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Abstract. In this article we prove that if a flow exhibits a partially hyper-

bolic attractor Λ with splitting TΛM = Es ⊕ Ec and two periodic saddles
with different indices and the stable index of one of them coincides with the

dimension of Es then it does not satisfy the specification property. As an

application, we prove that all Lorenz attractors do not satisfy the specification
property.

1. Introduction and statement of the main results

Throughout, let M be a closed manifold with dimM ≥ 3, where dimE denotes
the dimension of E, and let X1(M) be the space of C1-vector fields of a closed
C∞ manifold M endowed with the C1-topology. Given X ∈ X1(M) a C1-vector
field it generates a flow (Xt)t∈R on M . We say that a compact Xt-invariant subset
Λ ⊂ M is a hyperbolic set for (Xt)t if there exists a dominated decomposition
TΛM = Es ⊕ Ec ⊕ Eu such that Ecx is the one dimensional subspace generated by
X(x) and there are constants C > 0 and λ ∈ (0, 1) so that ‖DXt(x) | Esx‖ ≤ Cλt

and ‖(DXt(x) | Eux )−1‖ ≤ Cλt for every t ≥ 0 and x ∈ Λ. If Λ = M we say that
(Xt)t is an Anosov flow. We say that a Xt-invariant compact set Λ is sectional-
hyperbolic if every singularity in Λ is hyperbolic and there exist a continuous non-
trivial invariant splitting TΛM = Es⊕Ec over Λ and constants C > 0 and λ ∈ (0, 1)
such that for every x ∈ Λ and t ≥ 0

(i) ‖DXt | Esx‖ ‖DX−t | EcXt(x)‖ < Cλt;

(ii) ‖DXt(x) | Esx‖ ≤ Cλt;
(iii) |det(DXt(x) |Lx

)| > Cλt for every plane Lx ⊂ Fx.

More generally, an invariant splitting TΛM = E1 ⊕ · · · ⊕ Ek is dominated if for
any 1 ≤ l ≤ k − 1, (E1 ⊕ · · · ⊕ El) ⊕ (El+1 ⊕ · · · ⊕ Ek) is dominated, that is,
satisfies condition (i) above. Any subbundle F satisfying condition (iii) above,
expressing that the flow expands volume in all two-planes contained in F , is said
to be sectionally expanding. Moreover, it is well known that the sub-bundle Es is
uniquely integrable and hence there is a foliation Fss which is tangent to Es (see
e.g. [11]). We refer to Fss as the strong stable foliation. Let us also mention that
sectional hyperbolic flows in three-dimensional manifolds coincide with the notion
of singular-hyperbolicity for flows that arised in the characterization of robustly
transitive attractors in dimension three. We observe that if a sectional hyperbolic
flow does not have singularities then it is necessarily hyperbolic (see e.g. [15] for
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more details). Finally, an orbit of a point x by the flow is called a critical element if
it is either periodic or x it is constant (that is, x a singularity for the vector field).

The specification property for maps was introduced by Bowen in [7, 6] and
roughly means that an arbitrary number of pieces of orbits can be “glued” to obtain
a real orbit that shadows the previous ones. Dynamical systems satisfying the spec-
ification property are intensively studied from an ergodic viewpoint [5, 21, 26, 18]
and an algebraic viewpoint [1, 13]. We shall recall this notion for flows.

A Xt-invariant compact set Λ is an attractor if it is transitive and admits a
compact neighborhood U such that Λ =

⋂
t∈R+

0
Xt(U). We say that an invariant

compact subset Λ ⊂ M has the specification property if for any ε > 0 there exists
a T = T (ε) > 0 such that the following property holds: given any finite colection
of intervals Ii = [ai, bi] (i = 1 . . .m) of the real line satisfying ai+1 − bi ≥ T (ε) for
every i and every map P :

⋃
Ii∈τ Ii → Λ such that Xt2(P (t1)) = Xt1(P (t2)) for any

t1, t2 ∈ Ii there exists x ∈ Λ so that d(Xt(x), P (t)) < ε for all t ∈
⋃
i Ii. When the

previous shadowing property is required only to specifications made by two pieces
of orbits (m = 2 above) we shall refer to this as the weak specification property.
These properties clearly implies the flow to be transitive on Λ and not to admit
sources nor sinks.

Recently, several authors studied the specification property from a viewpoint
of geometric theory of dynamical systems. In [22], Sakai and the first and third
authors proved that the C1-interior of the set of all diffeomorphisms satisfying
the specification property coincides with the set of all transitive Anosov diffeomor-
phisms. Moriyasu, Sakai and the third author extended the above results to regular
maps, and proved that C1-generically, regular maps satisfy the specification prop-
erty if and only if they are transitive Anosov ([17]). Owing to these results, the
relation to hyperbolicity turns out to be clear. Following the ideas in [22], Arbieto,
Senos and Todero [3] proved that any isolated set for a flow (Xt)t that satisfies
the (weak) specification property robustly is a topologically mixing hyperbolic set
and, consequently, if X is a vector field which has the weak specification property
robustly then it generates a topologically mixing Anosov flow. In particular the
characterization was to prove first that robust specification would lead to sectional-
hyperbolicity and then, by robustness, to use perturbative techniques and rule out
singularities. Hence, a natural question left in [3] was to characterize the set of
Lorenz attractors that do satisfy the specification property. Recall that Lorenz
attractors do not satisfy the shadowing property with rare exceptions (c.f. [12]).
Here we provide an answer to this question.

Theorem A. Every transitive sectional-hyperbolic attractor is either hyperbolic or
does not satisfy the weak specification property.

Observe that, by the definition of sectional hyperbolicity, all singularities are
hyperbolic and all periodic orbits have stable index equal to dimEs. Recently, pe-
riodic orbits for sectional-hyperbolic attractors were constructed by Lopez [14], and
in [2, Proposition 10] Arbieto and Morales showed that the stable indices of sigular-
ities for every nontrivial transitive sectional-hyperbolic set are equal to dimEs + 1.
Moreover, every sectional-hyperbolic flow without singularities is actually hyper-
bolic. Hence, Theorem A is actually a consequence of the more general result:

Theorem B. Let X ∈ X1(M) be a vector field and let Λ be an attractor so that the
flow (Xt)t∈R admits a partially hyperbolic splitting TΛM = Es⊕Ec. Assume there
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are two hyperbolic critical elements p and q such that dim Es = dim W ss(p) <
dim W ss(q). Then X |Λ does not satisfy the weak specification property.

In the case of three-dimensional manifolds the singularity of the Lorenz attractors
have stable index larger than the one of the strong stable direction. Hence, we
obtain the following immediate consequence:

Corollary 1. Assume that dimM = 3 and that (Xt)t is a flow that admits a
geometric Lorenz attractor Λ. Then (Xt)t does not satisfy the weak specification
property on Λ.

We notice that if dimM = 3 then every C1-robustly transitive set with singular-
ities Λ is a singular-hyperbolic set up to flow-reversing [16] and consequently, Xt |Λ
does not satisfy the weak specification property. Observe that the previous theo-
rem also applies for partially hyperbolic sets Λ with a decomposition Eu ⊕Ec just
by considering the vector field −X. Moreover, even in the case of an Anosov flow
(Xt)t the time-1 map f = X1 : M → M of an Anosov flow is a strongly partially
hyperbolic diffeomorphism that admits no hyperbolic periodic points. In particular
an analogous theorem as the previous one for flows does not follow from the ones
obtained for partially hyperbolic diffeomorphisms in [24]. Nevertheless some corol-
laries of the main result in [24] for strongly partially hyperbolic diffeomorphisms
on three-manifolds can be expected to hold for strongly partially hyperbolic flows
on four-manifolds due to the neutral direction of the vector field. We shall discuss
now such extensions.

We say that a flow is strongly partially hyperbolic with d-dimensional central
direction (d ≥ 1) if it admits a decomposition TM = Es ⊕ Ec ⊕ Eu with d-
dimensional central direction. Denote by SPHFd(M) the set of such flows and
note that it is an open subset of X1(M). We say a flow (Xt)t generated by a
vector field X is robustly transitive if all flows generated by vector fields in a C1-
open neighborhood of X are transitive, that is, have a dense orbit. If the vector
field X has an attractor ΛX :=

⋂
t≥0Xt(U) we say that Λ is a robustly transitive

attractor if for any vector field Y in a C1-open neighborhood of X the attractor
ΛY :=

⋂
t≥0 Yt(U) is transitive. Finally, we denote by RNT F the set of robustly

non-hyperbolic transitive flows (that is, flows generated by vector fields X so that
every C1-vector field Y in a C1-neighborhood of X generates a non-hyperbolic and
transitive flow) endowed with the C1-topology in the space of vector fields.

Given a vector field X ∈ X1(M) a point p ∈ M is a singularity if X(p) = 0,
otherwise it is referred as a regular point. A point p ∈M is periodic if there exists a
minimum period T > 0 so that XT (p) = p and we say that p is a periodic hyperbolic
point if the orbit O(p) = ∪t∈[0,T ]Xt(p) is a hyperbolic set for X. If this is the case,
the strong-stable set

W ss(p) =

{
x ∈M : lim

t→+∞
d(Xt(x), Xt(p)) = 0

}
is indeed a C1-submanifold tangent to Es.Let dss be the distance in W ss(p) induced
in the Riemannian metric. The local stable manifold at p is defined by W s

ε (p) =⋃
|t|≤εXt(W

ss
ε (p)) where

W ss
ε (p) = {x ∈W ss(p) : dss(x, p) ≤ ε}
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for ε > 0. Local strong-unstable and unstable manifolds are defined analogously.
Moreover, observe that for ε > 0 there exists ε0 > 0 such that⋂

T≥0

BT (p, ε0) ⊂W s
ε (p)

where BT (p, ε0) = {x ∈ M : d(Xt(x), Xt(p)) ≤ ε0,∀0 ≤ t ≤ T} and consequently,
W s
ε (p) contains the intersection of dynamical balls computed only for future iterates

(see Lemma 2.1). In the case that the central direction Ec is two dimensional,
any two hyperbolic periodic points with different indices verify the assumptions of
Theorem B. Thus we obtain the following direct consequence.

Corollary 2. Let X ∈ SPHF2(M) and suppose that there exist two hyperbolic
critical elements with different indices. Then X does not satisfy the weak specifica-
tion property.

Proof. Let p, q be hyperbolic critical elements so that inds(p) 6= inds(q). Observe
that due to transitivity p and q are not attractors nor repellers. We shall prove
that either X or −X satisfies the conditions of Theorem B and, consequently, X
does not satisfy the weak specification property. For simplicity, we assume that
dimM = 4.

(i) If p, q are both periodic points then necessarily inds(p) ∈ {1, 3} or inds(q) ∈
{1, 3}. Assume without loss of generality that inds(p) ∈ {1, 3}. If inds(p) = 1 then
the vector field X satisfies the conditions of Theorem B. If inds(p) = 3 then −X
satisfies the conditions of Theorem B.

(ii) If p, q are both singularities then inds(p) and inds(q) cannot be simultane-
ously 2. The argument is completely analogous to the previous case.

(iii) If p is a periodic point and q is a singularity. If inds(p) = 1 = dimEs, since
inds(q) 6= 1 then X satisfies the assumptions of Theorem B. If inds(p) = 2 then
indu(p) = 1 and just consider −X. This completes the proof of the corollary. �

Since X(x) is in the central direction for a nonsingular partially hyperbolic flow
(Xt)t, we can obtain the following corollary in a similar way as above.

Corollary 3. Let X ∈ SPHF3(M). If X is nonsingular and if there exist two
hyperbolic critical elements with different indices, then X does not satisfy the weak
specification property.

Using C1-perturbative techniques it follows that hyperbolic flows coincide with
the class star-flows G1(M) (i.e. flows such that all critical elements are hyperbolic
C1-robustly) (see e.g. [3] for a more precise description). We deduce that most
robustly non-hyperbolic and transitive partially hyperbolic flows with two dimen-
sional central direction do not have the specification property.

Corollary 4. There is a C1-open and dense subset O in RNT F ∩ SPHF3(M),
such that every X ∈ O does not satisfy the weak specification property.

Proof. Put U = RNT F ∩ SPHF3(M). Since X ∈ U is robustly transitive, X
has no singularity (see [27]). We note that U ∩ G1(M) = ∅. Indeed, we assume by
contradiction that there exists X ∈ U ∩ G1(M). In [10] Gan and Wen showed that
if X ∈ G1(M) has no singularity, then the nonwandering set of X is hyperbolic,
which means that X is Anosov. This contradicts the fact that X is not hyperbolic.

Let X ∈ U . Since X 6∈ G1(M), X can be approximated by a flow Y ∈ U having
a non-hyperbolic periodic orbit. By the proof of Theorem 4.3 in [3], we can find
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Z ∈ U arbitrarily close to Y and having two hyperbolic periodic orbits with different
indices, which is a C1-open condition. Thus Corollary 3 implies that Z does not
satisfy the weak specification property C1-robustly. �

We can expect to extend the previous result by removing the partial hyperbolicity
assumption in a lower dimensional setting. In the case that dimM = 3, Doering [9]
proved that every C1-robustly transitive flow on a three-dimensional manifolds is
Anosov and consequently satisfies the specification property. If dimM = 4 we can
remove the assumption of partial hyperbolicity from the previous corollary.

Corollary 5. Suppose that dimM = 4. Then there is a C1-open and dense subset
O in RNT F so that every X ∈ O does not satisfy the weak specification property.

Proof. Following [27], given X ∈ RNT F it follows that X has no singularity
and the linear Poincaré flow P t = πNXt(x)

◦ DXt(x) : Nx → NXt(x) admits a

dominated splitting: for every x ∈M there exists a DP t-invariant and continuous
decomposition of the normal space Nx = Ex ⊕ Fx and constants C > 0 and 0 <
λ < 1 so that

‖DP tEx‖ ‖(DP tFXt(x))
−1‖ ≤ Cλt

for every t ≥ 0.
We now proceed to prove that the one-dimensional subbunddle is hyperbolic.

Assume for simplicity that dimE = 1 and dimF = 2. Since a robustly transitive
flow does not present repelling periodic orbits we claim that there exists exists
δ > 0 such that |λE(p)| ≤ (1 − δ)T < 1 for every periodic point p of period T ,
where λE(p) denotes the eigenvalues of DPT (p) |Ep

(since otherwise one could use
the Frank’s lemma for flows as in the proof of [8, Lemma 4.5] to create a repelling
periodic orbit). The proof that E is uniformly contracting follows by the well
known strategy in the proof of the stability conjecture using the ergodic closing
lemma proved by Wen (c.f. Step 3 in [28, page 347]).

We put Ecx = 〈X(x)〉 ⊕ Fx(⊂ TxM) for x ∈ M . Here 〈X(x)〉 denotes the one
dimensional subspace generated by X(x). Then Ec is a DXt-invariant subbundle.
Since E is uniformly contracting, as in the proof of [23, Theorem 1.5], we can define
a DXt-invariant continuous one-dimentional subbundle Es ⊂ 〈X〉 ⊕ E such that
the splitting Es ⊕ Ec is partially hyperbolic.

By [10, Theorem A] every non-singular star-flow is Axiom A without cycles.
Since X generates a non-hyperbolic robustly transitive flow without singularities
then X 6∈ G1(M) and, consequently, X can be C1-approximated by a flow Z ∈ U
arbitrarily close to X two hyperbolic periodic orbits with different indices, which
is a C1-open condition. This finishes the proof of the corollary. �

In conclusion, together with the results by Komuro [12] we obtain that the Lorenz
attractors do not satisfy both the specification and shadowing properties. On the
other hand, several authors considered more recently either measure theoretical
non-uniform specification properties (see e.g. [18, 26]) or almost specification prop-
erties (see e.g. [20, 25]) to the study of the ergodic properties of a given dynamical
system. One remaining interesting question is to understand which partially hyper-
bolic maps admit weaker specification properties. A global picture that includes the
characterization of dynamical systems satisfying these weak kinds of specification
is still incomplete.
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2. Preliminaries

In this section we provide necessary definitions and prove some auxiliary results
used in the proofs of the main results.

Lemma 2.1. For every hyperbolic periodic point p and ε > 0, we can choose
ε0 ∈ (0, ε) such that for x ∈M , if d(Xt(x), Xt(p)) ≤ ε0 for every t ≥ 0 then

x ∈W s
ε (p) =

⋃
|t|≤ε

Xt(W
ss
ε (p)).

Proof. Let TΓM = Es ⊕ Ec ⊕ Eu be the decomposition as in the definition of
hyperbolicity where Γ is the orbit of p. We fix a continuous extension Ẽs⊕ Ẽc⊕ Ẽu
of Es ⊕ Ec ⊕ Eu to some small neighborhood U of Γ and define Cuκ (x) = {v =

v1 + v2 ∈ (Ẽsx ⊕ Ẽcx) ⊕ Ẽux : ‖v1‖ ≤ κ‖v2‖} (x ∈ U , κ > 0). By the definition of
hyperbolicity, there are κ > 0, 0 < λ < 1 and T > 0 with XT (p) = p such that if
Xs(x) ∈ U for 0 ≤ s ≤ T , then

DxXT (Cuκ (x)) ⊂ Cuκ (XT (x)),

‖DxXT (v)‖ ≥ λ−1‖v‖ (v ∈ Cuκ (x)). (2.1)

Increasing T if necessary we may assume that XT (W s
ε (p)) ⊂W s

ε (p). Choose δ0 > 0
(depending on T ) such that if d(x, p) ≤ δ0, then Xt(x) ∈ U for 0 ≤ t ≤ T . Since
W ss
ε (p) is a C1 disk with TpW

ss
ε (p) = Esp, we have that W s

ε (p) is a C1 disk with
TpW

s
ε (p) = Esp ⊕ Ecp. So we can take 0 < ε0 < θ(< δ0/2) such that if d(x, p) ≤ ε0,

then the following hold:

(1) There is a C1 disk D ⊂ U centered at x of radius θ such that

dimD = dimEup and TyD ⊂ Cuκ (y) (y ∈ D). (2.2)

(2) Any disk centered at x of radius θ satisfying (2.2) intersects W s
ε (p) at a

unique point transversely. (Such an intersection y satisfies

d(y, p) ≤ d(y, x) + d(x, p) ≤ θ + ε0 < δ0.) (2.3)

Assume that x ∈ M satisfies d(Xt(x), Xt(p)) ≤ ε0 for t ≥ 0. Let D0 be a C1

disk centered at x of radius θ satisfying (2.2) and y be an intersection between D0

and W s
ε (p) (see (2.3)). Since D0 is contained in a ball centered at p with radius δ0,

we have Xt(D0) ⊂ U for 0 ≤ t ≤ T . By (2.1) and (2.2), Xt(D0) contains a C1 disk
centered at XT (x) of radius λ−1θ satisfying (2.2). Denote as D1 ⊂ XT (D0) a C1

disk centered at XT (x) of radius θ. Since XT (y) ∈ XT (W s
ε (p)) ⊂ W s

ε (p) and since
both D1 and XT (D0) intersect W s

ε (p) at a unique point respectively, we have

{XT (y)} = XT (D0) ∩W s
ε (p) = D1 ∩W s

ε (p).

Moreover, since XT (x), XT (y) ∈ D1, we have

d(x, y) = d(X−T (XT (x)), X−T (XT (y)))

≤ λd(XT (x), XT (y)) ≤ λθ.

Repeating this procedure, we find C1 disks Dn (n ≥ 0) centered at XnT (x) of
radius θ satisfying (2.2) such that

Dn+1 ⊂ XT (Dn) and XnT (x), XnT (y) ∈ Dn
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for n ≥ 0. So

d(x, y) = d(X−nT (XnT (x)), X−nT (XnT (y)))

≤ λnθ (n ≥ 0),

which means d(x, y) = 0, and so x ∈ W s
ε (p). This finishes the proof of the lemma.

�

Remark 2.1. An analogous result holds for the local unstable manifold as follows:
for every hyperbolic periodic point p and ε > 0, we can choose ε0 ∈ (0, ε) such that
for x ∈M , if d(Xt(x), Xt(p)) ≤ ε0 for t ≤ 0, then x ∈Wu

ε (p).

Lemma 2.2. Suppose that the flow (Xt)t restricted to the attractor Λ satisfies the
weak specification property. Then for every hyperbolic critical element p, the strong
stable manifold W ss(p) is dense in Λ.

Proof. We prove only the case when p is periodic since the singularity case can be
shown similarly. Let ε > 0 and z ∈ Λ be fixed arbitrarily. Since (Xt)t is the flow
generated by the vector field X we can take 0 < t0 < ε so that d(x,Xt(x)) ≤ ε
for any x ∈ Λ and |t| ≤ t0. By Lemma 2.1 we can choose ε0 ∈ (0, t0) such that if
d(Xt(x), Xt(p)) ≤ ε0 for every t > 0 then

x ∈W s
t0(p) =

⋃
|t|≤t0

Xt(W
ss
t0 (p)). (2.4)

Let T (ε0) > 0 be as in the definition of the specification property and choose
T ≥ T (ε0) so that XT (p) = p. By the weak specification property, there are
xn ∈ Λ so that d(xn, z) ≤ ε0 and d(Xt(XT (xn)), Xt(p)) ≤ ε0 for every t ∈ [0, n].
By compactness of Λ we may assume, without loss of generality, that (xn)n is
convergent to some point x ∈ Λ satisfying d(x, z) ≤ ε0 and d(Xt(XT (x)), Xt(p)) ≤
ε0 for every t > 0. Using (2.4), we have

XT (x) ∈
⋃
|t|≤t0

Xt(W
ss
t0 (p))

and so we can find t1 ∈ [−t0, t0] such that XT (x) ∈ Xt1(W ss
t0 (p)). Since T is the

period of p, we have x ∈ Xt1(W ss(p)). Thus, there exists a point y ∈ W ss(p) such
that x = Xt1(y) and consequently

d(y, z) ≤ d(y, x) + d(x, z) ≤ ε+ ε0 ≤ 2ε,

which implies that W ss(p) is dense in Λ. �

In the next proposition, the time-continuous version of [4, Proposition 3], we
recall some necessary results relating some shadowing properties with the location
of the shadowing point in unstable disks. First we introduce a notation. Set
W s(p) =

⋃
t∈RXt(W

ss(p)). For x ∈ W s(p) and η > 0 we will consider the local
unstable disk around x in W s(p) given by γsη(x) := {z ∈ W s(p) : ds(x, z) ≤ η}
where ds is the distance in W s(p) induced in the Riemannian metric.

Proposition 2.3. Let p be a hyperbolic critical element for the flow. There are
ε1 > 0 and L > 0 such that for any ε ∈ (0, ε1) the following holds: if x ∈ W ss(p)
and d(Xt(z), Xt(x)) ≤ ε for any t > 0 then z ∈ γsLε(x).
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Proof. We prove only the case when p is periodic since the singularity case can be
shown similarly. Put κ = min{‖X(Xt(p))‖ : t ∈ R}(> 0). Then we can take t0 > 0
such that

d(Xt(p), Xs(p)) ≥ κ|t− s|/2 (2.5)

for |t− s| ≤ t0. Since Λ is partially hyperbolic, there exists 0 < µ ≤ t0 such that if
x ∈ Λ and y ∈W ss

µ (x), then

dss(x, y) ≤ 2d(x, y). (2.6)

Recall that dss is the distance in W ss(x) induced in the Riemannian metric. By
Lemma 2.1 we can choose 0 < 2ε0 < µ/4 such that for x ∈ M and s ∈ R, if
d(Xt(x), Xt+s(p)) ≤ 2ε0 for every t ≥ 0, then

x ∈W s
µ/4(Xs(p)) =

⋃
|t|≤µ/4

Xt(W
ss
µ/4(Xs(p))). (2.7)

Put K = max{‖X(x)‖ : x ∈ M} and L0 = 1 + 2K/κ. Let 0 < ε < ε1 =
min{ε0, µ/4L}. Since x ∈W ss(p), there is a sufficiently large T > 0 such that

d(Xt+T (x), Xt+T (p)) ≤ ε0

for all t ≥ 0. By the definition of W ss(p) and (2.7) we have

XT (x) ∈W ss
µ/4(XT (p)). (2.8)

By the assumption of z, we have

d(Xt+T (z), Xt+T (p)) ≤ d(Xt+T (z), Xt+T (x)) + d(Xt+T (x), Xt+T (p)) ≤ 2ε0

for t ≥ 0. By (2.7) we can find t1 with |t1| ≤ µ/4 such that

XT (z) ∈ Xt1(W ss
µ/4(XT (p))). (2.9)

Combining (2.8) and (2.9) we have

XT−t1(z) ∈W ss
µ/2(XT (x)). (2.10)

Since x ∈W ss(p), we have d(Xt(x), Xt(p))→ 0 (t→∞). PutK0 = max{‖DxXt1‖ :
x ∈M}. By (2.9) we have

d(Xt(z), Xt+t1(p)) ≤ K0d(Xt−t1(z), Xt(p))→ 0 (t→∞).

Thus it follows from (2.5) that

ε ≥ d(Xt(x), Xt(z))

≥ d(Xt(p), Xt+t1(p))− d(Xt(p), Xt(x))− d(Xt+t1(p), Xt(z))

≥ κ|t1|/2− d(Xt(p), Xt(x))− d(Xt+t1(p), Xt(z))

→ κ|t1|/2 (t→∞),

which means that |t1| ≤ 2ε/κ. Recall L0 = 1 + 2K/κ. then we have

d(Xt(x), Xt−t1(z)) ≤ d(Xt(x), Xt(z)) + d(Xt(z), Xt−t1(z))

≤ ε+K|t1|
≤ (1 + 2K/κ)ε = L0ε (2.11)

for t ≥ 0. We take a small t2 > 0 such that

K1 = max{‖DxX−t‖ : x ∈M, 0 ≤ t ≤ t2} ≤ 2.
8



Put I = {t ∈ [0,∞) : dss(Xt(x), Xt−t1(z)) ≤ 2L0ε} and t0 = inf I. By (2.6), (2.10)
and (2.11) we have T ∈ I. Assume by contradiction that t0 > 0. Since

dss(Xt0−t2(x), Xt0−t1−t2(z)) ≤ K1d
ss(Xt0(x), Xt0−t1(z)) ≤ 4L0ε ≤ µ,

by (2.6) and (2.11) we have t − t2 ∈ I, which is a contradiction. Thus 0 = inf I.
Therefore

ds(x, z) ≤ dss(x,X−t1(z)) + ds(X−t1(z), z)

≤ 2L0ε+K|t1| ≤ (2L0 + 2K/κ)ε ≤ 3L0ε.

�

Let us now recall the tubular neighborhood theorem and refer the reader to e.g.
[19] for the proof and more details.

Proposition 2.4. Let M be a compact Riemannian manifold of dimension d.
Given X ∈ X1(M) and a regular point x ∈ M there exists δ = δx > 0, an open
neighborhood Uδx of x, and a C1-diffeomorphism Ψx : Uδx → (−δ, δ) × B(x, δ) ⊂
R × Rd−1 such that the vector field X on Uδx is the pull-back of the vector field
Y := (1, 0, . . . , 0) on (−δ, δ)×B(x, δ), that is,

Y = (Ψx)∗X := D(Ψx)Ψ−1
x
X(Ψ−1

x ).

In particular Y t(·) = Ψx(Xt(Ψ−1
x (·))) for every |t| < δ.

In fact, using the previous result finitely many times one can prove the long
tubular neighborhood theorem for arbitrary long compact pieces of regular non-
periodic orbits as follows (see e.g. [19] for more details):

Proposition 2.5. Let M be a compact Riemannian manifold of dimension d and
take X ∈ X1(M), a regular point x ∈ M and T > 0. Then there exists δT =
δT (x) > 0, an open neighborhood UTx of x, and a C1-diffeomorphism Ψx : UTx →
(−T, T )×B(x, δT ) ⊂ R× Rd−1 such that Y t(·) = Ψx(Xt(Ψ−1

x (·))) for every small
|t| < T , where (Y t)t is the flow generated by the vector field Y := (1, 0, . . . , 0) on
(−T, T )×B(x, δT ).

We finish this section with some considerations on the existence of stable foli-
ations and holonomies. Since we assume Λ to be a partially hyperbolic attractor
and that the subbundle Es is non-empty, it is well known that the sub-bundle
Es is uniquely integrable and hence we have a foliation Fs which are tangent to
Es, called the strong stable foliation (see [11]). This is enough to guarantee the
following.

Lemma 2.6. Let Λ be a partially hyperbolic attractor for the flow (Xt)t generated
by the vector field X ∈ X1(M). If p ∈ Λ is a hyperbolic critical element for X then
there exists an open neighborhood U of p so that the strong stable leaves foliate U .
In particular there is a well defined stable holonomy map πs : U → πs(U) ⊂Wu(p).

Proof. The key observation is that an attractor contains strong unstable manifolds
of hyperbolic critical elements. Assume first that p is a singularity and U is a small
neighborhood of p (smaller than the uniform size of local stable leaves through
points of the attractor) and, in particular, Wuu(p) = Wu(p). Then, we notice that
the set Wu

U (p) := U ∩Wu(p) is contained in Λ and that U is foliated by the sets
{Fs(x) ∩ U}x∈Wu

U (p). The stable holonomy map in the neighborhood U is defined

simply by πs(x) = Fs(x) ∩Wu
U (p).
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Assume now that p is a regular point. In this case, using the invariance of
Λ by the flow and that Wuu(p) ⊂ Λ we deduce that Wu(p) ⊂ Λ. Let U be
a small neighborhood of p given by the tubular neighborhood theorem and set
Wu
U (p) := U ∩Wu(p). Then it is clear that U is foliated by centre-stable leaves and

that each of these are subfoliated by strong stable ones. The stable holonomy map
is defined as before. �

3. Proof of Theorem B

The aim of this section is to prove our main result in this paper. Let X ∈ X1(M)
be a C1 vector field so that the flow (Xt)t∈R admits a partially hyperbolic attractor
Λ with splitting TΛM = Es⊕Ec and assume that there are two hyperbolic critical
elements p and q such that dim Es = dim W ss(p) < dim W ss(q).

Assume by contradiction that (Xt)t satisfies the weak specification property.
Then (Xt)t is topologically mixing (c.f. [3, Lemma 3.1]) and it admits neither
attracting nor repelling critical elements. There are four situations to consider
depending on wether the critical elements p and q defined above are singularities
or periodic orbits.

First case: p and q are singularities

Since p, q are singularities then W s
µ(p) = W ss

µ (p) and Wu
µ (q) = Wuu

µ (q) for any
µ > 0. Take an open disk D0 = Wu

µ (p) ⊂ Λ containing p that it is transverse to
the local stable foliation through points of D0. For any open disk U contained in
D0, A(U) :=

⋃
z∈U Fsµ(z) is homeomorphic to U × [−µ, µ]dim Es

, where we set

Fsµ(z) := {w ∈ Fs(z) : ds(z, w) ≤ µ},

and ds is the distance in Fs(z) induced by the Riemannian metric. Let ε1 > 0 and
L > 0 be given by Proposition 2.3. We claim the following:

Claim: There are µ > 0, ε ∈ (0, ε1) with ε < µ/L and x ∈ W ss(p) so that if
T = T (ε) is given by the specification property then X−T (γsµ(x)) ∩Wu

µ (q) = ∅.

Proof of the claim. Take µ > 0 small. Set ε := min{µ/5, ε1/2} and let T (ε) be as
above. By the long tubular neighborhood theorem the intersection XT (Wu

µ (q)) ∩
A(∆0) is either empty or a submanifold of dimension dimEuq < dimEup . Since
XT (Wu

µ (q)) is tangent to Ec, i.e.

Ty(XT (Wu
µ (q))) ⊂ Ecy,

for y ∈ XT (Wu
µ (q)), the projection πs(XT (Wu

µ (q))) along the stable holonomy
consists of a finite set of disks of dimension smaller than or equal to dimEuq on D0.
Since the complementar of πs(XT (Wu

µ (q))) is open in D0, there exists an open disk
U ⊂ D0 so that A(U)∩XT (Wu

µ (q)) = ∅. Since U ⊂ Λ (c.f. proof of Lemma 2.6) and
the stable manifold W s(p) is dense in Λ then there exists x ∈ D0 ∩ A(U) ∩W s(p)
with Fsµ(x) ⊂ A(U) disjoint from XT (Wu

µ (q)). Hence X−T (γsµ(x))∩Wu
µ (q) = ∅ �

We proceed to prove Theorem B in this first setting. On the one hand, by the
claim there exists µ > 0, 0 < ε < min{µ/L, ε1} and x ∈W s(p) so that X−T (γsµ(x))
does not intersect Wu

µ (q), where T = T (ε) > 0 is given by the specification property.
On the other hand, for the singularity q and x ∈ W ss(p) given by the previous

claim, by compactness of Λ and the specification property there exists z ∈ Λ such
that d(Xt(z), Xt(x)) ≤ ε and d(X−t(X−T (z)), X−t(q)) ≤ ε for all t ≥ 0. Since
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ε ∈ (0, ε1), Proposition 2.3 guarantees that z ∈ X−T (γsLε(x)) ∩Wu
Lε(q), which is a

contradiction since Lε < µ. This finishes the proof of Theorem B in this first case.

Second case: p and q are periodic orbits

The strategy is again to deduce a contradiction by assuming the specification
property. Given µ small consider the disk D0 = ∪|t|≤µXt(W

uu
µ (p)) containing p and

the strong stable holonomy πs defined in A(D0) :=
⋃
z∈D0

Fsµ(z) (c.f. Lemma 2.6).
Moreover we assume that

0 < µ < min{lp, lq}/10 (3.1)

where lp and lq denote the prime periods of p and q, respectively.
Let ε1 > 0 and L > 0 be as in Proposition 2.3. Then (up to considering the

reverse time flow in Proposition 2.3) we can choose 0 < ε ≤ min{ε1, µ/L} such that
for x ∈ Λ, if d(X−t(x), X−t(q)) ≤ ε for t ≥ 0, then

x ∈Wu
µ (q) =

⋃
|t|≤µ

Xt(W
uu
µ (q)). (3.2)

By definition, Wu
µ (q) is foliated by pieces of orbit of points in Wuu

µ (q) and so
dimWu

µ (q) = 1 + dimWuu
µ (q) = 1 + dimEuq . Let T = T (ε) > 0 be as in the

definition of the specification property. On the one hand, since XT (Wu
µ (q)) is a

(1+dimEuq )-dimensional submanifold, the intersection of XT (Wu
µ (q)) with A(D0),

if nonempty, consists of finitely many compact disks of dimension 1 + dimEuq .
Moreover, XT (Wu

µ (q)) is tangent to Ec, and so πs(XT (Wu
µ (q))∩A(D0)) is a union

of finitely many compact disks of dimension 1 + dimEuq .
Let π : D0 → Wuu

µ (p) be the projection along the orbit, i.e. if x = Xt(z) ∈ D0

for some |t| ≤ µ and z ∈Wuu
µ (p), then π(x) = z. Since Xt ◦ πs = πs ◦Xt in A(D0)

then πs(XT (Wu
µ (q)) ∩ A(D0)) is a union of finitely many compact disks which are

11



foliated by pieces of orbit. Thus the dimension of (π ◦ πs)(XT (Wu
µ (q)) ∩ A(D0))

is exactly (less than) dimEuq < dimEup = dimWuu
µ (p). Since the complementar is

dense and open in Wuu
µ (p), there exists an open disk U ⊂Wuu

µ (p) so that

U ∩ (π ◦ πs)(XT (Wu
µ (q)) ∩ A(D0)) = ∅,

which means that A(π−1(U)) ∩XT (Wu
µ (q)) = ∅.

On the other hand, sinceW ss(p) is dense in Λ (Lemma 2.2), we haveA(π−1(U))∩
W ss(p) 6= ∅. Furthermore, we can choose a point w ∈ π−1(U) ∩W ss(p)(⊂ D0)
which is sufficiently close to W ss

µ (p). By the specification property, there exists
y ∈ Λ so that d(X−t(y), X−t(q)) ≤ ε and d(Xt(XT (y)), Xt(w)) ≤ ε for all t ≥ 0.
By (3.2) and Proposition 2.3, we have y ∈ Wu

µ (q) and XT (y) ∈ γsLε(w). Since

ε is sufficiently small, we may assume that γsLε(w) ⊂ A(π−1(U)). Thus we have
A(π−1(U)) ∩XT (Wu

µ (q)) 6= ∅, which is a contradiction.

Third case: p is a singularity and q is a periodic orbit

The strategy is again to deduce a contradiction by assuming the specification
property. Let us observe that in this setting

dimWu(q) = 1 + dimEuq = n− dimEsq < n− dimEsp = dimWu(p).

Thus, the argument proving that the complement of the set πs(XT (Wu
µ (q))) (here

πs denotes again the strong strong stable holonomy map in a neighborhood of p on
a disk D0 ⊂ Wu(p)) contains open sets U ⊂ D0 survives, as well as the proof that
this property prevents specification.

Remark 3.1. Let us mention that simpler third case is only relevant in the dimension
larger or equal to 4. In fact, if dimM = 3 then necessarily dimEuq = dimEsq = 1
and dimEsp < dimEsq leads to a contradiction to the fact that Es is non-trivial.

Fourth case: q is a singularity and p is a periodic orbit

To finish the proof of Theorem B we are left to deal with the case that q is a
singularity and p is a periodic orbit, in which case the relations dimM = dimEsq +
dimEuq and also dimM = dimEsp + dimEup + 1 together with dimEsp ≤ dimEsq − 1
yield that dimEuq ≤ dimEup . If the strict inequality holds we can proceed as in the
third case. Otherwise, the difficulty occurs if dimEuq = dimEup . Nevertheless, πs is
a projection defined in a neighborhood of p onto the local weak unstable manifold
Wu(p), and dimWu(p) = 1 + dimEup > dimEuq . The argument follows as before:
taking D0 = Wu

µ (p) it follows that πs(XT (Wuu
µ (q)) ∩ A(D0)) is a union of finitely

many compact disks of dimension dimEuq < 1 + dimEup = dimWu(p).
Since Xt(x) ∈ Wuu(q) = Wu(q) for x ∈ Wuu

µ (q) and t ∈ R, Wuu
µ (q) \ {q} is

foliated by pieces of orbit. Thus πs(XT (Wuu
µ (q)) ∩ A(D0)) is a union of finitely

many compact disks which are foliated by pieces of orbit. Let π : D0 →Wuu
µ (p) be

the projection along the orbit. Then the dimension of (π◦πs)(XT (Wuu
µ (q))∩A(D0))

is less than dimEuq − 1 < dimEup = dimWuu
µ (p). Since the complementar is dense

and open in Wuu
µ (p), there exists an open disk U ⊂Wuu

µ (p) so that

U ∩ (π ◦ πs)(XT (Wu
µ (q)) ∩ A(D0)) = ∅,

which means that A(π−1(U)) ∩XT (Wu
µ (q)) = ∅. The proof follows the same lines

of the previous arguments.
12



Remark 3.2. In fact, in the case of the geometric Lorenz attractor in dimension 3
necessarily dimEup = dimEsp = 1 and for the singularity dimEup = 1 and conse-
quently dimEup = dimEuq leading to the fourth situation.
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