Teoria de Billares

En los ultimos treinta anos se ha desarrollado
principalmente debido a las siguientes razones:

1. Algunas clases de billares presentan un fuerte
comportamiento caotico y pueden ser considerados
entre los mejores ejemplos de caos deterministico;

2. Muchos ejemplos interesantes de sistemas dina-
micos de origen fisico (especialmente aquellos en
que la interaccion entre particulas envuelve choques
elasticos) pueden ser reducidos a billares. Algunos
de estos ejemplos seran estudiados;

3. Importantes problemas en la teoria de caos
cuantico involucran un analisis protundo de los bi-
llares clasicos;

4. El estudio de los billares sugiere muchos pro-
blemas bonitos e interesantes en geometria y pro-

babilidad.



Gases of hard balls. Consider a more realistic
model of n balls moving in space. For simplicity;,
let all balls have the same radius r and the same
mass m. Each ball moves freely, i.e. with constant
velocity, until it hits another moving ball. When
two balls collide, they change their velocities ac-
cording to the laws of elastic collision.

This law means the following. Let two balls col-
lide. Denote by g1 and g9 their centers and by v
and v9 their velocity vectors at the moment of col-
lision. Let L be the line through the centers ¢; and
¢o. We decompose

L

.0
V; =V, +U;

0
Z.
vector v; parallel to L and ’UZ-J‘ 1S the one perpen-
dicular to L. Then the new, outgoing, velocities of

the balls are
v = fvlL + vg and vy = fUQL + fv?

for + = 1,2, where v; is the component of the

In other words, the balls exchange the velocity
components parallel to the center line L and re-
tain the orthogonal components.



We note that the laws of elastic collision 1mply
preservation of the total kinetic energy 3 m||v;]|%/2
and the total momentum ) mu; of the system of
n balls. We also note that a collision of two hard
balls with centers q; and g9 can only occur if

dist(q1, q2) = 21, d.e. |lq1 — @|* = (2r)*.

The system of n balls moving in the open space
without walls 1s dynamically not very interesting.
As it is intuitively clear (and proven mathemati-
cally), the total number of collisions between balls
is always finite, and after the last collision the balls
will fly freely forever. Furthermore, the number
of collisions between n balls in the open space is
uniformly bounded by a constant M that only de-
pends on n. This last fact was proved very recently
—1n 1998 — by Burago, Ferleger and Kononenko.
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Let us consider n balls enclosed in a bounded
domain R, called a container (or reservoir).

The balls collide elastically with each other and
with the walls of the container. Precisely, it a ball
with center ¢ hits a wall at a point w € dR, then
we decompose 1ts velocity vector as v = vV + UL,
where vV is the component parallel to the line pass-
ing through ¢ and w, and vt s perpendicular to
that line. The new, outgoing, velocity of the ball
is 02V = ¢+ — Y. Note that this rule preserves
the total kinetic energy of the system, but not its

total momentum.

Now we reduce the system of n hard balls in a
container R to a billiard. We denote by

q; = (qz-l, %27 q?) the center of the ¢th ball and by
v; = (v%,v?,v?) its velocity vector, 1 < i < n.
Now the entire system can be described by a con-

ficuration point
I 2 1 2
q = (Q17 q1, qzlga 9, - - -5 dn, C]%) S Rgn
and 1ts velocity vector

v = (U%,U%,U%,U%, . ,v%,v%) c R, (1)



We note that ¢ € R = R x --- x R. It is also
important to observe that not the entire region R"
is available for the configuration point q. By the
rules of elastic collisions, the balls cannot overlap —
the moment they bump into each other, they col-
lide. This rule requires exclusion of configurations

that satisty

(4 — aj)* + (a; — @) + (¢) — q))” < (2r)° (2)
for some 1 < i < j < n (here r is the radius of
the balls). The inequality (2) specifies a spherical
cylinder in R?™, which we denote by C, ;. For the
model of hard disks on a plane, we get a circular
cylinder C;; n R?™. The cylinders Cij, 1 <1<
7 < n, contain all forbidden configurations of the
balls (disks), hence they must be removed from
the available space. As a result, we get a smaller
domain

Q = R"\ U;;Cyj
This domain () is called the configuration space
of the system.



Now one can check by direct inspection (it is a
rather tedious exercise) that the trajectory of the
configuration point ¢ in () is governed by the bil-
liard rules:

g=v and 0=0 (3)
where dots indicate the derivative with respect to

time. When ¢ € 9@, the velocity v of the particle
changes discontinuously, according to the classical
rule the angle of incidence 1s equal to the angle
of reflection. So, the new (outgoing) vector v is
related to the old (incoming) vector v— by

vy = v— — 2(v—, n(g))n(q). (4)

Specular reflections at the surface of a cylinder
C;; correspond to collisions between the balls ¢ and
9. Thus, the study of the mechanical model of n
balls or disks is reduced to the study of billiard
dynamics in the domain (). We note that the con-
servation of the total kinetic energy >, m||v;]|?/2
is equivalent to the preservation of the norm ||v||
of the velocity vector (1).
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The singularity set I'* contains all intersection of
the cylindrical surfaces 9C';; with each other. Such
intersections correspond to simultaneous collisions
of three or more balls. The outcome of such multi-
ple collisions is not defined. It is our general rule,
though, to ignore billiard trajectories that hit I'*.

The gas of hard balls is a classical model in statis-
tical physics. Its study goes back to L. Boltzmann
in the XIX century. Many physical laws have been
first established for gases of hard balls, and then
experimentally verified for other gases. Boltzmann
was first to state the celebrated ergodic hypoth-
esis. He assumed that gases of hard balls are, in
general, ergodic and used this assumption to justity
the laws of statistical mechanics (on a “heuristic”
level). Since then, it remains a major challenge for
physicists and mathematicians to prove this hy-
pothesis, as well as to make use of the ergodicity
to build the mathematical foundation of statistical
mechanics.



In early sixties, Ya. Sinai studied a specific version
of Boltzmann’s model — the gas of n hard balls (or

disks) on a torus Td, d > 2. In that case the
container R is a torus, so there are no walls (i.e.,
OR = ()). Hence, the balls only collide with each
other. Therefore, in addition to the total kinetic
energy, the total momentum is conserved. Sinai
conjectured that if one sets the total momentum to
zero and fixes the center of mass, then the resulting
reduced system would be ergodic.

Attempts to prove the Boltzmann-Sinai conjec-
ture spanned almost 40 years, and they had a col-
orful and sometimes dramatic history. It appears
that the problem is almost solved by now due to
very recent works of N. Simanyi and D. Szasz (1999,
2000). But that solution is beyond the scope of
these lectures.



Estimates for the number of reflections.
Here we consider the following problem: given a
piece of a billiard trajectory of length L, how many
reflections at 0(¢) can be there on that piece? In
particular, can the number of reflections, n, be in-
finite? It is not difficult to prove that n < oo with
probability one. But, from the geometric point of
view, one would like to know if n can ever be infi-
nite, and how large n can be. These questions also
arise in the studies of ergodic properties of billiards.

We start with a simple case - a billiard trajectory
moving between two lines, [; and [, which inter-
sect at a point A at angle o > 0. We call () the
(infinite) domain bounded by these lines. When
the trajectory hits either line, say [y, it gets re-
flected, but its mirror image across [y will continue
moving straight on the other side of [{. We will fol-
low that mirror image, rather than the trajectory
itself.



It will continue moving in the domain ()1 that is
the mirror images of () across the line /1. When
our trajectory hits the other line [y, its mirror im-
age also hits the other side of the domain ()1, etc.
We will keep reflecting the domains (); across their
sides and following the straight line made by the
mirror images of our trajectory. This will look like
a mirror room in an amusement park, with multi-
ple reflections in different mirrors.

Figure 1: The unfolding of a billiard trajectory.

It is clear from Fig. 1 that the total angle made
by the unfolding images ()1, @9, ..., between the
first reflection and the last one, cannot exceed
hence

T
n<—+1
8
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This simple estimate gives an upper bound on
the number of reflections in (). We note that this
bound is uniform, i.e. the same for all billiard tra-
jectories in ().

The above estimate has a multidimensional ver-
sion. Suppose that several hyperplanes in IRd, d >
2, intersect at one point A, so that they make a
“polyhedral angle” with vertex at A. Ya. Sinai
proved in 1978 that the number of reflections ex-
perienced by any billiard trajectory inside such an
angle is uniformly bounded, the bound only de-
pends on the configuration of the hyperplanes.

It is more diflicult to estimate the number of re-
flections in billiard domains with curvilinear bound-
ary. Here we have two distinct cases. One is a bil-
liard domain () with a convex boundary, such as
a disk on a plane or a ball in RY. Near a convex
boundary 0@, a short piece of trajectory clearly
can experience arbitrary many reflections. This
happens when the velocity vector v at a point of
reflection ¢ € 9() is almost tangent to the bound-

ary 0Q).
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Such a trajectory would simply “slide” along 0Q)
experiencing many “grazing” collisions with 0(¢) in
rapid succession.

It 18 even possible to construct convex billiard
tables Q C TR? where a short piece of trajectory
experiences infinitely many reflections accumulat-
ing at a point of 0() where the curvature van-
ishes. Such “anomalous” examples were found by
Halpern (1977).

On the contrary, when the boundary of () is con-
cave (i.e., convex inward), the number of reflections
can be well bounded. To picture a billiard table
with concave boundary, take a polygon and bow
each side inward a bit. Or recall the table on a
torus where a disk 18 removed.

It 1s clear that near one smooth concave piece
of () any short billiard trajectory can only have
one reflection. Consider now a corner point, i.e.
a vertex A where two (or more) concave pieces of
0() meet. Estimates on the number of reflections
near such corners have been extensively studied
by Galperin (1981), Vasserstein (1979) and oth-
ers. Here we present the most general estimate ob-
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tained by Burago, Ferleger & Kononenko in 1998.

To define a corner point with concave walls in
]Rd7 one can consider finitely many closed convex
subsets B; C ]Rd, v = 1,...,n, whose boundaries
are C1 hypersurfaces and define a billiard domain
by

Q =R\ (UL, B)) (5)
It 1s clearly enough to assume that
B:=QnN(NBi) # 0

and consider short billiard trajectories near B (the
set B plays the role of a vertex).

For any two points X,Y € () we denote by
T(X,Y) the piece of billiard trajectory starting at
X and ending at Y (if one exists), and by |T'(X, Y]
its length. The following lemma compares |T'(z, y)|
to the distance from X and Y to the “bottom of
the corner” — the set B.

Lemma [Comparison Lemmal. For every
X,Y €Q and every A € B

(XAl +[AY| > |T(X,Y)]
Inequality 1s strict if one of the reflections oc-
curs at a strictly concave part of the boundary

of Q).
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Theorem [Galperin, Vaserstein]|. For any
billiard trajectory of finite length in () the num-
ber of reflections is finite.

Proof. Assume the opposite — a trajectory 1" start-
ing at X € () has infinitely many reflection points
that accumulate at a point A € B (if A ¢ B, we
can remove some B;’s from our construction). Let
X1, X9, ...bethepoints of reflection, and X, — A
as ¢ — 00. Clearly the length of the straight seg-
ment XA is smaller than the length |T'(X7{, A)|
of the entire trajectory between X7 and A. There-
fore we can find X sufficiently close to A so that
| X1A| + |AX | < |T(X7, X})|, which contradicts
to the comparison Lemma. ]

A uniform bound on the number of reflections
requires some extra conditions on the billiard do-
main. Indeed, if a corner point A of a planar bil-
liard table @ C R? with concave boundary is a
cusp, 1.e. made by two concave curves tangent to
each other at A, then a short billiard trajectory can
experience arbitrary many reflections near A, see
Exercise IV.2.2. Therefore, some sort of transver-
sality of B;’s at their intersection B is necessary.
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Such a condition was found by Buraro, Federer and
Kononenko (1998):

Definition. A billiard domain () given by (5) is
nondegenerate in a subset U C RY with constant

C' > 0if forany I C {1,---,n} and for any y €
(UNQ)\ (NierBi)

dist(vy. B
max : 15 <y7 k) 2 C
kel dist(y, N;je1B;)

whenever N, B; 1s nonempty.

Roughly speaking, this means that if a point is

d-close to all the walls from I, then it is d/C-close
to their intersection.
Theorem. Let a semidispersing billiard () be
nondegenerate i an open domain U C RY.
Then for any point x € U there exist a num-
ber M, < oo and a smaller neighborhood Uy of
x such that every billiard trajectory entering Uy
leaves it after making no more than M, colli-
stons with the boundary 0Q).
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Let x = (r,¢) € M and Tz = (r{, ¢1). Denote
by 7 = 7(x) the return time (travel time) between
r and Tx, and by K = K(r) the curvature of
the boundary 0@ at r (so that the angle between
normal vectors n(r) and n(r + dr) equals K dr +
o(dr)). Similarly, we put K; = K(r1). Remember
our conventions on the signs of curvatures.

A detailed (but elementary) geometric analysis
oives the derivative of T":

D 1 TK 4+ cos ¢ T
U cosy \ TKK; + K cos ¢y + Kycos¢p 7Ky + cos ¢y

Note that, since cos¢; # 0 and cos¢ # 0, this
matrix is defined and is nonsingular. Also, since
the first derivative of 1" involves the curvature K
of Q) (related to the second derivative of I';’s),
then the smoothness of 1" is only ck—1

16



We now want to estimate the mean free path, i.e.
the asymptotic of value

7(z) = lim T(x)+7(Tx)+ -+ 7_<Tn_1$>

By the Birkhoff ergodic theorem, the value 7(x)
exists a. e. In M and its average value 1s

r o /MT@;) dv(z) = /MT@;) dv(z) (6

If the billiard map 7" is ergodic then, the function
7(x) is constant almost everywhere, and it equals

ﬁ |

Q-S| .
p (7)

Q[ |BI ]|
It depends on the volume of () and the surface area
of its boundary, but not on its shape.

In particular, for planar billiards d = 2, we have
S| = 2r, |BY = 2, hence the formula (7) turns
very simple:

T =

T=n (8)
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The formula (7) is well known in geometric prob-
ability and integral geometry. Its planar version
(8) is often referred to as Santalé formula, since it
was first given in Santald’s book (Integral geometry
and geometric probability, 1977).

For example, consider again a billiard table () on
a unit torus T2 where a small disk D of radius 7 is
removed. Clearly, for small r the billiard particle
can move freely for a long time between collisions
with the disk D, and the function 7(x) can take
arbitrarily large values. The Santalé formula (8)
gives its mean value:

(1 —nr?)  1—ar?

o —
2T 2r

: : : 1
i.e. the mean free path is asymptotically equal 5-
as v — 0. We will see later that the map T’ is
ergodic in this example, so that 7(z) = 7 almost
everywhere.
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As a far more complicated example, consider a
system of N hard balls on a unit (d-dimensional)
torus. It reduces to a billiard in multidimensional
domain () whose boundary consists of cylinders
(note: dim@) = Nd). The mean free time be-
tween collisions can now be estimated by (7). This
requires computing the volume of () and surface
area of its boundary. This is a difficult but feasi-
ble job, which was done by Chernov (1997). Quite
remarkably, the final expression coincided with the
classical Boltzmann’s formula for the mean inter-
collision time used in statistical physics for decades.
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Measure Preserving Maps

(X,0,u), (Y,S,v) measure spaces
Themap T : X — Y 1is measure preserving if

BeS = T YB)e© and u(T"YB)) =v(B).

The following is a simple but useful method of
checking that a map is measure preserving.
Proposition. Let (X,0,u) and (Y,S,v)
be probability spaces and Sy C S an alge-
bra that generates S . If T B) € O and
wW(T~YB))=v(B) forall BeSy, then T is
measure Preserving.

Proof. Let S be the family of sets B € S such
that T7HB) € O and p(T~Y(B)) =v(B). It
1S easy to see that S isa o—algebra, and it
obviously contains Sy. Then S D S. Hence
BeS implies T HB) € O and pu(T 1(B)) =
v(B). ]

Examples:

1. Translations of T". Forany k = (ky,...,kn) €
T" define the translation L : T"™ — T" by

Lk<$17 T 756%) — (klﬂ?l, T akn$n>
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2. Linear maps of T". Define a map 7 : R" —
T" =85 x... xSt by

w(t, ... tn) = (™0

Clearly 7(z) =7(y) <= x—y € 4" and

m(Z™) ={(1,...,1)}.

Given a linear isomorphism 7 : R® — R"
such that T (Z™) C Z", or, equivalently, whose
matrix in the canonical basis has integral compo-
nents, there exists 7 : T" — T" such that
moT = Tox. The map T is defined by taking, for
each peT", apoint z € 7 4p) and setting

T(p) = [T (x)).
This definition is consistent because if y € 7~ 1(p)
is another point, then = —y € Z" hence T (x —
y) € Z", andso w[T(y)] = n[T(z)].

T is called the linear lifting of the linear map T
to the covering space IR™.
Proposition. The Lebesque probability on T"
15 1nvartant under all translations. Moreover, it
1S the unique probability on the Borel o—algebra
of T" with this property.

The Lebesque probability on T" is invariant
under every linear map of T".

627T’itn>.
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3. Bernoulli Shifts. Let X be a compact metric
space. Let B(X) denote the space of double-
sided sequences 60 : Z — X endowed with
metric

where k£ > 1 1is a constant and dy the metric
on X. Observe that, in this metric, a sequence
of sequences {60,} € B(X) converges to a
sequence ¢ € B(X) if and only if it converges
componentwise, 1.e.
nli>moo On(3) = 0(J)

for all j € Z. Hence the convergence is inde-
pendent of the constant k£ > 1 used to define

the metric d. The shift o : B(X) — B(X)
is defined by
(60)(n) =60(n+1)

Clearly o i1s a homeomorphism. When X 1is
a finite set, X = {1,...,m}, then we denote

B({1,...,m}) simply by B(m).
Given Borel sets Aq,..., Ay, In X and j € Z
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we define a cylinder C(j, Ag, ..., Am) by
{0 B(X)|0(j+1) €A, 0<i<m}.

Finite disjoint unions of cylinders make an algebra
that generates the Borel o—algebra of B(X).
Moreover, given a probability g on the Borel
o—algebra of X, there exists a unique probability
u on the Borel o—algebra of B(X) (called the
product measure associated with ) such that
for every cylinder:

wCG, Ao, -, Am)) = [ [ o(4))  (9)
i=0

The existence and uniqueness of 1 can be deduced
following a construction similar to that of Lebesgue
measureon R™ or T". Moreover, j isinvariant
under o. This follows from the fact p(o~1(C)) =
u(C) for every cylinder C| as it can be checked
by using the above formula, and from the fact that
finite disjoint unions of cylinders make an algebra
that generates the Borel o—algebra of B(X).
Denote by B, (X) the space B(X) endowed
with the probability p. The shift o : B, (X) —
By (X) is called a Bernoulli shift.
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When X is a finite set, X = {1,...,m},
the probability pg is determined by the numbers
p; = po({¢}) and in this case By, ({1,...,m})
is simply denoted by B(py, ..., pm).vspace.2cm

In a similar way we define BT (X), the space of
one-sided sequences 6 : ZT — X endowed with

the metric
O

1
(o, 8) = ), 7 dola(n), B(n))
n=0
where k > 1. The one sided shift o : BT(X)
BT(X) is defined also by the formula (c8)(n)
O(n+1), but nown > 0. The map o on BT (X) is
only a continuous surjective map, and not a home-
omorphism. If pg 1s a probability on the Borel
o—algebra of X, a product measure g on
the Borel o—algebra of BT(X) is defined by
the same formula for cylinders C(j, Ag,- -+, Am)
with 7 > 0. Again p turnsout to be o—invariant.
Then B, (X) and B (p1,...,pm) are defined

as 1n the previous case.

[
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4. Volume Preserving Diffeomorphisms. Let U
and V be open sets of R". We say that a dif-

feomorphism f : U — V' is volume preserving
if |det f/(z)] =1 forall x € U. Then

A(f7H(A)) = A(A4)

for every Borel subset A C V For every open
set A C IR™ with A(OA) = 0 (which implies
AOf~L(A)) = 0) we have

A ) = [l ds = [(ces)da -
/ (xa 0 f)ldet f/| d = / xa@)dz = AA)

(fourth identity is obtained by change of variables).
So the desired formula holds, in particular, when
A isacube. Then we take a covering of V' by dis-

joint cubes ()1, ()2, - - - and define the o—algebra
O of all the Borel sets A C V' such that

MTHANQ;) = MANQ;) for all 4.
This is a o—algebra that contains the subalgebra

of disjoint unions of cubes. Hence O is the Borel
o—algebra and the formula is proved.
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Poincaré Recurrence Theorem

We deal first with a probabilistic version, which
makes no reference to topology.
Theorem. Let T be a measure-preserving
map of a probability space (X,0,u). Given
A€ O, let Ay be the set of points x € A such
that T"(x) € A for infinitely many n > 0.
Then Ay belongs to O, and u(Ag) = u(A).

Proof. Let Cp = {x € Al TI(z) ¢ A for all
j > n}. It is clear that

Ay =A\U,21Ch

Thus, the theorem will be proved if we show that
Cp € O and u(Cp) = 0 for every n > 1.
Observe that

Cp = A\ Uj>, T7(A) = Cp € O, and
Cp C UjsT 7 (A)\ Uj», T (A). Since
UjznT (A) = T™"(Uj20T~(A)

we obtain that
(U T (A) = u(Uj0T ™7 (A))
This implies u(Cy) = 0. (]
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In order to state the topological version of the
recurrence theorem, we need the notion of w—Ilimit
set of a point under a map. Let X be a topological
space and T : X — X a map. We define the
w—limit set of a point z € X as the set of points
y € X such that for every neighborhood U of y
the relation T™(x) € U holds for infinitely many
positive values of n. If X 1is a metric space, this
1s equivalent to saying that

lim inf dist (T"(z),y) =0

n—od

Theorem.Let X be a separable metric space
and T : X — X a Borel-measurable map. Let
1 be a T-invariant probability measure on the
Borel o—algebra of X. Then u({x : x &
w(x)}) =0. In other words, almost every point
1S recurrent.

Proof. Let {Up} 2, be a basis of open sets
such that

hm dlam Un — O Un>mUn — X

n—oo
for every m > 0.
Let U, = {z € Uy TJ(z) € U, for infinitely
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many positive values of j}. From the preceding
theorem

(Un \ Up) = 0.
Put i i
X = ﬂ%):o Un>m Un
It follows that

p(X O\ X)

/L(U%):O(X \ Uanﬁn» ~
U —o(UnzmUn \ Un>mUn))
/L(U%O:() Un>m (Un \ Un))

0

Thus we only have to show that z € X implies
r € w(x). Let r > 0. Choose m such that
diamU, < r/3 if n > m. Since x € X
it follows that x € Uanf]n. Thus there exists
n > m such that z € U,. Since diamU, <
r/3, it follows that U, C By(x), which implies
that TY(z) € By(z) if TI(z) € Uy,. But since
x € Uy, TV(z) € Uy, for infinitely many values of
7, showing that = € w(x). O

A
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Existence of Invariant Measures

Let X be a compact metric space and O
its Borel o—algebra. The set m(X) of proba-
bilities p© : O — [0,1] admits a topology that
is metrizable. With this topology m(X) be-
comes a compact space. Then every continuous
map 1 : X — X has at least one T-invariant
probability, i.e. a probability © € m(X) such
that w(T71(A)) = u(A) forall A€ O. If T is
not continuous it may happen than there is no 7-
invariant probability measure, see Exercise 1.4.5.
If T" is continuous the most frequent situation is
when T has infinitely many invariant probabilities.
When T has only finitely many invariant probabil-
ities it is clear that is has only one (because if it has
two, @1 and puo, then all the linear combinations
A+ (I —XNpug, 0 < X <1, would be invariant
probabilities).

Given a continuous map T, denote by mp(X)
the set of T-invariant probabilities.

Theorem [Bogolyubov-Krylov]| m7(X) s
non-empty.
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The Equivalence Problem

The natural notion of equivalence between two
measure preserving maps is given by the following
definition.

Definition. We say that two measure preserv-
ing maps 1;, ¢ = 1,2, of two measure spaces
(X5, O;, 145), 1 = 1,2, respectively, are
equivalent if there exists a measure preserving map
F' taking (X7, O1(mod 0), 1) into

(X9, Oo(mod 0), o) satisfying

(a) F' is invertible, ie. 3 G : X9 — X, measur-
able, such that GF(xz) =z for a.e. x € X;
and FG(y) =y forae y € Xo.

(b) F preserves measure, i.e. ui(F~YA)) = us(A)
(mod 0) for every Borel A C Xo.

(C) ToF = FT7 forae. x € Xy.

Observe that (a)-(b) imply that G is a measure
preserving map of (Xq, 09, u9) into (X1, 01, u1),
and, by (¢), G'To = TG almost everywhere.

Hence, the equivalence is symmetric. Clearly it is
transitive and reflexive, so it is a true equivalence
relation.
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One of the aims of ergodic theory is to classify
measure preserving maps modulo this equivalence
relation. One of the methods for this analysis con-
sists in associating with a measure preserving map
T:(X,0,u) — (Y,S,v) a linear operator Urp :
L2(Y) = L2(X) defined by

Urf=foT.
The fact that T preserves measure implies that
Ur is a unitary operator, i.e., denoting by (-, -)
the inner product in £2 we have

{Urf.Urg) = (f,9)
for every f,g € L2(Y).
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Ergodic Theorem of Birkhoff-Khinchin

Birkhoff-Khinchin theorem deals with the distri-
bution of the orbits of a measure preserving map
T of a probability space (X,O,u). In order
to study how an orbit {z,T(z),T%(z),...} is
asymptotically distributed in X we introduce the

sojourn timeof x inaset A€ O by

(2 A) = lim =40 <m < n|T™(z) € A}

n—oon
Birkhoff’s Theorem states that this limit exists for

a.e. x andthat 7(x,A) is an integrable function
of & whose integral is given by

/ (2, A) du(z) = u(A)
X

Moreover, as a tfunction of x, 7 1s T-invariant,
1.e.

T(x,A)=7(T(x),A)  ae.
This motivates the following definition: 1' 1is er-
godic if all the T-invariant functions are constant
a.e. Then, if T is ergodic , for a.e. = we have:

T(x, A) = p(A)
This remarkable conclusion poses the problem: de-
velop methods to decide when a map T’ is ergodic.
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Moreover, when X 1s a compact metric space
and T : X — X 1s a continuous map, there al-
ways exist ergodic T-invariant probabilities on the
Borel o—algebra of X. They are important in
the analysis of the dynamics of T.

An interesting example of an ergodic measure
preserving map is the map 7T : [0,1] — |0, 1]
given by T(x) = 10z — [10z] . This map pre-
serves the Lebesgue probability A on [0,1] and is
ergodic. A direct consequence of its ergodicity
is the following important fact in number theory.
Write x € [0,1] in decimal representation z =
0.apgajas ... and let Np(z,7) be the number of
times that the digit 0 < 5 < 9 appears in the
string [ag...an,—1]. Then, for a.e. z € [0, 1]

.1 , 1

This is a consequence of the ergodicity of 1" be-
cause ay, = j if and only if T™(x) € [j/10, (j +
1)/10). Then, for a.e. x :

lim ~ Na(z, ) = 7(z,[j/10,(j + 1)/10))

= A(l7/10, (5 + 1)/10)) = 1/10.
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More subtle is a similar property for continued
fractions. Every irrational number x € (0,1) can
be written in a unique way as a continued fraction
1

1

T =
ao +

|

a1—|_ T
CLQ—Fj

where aq,aq,... arepositiveintegers. Let Pp(x, k)
be the number of times that k& appears among
ap,...,ap—1. Then, fora.e. z € (0,1)

1 1 1
lim — P, k) = ——log(1

n—oon log 2
The proot of this property requires first transform-
ing Pp(z,k) into a sojourn time. This is done

with the help of the Gauss map T : [0,1] — [0, 1]
defined by

T(SB){%_[%] itz #0

0 if =0
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Theorem [Birkhoff-Khinchin| Let (X, O, u)
probability space; T : X — X preserves i,
f: X — IR ntegrable function then

the limit  f(z):= lim —Zf (TV(z)) (10)

exists for a.e. T € X, f (the time average of
f. ) is T-invariant, integrable, ||fll1 < ||fll1,

/deu:/deM, and

—1
N .
ngmoo/Xf n§ O:foT di =0
]:

Sojourn times are time averages because

n—1
B0 <j<n: Tiz) e A} = 3 xaTi())
=0
n—1
(e, A)= Tim — 3" xA(TV(@) = $a(a)
1=()

Hence we have

/T(fE,A) dp(z) = /fmduz /XAdM:M<A)-
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Ergodic Hierarchy

It can be proved that a measure-preserving map
T of a probability space (X,O,u) is ergodic if
and only if, for every A, B € O

—1

1% -

1 —j B

Jdim — > u(TI(A)N B) = p(A)u(B)
=0

In this case, if the limit of w(T~7(A)NB) asj —

oo exists, its value must be equal to u(A)u(B).

Definition. A measure preserving endomorphism
T of a probability space (X, O, u) is said to be
mizing if for any pair A, B € O
: —MN
Mim p(T7(A) 0 B) = p(A)u(B)

Caipirinha. A pictorial example in the classical
book by Arnold and Avez explains what a mixing
map does. Suppose a cocktail shaker M, u(M) =
1 is filled by 85% of cachaa and 15% of lemon
juice. Let A be the part of the cocktail shaker
originally occupied by the juice and B any part
of the shaker. Let T': M — M be the transforma-
tion of the content of the shaker made during one
move by the bartender (who is shaking the cocktail
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repeatedly). Then after n moves the fraction of
juice in the part B will be pu(T"(A)NB)/u(B).

As the bartender keeps shaking the cocktail (n —
00), the fraction of juice in any part B approaches
u(A) = 15%, i.e. the lemon juice will spread uni-
formly in the mixture.

We note that the definition we gave for a mixing
map is good for both invertible and noninvertible
maps (endomorphisms).

Proposition. Any mizing map is ergodic.

Proof. Let A be any T-invariant measurable
set, then T "™(A) = A and (AN B) =
limp o0 (T "(A) N B) = p(A)u(B). In par-
ticular, for A= B we have u(A) = pu?(A). This
means (A) =0 or 1, hence T isergodic. [

We note that not all ergodic maps are mixing,

see Exercise 11.4.1. Therefore, mixing is a stronger
property than ergodicity.
Definition. If X is a topological space, a trans-
formation T : X — X 1is topologically mizing
if for any pair of open sets U,V C X there ex-
ist N € IN such that T~™(U)NV # 0 for all
n > N.
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Proposition. If X s a topological space,
O is the Borel o-algebra and p a probability
measure positive on open sets, then whenever
T : X — X 18 miwxing, 1t 1S also topologically
MATING.

Proof. Since, for any open sets U,V we have
limp oo p(T-MU) N V) = pU)p(V) # 0 it
results that, for all n > N, u(T~"™(U)NV) #£ 0,
hence T7™(U)NV #£0. []

Definition. A measure preserving automorphism
T of a probability space (X, O, ) is Bernoulli if
it is equivalent to a Bernoulli shift (the shifts can
be defined on a probability space).

Ergodic hierarchy (discussed in Mané’ book):
Bernoulli = K — mixing = Mixing = Ergodic

(11)
Each word in this row represents the set of measure
preserving maps of a probability space (X, O, u)
that satisty the corresponding definition.

All the implications in (11) are one-way only,
none can be reversed. This means that ergodic-
ity does not imply mixing, mixing does not imply
K-mixing, etc.
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Statistical Properties of Dynamical Systems

For those familiar with probability theory: In the
language of probability theory, a Bernoulli shift
represents a sequence of independent random vari-
ables. This immediately follows from the formula
that defines the product measure. For this reason
the Bernoulli property is regarded as a statisti-
cal property of a dynamical system. It establishes
an equivalence between a dynamical system and a
purely random sequence of independent trials - a
canonical model in probability theory:.

This a a very interesting and important observa-
tion. A dynamical system 71" : X — X 1is, by na-
ture, completely deterministic. This means that if
you have a point z € X, its entire future {T"x},
n > 1, 1s uniquely determined and can be com-
puted precisely. When the map T is invertible,
the past {T"x}, n < —1, is uniquely determined
and computable, too. One can look at it this way:
knowing the present state of a dynamical system
(given by x € X)), one can determine its future
and, often, its past. This is the precise meaning
we give to the word “deterministic”.
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On the other hand, in a sequence of indepen-
dent trials the outcome of any trial gives no clue
of what the outcomes of other trials would be (or
have been).

While the Bernoulli property is a manifestation
of randomness or chaoticity, strangely, it has lit-
tle relevance to direct physical applications. Why”?
Because the equivalence between a dynamical sys-
tem and a Bernoulli shift is, usually, given by just a
measurable map with a very complicated structure,
not at all smooth or even continuous. In physics,
on the other hand, the laws of motion are usually
specified by differential equations (like Newton or
Hamiltonian equations), and all interesting func-
tions (such as temperature, energy, pressure) are
smooth as well. Hence, only the properties of dy-
namical systems expressed by smooth maps and
smooth functions are relevant in physics.

For these reasons, assuming that X is a manifold,
T : X — X asmooth map preserving a probabil-
ity n and f : X — IR a smooth function, one can
characterize the system in a physically meaningtul
way as follows.
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Consider
Sn=f+foT+foT?+---+ foT" ! (12)

The quotient Sy /n is called the time average of
the function f. Adopting physical notation, we
denote by (-) the expected value of a function with
respect to p, e.g. (f) = [y fdp. The integral (f)
is also called the space average of f.

Now the Birkhoff Ergodic Theorem asserts that
if T'is ergodic, then Sy, /n converges almost every-
where to (f) as n — oo. In physical language, it
means that time averages converge to space
averages. In probability theory, this fact is also
called the strong law of large numbers.

An important characteristic of a dynamical sys-
tem is the time correlation function

Crn) = (f-(foT™) = (f)°.  (13)
[f the map T is mixing, one can show that C'r(n) —
0 as n — o0, l.e. the correlations decay, as physi-
cists call it. The asymptotic speed of convergence
C't(n) — 0 characterizes the “speed of mixing” in
the system.
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Next, we say that f satisfies the central limit
theorem it

nlimoo”{ Sn<$>\/%n<f> - Z} _

1 z 52
/ e 202ds for all —oco < z < 00.
20 J—o00
(14)

o=o0r2>0, Of Cf +QZC’f

Equation (14) is equivalent to the convergence of
(Sp—n{f))/+/n in distribution to the normal ran-
dom variable N (0, 0%). The central limit theorem
is considerably more refined than the Birkhoft Er-
oodic Theorem: the distribution of the deviations
of the time average Sy, /n from its limit value (f),
when scaled by 1/4/n, is asymptotically Gaussian.
It is clear from (15) that the central limit theorem
only holdsif ), |C¢(n)| < co. Actually, the proof
of this theorem requires even a more rapid conver-
gence of C'¢(n) to zero. For these (and other) rea-
sons the speed of that convergence is regarded as an
important statistical characteristic of the system.
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Two main types of convergence are exponential,
when |C'¢(n)| < const-e™%", a > 0 (“most chaotic”,
possess many features necessary for applications in
statistical physics), and
polynomial: |C'r(n)| < const - n"0 b >0 (are re-
garded as being intermediate (“intermittent”) be-
tween “regular” and “chaotic”, and their behavior
is very sensitive to the exact value of the power
b > 0 and other factors).

If one relaxes the requirement that the function
f in (13) be smooth, then one totally loses control
over the decay of correlations. In all known mixing
dynamical systems, the convergence C't(n) — 0 is
indeed arbitrarily slow for generic integrable func-
tions, even for generic continuous functions. So,
the smoothness of f is essential.

Quite surprisingly, for many interesting dyn. sys.
one can actually prove the above central limit the-
orem, and obtain good estimates on the decay of
correlations for smooth functions f. This opens
the door to close interaction between the theory of
dyn. sy.s and prob. th- and statistical mechanics,
which is currently a very active area of research.
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Definition. Lyapunov exponents. f" is dif-
ferentiable at a point p € M for all n € Z. As-
sume%M:El@---@Em(p); if 0#£wv;, € L,

i Slog [(fVuill = M(p) (16

n—=Loo N

Then the values \;(p) are called Lyapunov ez-
ponents at the point p, whose multiplicities are

dim F;.

The existence of the limit (16) is not guaranteed
for any point p € A, we will return to this issue in
the next section. For now, we will say that p has
all Lyapunov exponents if the above limits exist.

If a point p has all Lyapunov exponents and none
of them is zero, we call p a hyperbolic point. For a
hyperbolic point p € M, we have Ty,M = E G Ep,

Eg = @)\Z’(p)<0Ei and Eg = @)\Z’(p)>0Ei (17)

Existence of submanifolds W*(p), W%(p)
dist(f"(y), f"(p)) < Ce ™y € W(p)

and
dist(f " (y), f"(p)) < Ce™™ y € W'p)

for all n > 0 and some constant C' > 0.
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Forward orbits of the points of W¥(p) are get-
ting close to each other (converge) exponentially
fast: W¥(p) is called the stable manifolds (the
term comes from differential equations, where the
convergence of solutions is interpreted as stabil-
ity). Forward orbits of the points of W% (p) get
separated (diverge) exponentially fast: W% (p) is
called the unstable manifold. Note, though, that
the backward orbits of W¥(p) converge, and the
backward orbits of W#(p) diverge.

Orbits of all the points near a hyperbolic point
p are very unstable: diverge (get separated) expo-
nentially fast either in the future or in the past, or
both. If dim W?¥(p) # 0 and dim W%(p) # 0; y
close to p not exactly lying on W% (p) or W*(p),
the trajectory of y separates from that of p both
in future and in past! Exponential separation of
trajectories is the main source of instability, tur-
bulence, mixing — all that we call chaos.

J. Hadamard (around 1900): hyperbolicity for geodesic flows on manifolds of
constant negative curvature. J. G. Hedlund and E. Hopf (1930’s): ergodic proper-
ties of these flows. Based on the studies of geodesic flows, in the 1960s D. Anosov

(S. Smale, in a different form) introduced general classes of diffs with hyp. points.
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Theorem|Oseledec| Assume that the map f :
N — V preserves a Borel probability measure

pon M and p(H) = 1. If
| 108" 1=l dutp) < o

where log™ s = max{log s,0}, then there exists
an f-invariant set £ C H, p(E) =1, such that
for every point p € E all the Lyapunov expo-
nents exist.

For p € T we denote by A\j(p) < Ag(p) < -+ <
)\m(p) (p) all distinct Lyapunov exponents and by
Ei(p),...,E, \(p) the corresponding subspaces

m(p)
in the tangent space TpM. For any real number

k € R and p € I' denote

Epr = Onp<nlild) By =0y p)>xLilP)
Remark. Oseledec’s theorem also includes the
following fact, which we state separately. Let vx(p)

denote the angle between the spaces £, . and E];t .

Then .
lim —logyx(f"(p)) =0 (18)

n—+oo N
i.e. the angle v.(f™(p)) slowly changes with n

(more slowly than any exponential function).
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We now make two additional assumptions made
by Katok and Strelcyn:
(KS1) There are constants C; > 0 and a > 0
such that for all € > 0 the p-measure of the e-
neighborhood of S satisfies

n(Ue(S)) < Gy e”

1.e. the measure p does not build up too much near
the singularity set S.
(KS2) There are constants Cy > 0 and b > 0 such

that for everyx € N andv € TN, ||v|| < r(x, N)
we have

| for(w)ll < Cod(expy(v), 5)~°

i.e. the second derivative f. . does not grow too
fast near the singularity set .S.

The set of all hyperbolic points in /N is often
called the Pesin region of f: X(f) =

{x € H:\j(x)#0, foreveryt=1,...,m(x)}

Pesin region ¥(f) is invariant under f. At z €
>(f) we have the usual subspaces E7 and EY; let

AT (z) = min{\;(z) > 0} and

A (z) = max{\;(z) < 0}
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Theorem. For p-almost every x € X(f) there
ts a (small) neighborhood N,y such that for
any small € > 0 the set

W?(z) = {y € Ns(z)

lim supllog dist(f"(x), f"(y) < A (z) + &}

n—oo N

is a C" differentiable (stable) manifold.
Similarly, Wu<£8) = {y c N5<x>(0):

lim inf — log dist(f"(z), f(y)) > AH(z) — £}

n——00 N
is a C" differentiable (unstable) manifold. We
also have

TW3x)=F, and T ;W% )= E}
and the angle v(f"x) between E;}imx and E}‘mx
satisfies

W) 2 Oz, e)e ™!

Stable and unstable manifolds can be efficiently
used in the study of ergodic properties of the map
f. Let B C H be an f-invariant set such that
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pu(B) > 0. Then the map fp := f|p (the restric-
tion of f to B) preserves the probability u g, which
1s obtained by conditioning the measure p on B.
We recall that the map fp: B — B is ergodic ift
every function ¢ € £!(B) that is fp-invariant is
constant almost everywhere on B.

A classical method to construct a set B on which
the map fp is ergodic (with respect to the measure
1 p) uses stable and unstable manifolds and goes
back to E. Hopf. Take any point x € ¥(f) and
its stable and unstable manifolds W#(z), W% (z).
Let g be an f-invariant function, and assume, for
simplicity, that it is continuous on M (integrable
functions then can be approximated by continu-
ous ones, but this step 1s purely technical, and we
omit it). Then one can show that g is constant on
Wh(z) U W5(x), see Exercise I11.3.3. Since this
fact applies to any other point of the set >(f) as
well, we can proceed as follows. Start by fixing
r € 3(f) and construct a set By (a first approx-
imation to B) as the union of all unstable mani-
folds Wt(y), y € W#(x), and all stable manifolds
W3(z), z € WH(x). The function g then must be
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constant on .
We can defining sets Bj,, n > 2, recursively by

By, =U{W%y)UW?3y): y € Bp_1}

One can easily show, by induction on n, that the
function ¢ is constant on Bj, for each n. We now
put Boo = UpBy,. Clearly, the function g is con-
stant on the entire set By,. Then it is enough to
put

b= U?%O:—oofn<BOO)v (19>
the map fp : B — B will be ergodic and B, is
called an ergodic component of the map f.

One can verify that B consists of all the points
y € 3(f) for which there exists a finite sequence
T = 20,21,---,2L_1,2k = Yy with the property
that for all 0 < ¢ < k — 1 either
Wo(z)) W (2i41) # 0 or W¥(z))NW?(z;11) # 0
(clearly, all z; € Bso). In other words, for any
y € By there is a chain of stable and unstable
manifolds that joins the point y with the original
point x. Such a chain is usually called Hopf chain
or a zig-zag. Now one can say that the set Byg 1S
the union of all Hopf chains (or zig-zags) starting
at .
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Now let us look how big the set By 1s. The
stable and unstable manifolds, W#(y) and W¥(y),
are transversal to each other at any y € X(f), i.e.
the angle between them is positive. Note also that
dim W3 (y)+ dim W"(y) =dim M by hyperbolic-
ity. Assume for simplicity that all the stable and

unstable manifolds W*(y), W¥(y) in a neighb. of
x are large enough, say,

dist(y, OW?(y)) > ¢ and dist(y, OW"(y)) > c

for some constant ¢ > 0 and all y close to . Then
one can prove that the set By, contains an open
neighborhood of x in the Pesin region ¥(f). This
fact is called local ergodicity (or sometimes local
ergodic theorem).

In systems with singularities, though, stable and
unstable manifolds can be arbitrarily short. This
happens for the same reason as why they some-
times fail to exist at all. Hence, Byo may not cover
any open neighborhood of x in X(f), i.e. there
might be some tiny islands left out arbitrarily close
to . But it 1s still possible to show that the set By
has a positive 1 measure. The following theorem
given without proof summarizes our discussion:
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Theorem [Pesin, 1977]. Let u(X(f)) > O.
There exist sets (ergodic components) ¥; C X(f),
i =0,1,2,....J (J < +00) such that

(i) ¥; N Zj =0 fori+#j and U;X; = X(f);

(i) w(Xg) =0 and pw(>2;) > 0 fori > 0;

(11i) f(X) =% fori > 0;

(iv) fls, @s erg. with respect to py,. for i > 0.

Furthermore, for every : > 0 we have
Yi =% U- - UL g4 with some 1 < J(i) < o0
such that

(v) XijNEj g =0 for j #k;

(vi) f(Zij) = Bijy1 for 1 < j < J(i) and
F g@y) = 2i1s

(vii) the map f70) restricted to X 18 K -
mizing for every 1 < j < J(1).

According to a tradition, the partition of X(f)
into the sets 2; ; is called spectral decomposition.

Definition. If u(X(f)) = 1, that is, if the Pesin
region has full measure in N, we will say the map
f 1s nonuniformly hyperbolic, or has

chaotic behavior.
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Piecewise smooth maps. M contained in a
Riemannian manifold of dimension d > 2,

M=BuU---UBf =B U---UB,

BZ-i are compact, int B;—L are connected and dense
n Bii, (9BZ-i are made by finitely many d — 1 di-
mensional submanifolds which overlap at most on
their boundaries. The map ® is defined separately
on each domain B;r, 1 <1 < r, sothat 15 a

CF (k > 2) diffeomorphism of the interior of B
onto the interior of B~ and a homeomorphisms
of B,j onto B, . Then we have N = U; int B;r,
®(N) = U;int B,

1 1s a d-inv. prob. measure abs. cont. w.r. to
the Riemannian meas. on M, with bounded dens.

St = ON the singularity set for the map ®.
S = 0®(N) the singularity set for the map o1,

ST=8TUd M STHU--- U " HST), n>1
is the singularity set for ®", and similarly
S =S5 UPSHU--- U H(S)

is the singularity set for ¢~
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