation
(see [5, page 176]) and Hopf bifurcation.

The action of a rotation through an angle θ is given by a diagonal matrix with
entries eimθ, for m = −l . . . l. Since all rotations through an angle θ are conjugate,
they all make the same contribution to the Haar integral, and so

ΦSO(3)(t) =
1
π

∫ π

0

(1− cos θ) dθ∏l
m=−l(1− teimθ)

, ΨSO(3)(t) =
1
π

∫ π

0

cos lθ − cos(l + 1)θ dθ∏l
m=−l(1− teimθ)

.

For the group O(3), the formulas are the same as for SO(3) in the ‘+’ representa-
tion, while for the ‘−’ representation it follows from (6.6) that

Φ−O(3)(t) =
ΦSO(3)(t) + ΦSO(3)(−t)

2
, Ψ−

O(3)(t) =
ΨSO(3)(t)−ΨSO(3)(−t)

2
.
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The integrals can be evaluated by making the substitution u = eiθ and using
complex variable methods, as in Example 2.7. For l = 1 the results are

Φl=1
SO(3)(t) =

1
1− t2

, Ψl=1
SO(3)(t) =

t

1− t2
,

and since these functions are even and odd respectively, the result is the same for
O(3) in either the ‘+’ or ‘−’ representation. For l = 2,

Φl=2
SO(3)(t) =

1
(1− t2)(1− t3)

, Ψl=2
SO(3)(t) =

t

(1− t)(1− t3)
,

and for l = 3,

Φl=3
SO(3)(t) =

1 + t15

(1− t2)(1− t4)(1− t6)(1− t10)
,

Ψl=3
SO(3)(t) =

t− t8

(1− t2)2(1− t3)(1− t4)(1− t5)
.

In the case of Hopf bifurcation, we need to carry out two integrals, firstly an
integral over SO(3) to find ΦSO(3)(z, z) using Theorem 2.4, and secondly over S1

to apply Theorem 2.6. In this case ΦO(3)×S1 = ΦSO(3)×S1 for both representations,
as discussed in the preceding section. For l = 1,

Φl=1
SO(3)(z, z) =

1
π

∫ π

0

(1− cos θ) dθ
(1− z)(1− zeiθ)(1− ze−iθ)(1− z)(1− ze−iθ)(1− zeiθ)

=
1

(1− z2)(1− z2)(1− zz)
.

This result was also obtained by Forger [9] for the closely related group SU(2). To
impose S1-invariance we carry out the second integral

Φl=1
SO(3)×S1(z, z) =

1
2π

∫ 2π

0

dθ

(1− z2e2iθ)(1− z2e−2iθ)(1− zz)

=
1

(1− zz)(1− z2z2)
.

A similar calculation shows that the generating functions for equivariants for l = 1
are

Ψl=1
SO(3)(z, z) =

z + z + zz

(1− z2)(1− z2)(1− zz)
, Ψl=1

SO(3)×S1(z, z) =
z

(1− zz)2
.

For l = 2 the results of the calculations are

Φl=2
SO(3)×S1(z, z) =

1 + 3z4z4 + 2z5z5 + 3z6z6 + z10z10

(1− zz)(1− z2z2)2(1− z3z3)2(1− z4z4)
= 1 + zz + 3z2z2 + 5z3z3 · · ·
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Ψl=2

SO(3)×S1(z, z) =

=
z(1 + zz + 3z2z2 + 5z3z3 + 5z4z4 + 5z5z5 + 3z6z6 + z7z7 + z8z8)

(1− zz)2(1− z2z2)(1− z3z3)2(1− z4z4)
= z(1 + 3zz + 9z2z2 + 23z3z3 · · · )

From these generating functions we can deduce that for the l = 2 Hopf bifurcation
there is one quadratic invariant and three quartic invariants, and that there are three
cubic equivariants and nine quintic equivariants. These results are in agreement with
those of Iooss and Rossi [20] and Haaf et al. [18] who obtained the invariants and
equivariants by direct computation, using two different methods. In principle these
generating functions can be obtained for any value of l, but the formulas rapidly
become cumbersome as l increases.
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