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Commutative deformation theory

I Consider a contravariant functor F : Schk → Sets . Then a
scheme X is called a fine moduli for F if F ∼= Homk(−,X ),
and the element F ∈ F (X ) corresponding to the identity
Id ∈ Homk(X ,X ) is called the universal family.

I This is because we to each closed point x ∈ X get the
element Fx = F (Spec k

x→ X )(Id) ∈ F (Spec k).

Arvid Siqveland The geometry of noncommutative k-algebras



Porto 2009

Commutative deformation theory

I Consider a contravariant functor F : Schk → Sets . Then a
scheme X is called a fine moduli for F if F ∼= Homk(−,X ),
and the element F ∈ F (X ) corresponding to the identity
Id ∈ Homk(X ,X ) is called the universal family.

I This is because we to each closed point x ∈ X get the
element Fx = F (Spec k

x→ X )(Id) ∈ F (Spec k).

Arvid Siqveland The geometry of noncommutative k-algebras



Porto 2009

Commutative deformation theory

I A fine moduli is unique up to unique isomorphism, but it
seldom exists. This leads e.g to Mumfords definition of a
coarse moduli space. Another possible view is the
infinitesimal, brought to light by M. Schlessinger in his famous
article Functors of Artin rings from 1968.

I We then consider the category ` if local Artinian k-algebras

k
ι //

Id

��>
>>

>>
>>

A

ρ

��
k

with residue field k.
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Commutative deformation theory

I The functor F above defines a covariant functor F : `→ Sets
defined by F (A) = F (Spec A), and choosing one element
M ∈ Spec k, we arrive at the deformation functor
DefM : `→ Sets defined as the fibre functor
DefM(A) = {MA ∈ F (A)|MA,∗ ∼= M}.

I To the category ` we associate the procategory ˆ̀ consisting of
complete local k-algebras Â s. t. Â/mn ∈ ` for all n, and we
extend the functor DefM to ˆ̀ by DefM(Â) = lim

←
n≥1

DefM(Â/mn).
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Commutative deformation theory

I As is proved i Schlessingers article, there is a canonical
isomorphism DefM(Â) ∼= Hom(Hom(Â,−),DefM)), and if
ξ̂ ∈ DefM(Â) induces an isomorphism, Â is said to
prorepresent DefM , and ξ̂ is called a proversal family.

I The canonical example for a scheme X is to put
F = Homk(−,X ) and M = k(x), the residuefield of the
closed point x .

I Then DefM(Â) =
{OX ⊗k Â- modules MÂ|MÂ is flat over Â, MÂ,∗

∼= M}/ ∼,
and by definition, this functor is prorepresented by (ÔX ,x , Id).
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∼= M}/ ∼,
and by definition, this functor is prorepresented by (ÔX ,x , Id).
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Commutative deformation theory

I This example is one of the few where prorepresentablilty exists,
so this also should be ”coarsified”. First of all, in the example
above, Defk(Â) = HomX (Spec Â,X ) ∼= Homk(ÔX ,x , Â) so
that the tangent space of X in x is
(m/m2)∗ ∼= Hom(ÔX ,x , k[x ]/(x2)) ∼= Def(k[ε]).

I So for each pointed (meaning that F (k) is a one point set)
covariant functor F : `→ Sets we define F (k[ε]) as the
tangent space of the functor. In the above example,
Def(k[ε]) ∼= (mx/m

2
x)∗ ∼= Der(OX ,Hom(k(x), k(x))) ∼=

Ext1
X (k(x), k(x)).
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Commutative deformation theory

Definition
(Ĥ, ξ̂) is called prorepresenting hull for F : ˆ̀→ Sets if the induced
morphism φ : Hom(Ĥ,−)→ F is smooth and an isomorphism on
the tangent level. A prorepresenting hull is unique up to
(nonunique) isomorphism.
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Commutative deformation theory

I Smoothness means that for small morphisms

0→ I → R
φ→ S → 0 in `, that is I ·mR = 0, we can lift

according to the diagram

∃ξR ∈ Hom(Ĥ,R) //

��

F (R) 3 MR

��
ξS ∈ Hom(Ĥ,S) // F (S) 3 MS

I To investigate existence of prorepresenting hulls, Schlessinger
starts with the tangent space F (k[ε]), that is
Ĥ/m2 ∼= k[[x1, . . . , xd ]]/m2. He then divides out with the
smallest ideal that gives smoothness on the morphism
Ĥ/mn+1 → Ĥ/mn for each n.
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Commutative deformation theory

O.A. Laudal defines an obstruction theory: If, in addition to a
d-dimensional tangent space, there exists an r -dimensional
obstruction space T 2 that is such that MS ∈ F (S) can be lifted to
MR ∈ F (R) if and only if 0 = o(φ,MS) ∈ T 2 ⊗k I . Then there is
an algorithm constructing

Ĥ ∼= k[[x1, . . . , xd ]]/(f1, . . . , fr ).

(In fact, my thesis was the formulation and application of this
algorithm)
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Commutative deformation theory

I So, if a global functor F : Schk → Sets is representable by a
scheme X , we can use our algorithm to compute ÔX ,x for
each closed point, and generalizing, if we are searching for a
moduli space for objects c, we can compute the hull Ĥ(V ) of
the deformation functor and let this represent the completed
local ring of the moduli space.

I This is the reason for the name local formal moduli. If A is
commutative k-algebra with only finitely many maximal ideals
m1, . . . ,mn, then A ∼=

∏n
i=1 Ami . This is easy to see by

looking into global sections, and is the standard Burnside
theorem.

I A general affine scheme is the sheafification of this fact. So if
m1, . . . ,mn are maximal A-ideals, the ring Al =

∏n
i=1 Ami is a

k-algebra with simple modules Vi = Ami/miAmi
, i = 1, . . . n,

and as such should be called a scheme for the family
V = {Vi}ni=1.
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Noncommutative deformation theory

I The algorithm constructing Ĥ(V ) can clearly be generalized
to right (or left) A-modules when A is not necessarily
commutative. It can then even be generalized to construct a
matrix algebra (Ĥ(Vi ,Vj)) = (Ĥij) with tangent space
(Ext1

A(Vi ,Vj)) for a finite set of right A-modules V1, . . . ,Vn.

I This is called the noncommutative local formal moduli. Our
main reason for the interest of these hulls in the commutative
situation was the trivial fact that a scheme X is the moduli of
its closed points, or even that Spec A is a moduli for its simple
modules.

I The corresponding fact in the noncommutative situation is the
generalized Burnside theorem: If A is finite dimensional, i.e. is
complete and have the finite family of simple right-modules
V = {V1, . . . ,Vn}, then

A ∼= (Hij ⊗k Homk(Vi ,Vj)).
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Noncommutative deformation theory

I In the situation where A is a general associative k-algebra we
have the Jacobson topology on the set of simple right
A-modules Simp(n):

I For s ∈ A we define the basisopen set
D(s) = {V ∈ Simp(A)|ρ(s) is invertible in Endk(V )} where
ρ : A→ Endk(V ) is the structure morphism, the
representation.

I Notice that in the commutative case, we sheafify by saying
that that each function f : U →

∐
p∈U Ap should be locally

regular.

I In the noncommutative case, we sheafify by saying that each
function f : U → lim

←
V⊆U
finite

(Ĥij ⊗k Homk(Vi ,Vj)) is locally regular.

Arvid Siqveland The geometry of noncommutative k-algebras
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Noncommutative deformation theory

Thus, in the commutative case we say that X = Spec A is a
moduli for its closed points because Ĥ(A/m) ∼= Âm for each m. In
the noncommutative situation, the set of finite subsets of Simp S is
a scheme for A because A ∼= (Ĥij ⊗k Homk(Vi ,Vj)) for each finite
subset.

Arvid Siqveland The geometry of noncommutative k-algebras
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Noncommutative deformation theory

For the classification theory, this is the following:

Definition
Let c be a set of right A-modules (or other objects). Then c is
called a scheme for a k-algebra R if the simple right modules of R
is in one-to-one correspondence with c, and if for each finite subset
V of simple modules in R, (ĤR

ij ⊗k Homk(Vi ,Vj)) ∼= (ĤA
ij ) where

ci corresponds to Vi .

Arvid Siqveland The geometry of noncommutative k-algebras
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Example: Torsion free modules of rank one over the E6

curve singularity

In the articles [6],[7] I prove that the morphism from DefF to
DefM where M = F∗ is the localization in the singularity, is
smooth. Thus I can use the theory of DefM to compute the
k-algebras covering the moduli space. Unfortunately, the internet
connection at the hotel was too bad to upload the files, so I cannot
give the example, but it is not too bad.

Arvid Siqveland The geometry of noncommutative k-algebras
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Example: A standard example

In the paper [8] i give the following example: Consider the

2-pointed k-algebra A =

(
k[t11] < t12 > /(t11 − 1)t12

0 k

)
. This

k-algebra has geometric points, i.e. simple A-modules, given by
the line and the point respectively

V1(a) =

(
k(a) 0

0 0

)
, V2 =

(
0 0
0 k

)
.

We are going to compute the local formal moduli ĤV ,
V = {V1(a),V2} of the modules V1(a), V2 for a fixed a, following
the algorithm given in [2]. We start by computing the tangent
spaces:

Arvid Siqveland The geometry of noncommutative k-algebras
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Example: A standard example

In general we have

Ext1
A(Vi ,Vj) = HH1(A,Homk(Vi ,Vj)) = Derk(A,Homk(Vi ,Vj))/Ad,

where the bi-module structure on Homk(Vi ,Vj) is given by
aφ(vi ) = φ(avi ), φ · a(vi ) = φ(vi )a. Notice that by Ad we mean
the trivial derivations adα, α ∈ Homk(Vi ,Vj).

Arvid Siqveland The geometry of noncommutative k-algebras
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Example: A standard example

Any derivation δ is determined on a generator set. In this
particular example, we choose as generators

e1 =

(
1 0
0 0

)
, e2 =

(
0 0
0 1

)
, (t11−a) =

(
(t11 − a) 0

0 0

)
, t12 =

(
0 t12

0 0

)
.

(1,1): Ext1
A(V1(a),V1(a)) :

δ(e1) = δ(e2
1 ) = e1δ(e1) + δ(e1)e1 = 2δ(e1)⇒ δ(e1) = δ(e2) = 0

δ(t11 − a) = α

δ(t12) = δ(t12e2) = δ(t12)e2 + t12δ(e2) = 0

adβ(t11 − a) = (t11 − a)β − β(t11 − a) = 0.

As basis for Ext1
A(V1(a),V1(a)) we choose the one element set

{φ11 = (t11 − a)∨}.
Arvid Siqveland The geometry of noncommutative k-algebras
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Example: A standard example

(1,2): Ext1
A(V1(a),V2)

δ(e1) = α

δ(e2) = −α
δ(t11 − a) = δ((t11 − a)e1) = δ(t11 − a)e1 + (t11 − a)δ(e1) = 0

(a− 1)δ(t12) = δ(t11t12 − t12) = 0

adα(t11 − a) = 0

adα(e1) = e1α− αe1 = α

adα(e2) = e2α− αe2 = −α

Arvid Siqveland The geometry of noncommutative k-algebras
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Example: A standard example

Thus if a = 1 we choose as basis the one point set {φ12 = t∨12}, if
a 6= 1, Ext1

A(V1(a),V2) = 0.

(1,i): Ext1
A(V2,Vi ) = 0, i = 1, 2 which is trivial.

For the rest we put a = 1, that is V1 = V1(1) and we compute

Ĥ{V1,V2} : Let S =

(
k[u11] < u12 >

0 k

)
. Then the infinitesimal

liftings are given by

φ2 =

(
1⊗ ·a + u11 ⊗ (t11 − 1)∨ u12 ⊗ t∨12

0 1⊗ ·a

)
: A→ (Homk(Vi ,S2,ij⊗Vj)).

Arvid Siqveland The geometry of noncommutative k-algebras
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Example: A standard example

Now S2 = S/rad2 and the obstruction for lifting to R3 = S/rad3 is

o =

(
u2

11 ⊗ (t11 − 1)∨(t11 − 1)∨ u11u12 ⊗ (t11 − 1)∨t∨12

0 0

)
.

In general, v∨w∨ = (v ⊗ w)∨ = −d((vw)∨), so

(t11 − 1)∨(t11 − 1)∨ = −d((t11 − 1)2)∨).

But (t11 − 1)t12 = 0 in A, thus o =

(
0 u11u12 ⊗ o12

0 0

)
with

o12 6= 0. Put S3 = S/(rad3 + u11u12). Then we can lift the
A-module structure to S3 by

φ3 =

(
1⊗ ·a + u11 ⊗ (t11 − 1)∨ + u2

11 ⊗ ((t11 − 1)2)∨ u12 ⊗ t∨12

0 0

)
.

We see that this φ3 can be lifted to φn on Sn = S3/radn, n ≥ 3,
giving the result

Arvid Siqveland The geometry of noncommutative k-algebras
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Example: A standard example

Ĥ = lim
←

Sn =

(
k[[u11]] < u12 > /u11u12

0 k

)
∼= lim
←

A/radn.

In general terms this says that A is a scheme for its 1-dimensional
simple modules.

Arvid Siqveland The geometry of noncommutative k-algebras
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Example: 3-dimensional endomorphisms

Let

T =

k 0 0
0 k 0
0 0 k

+ (Eij)

where
(Eij)

is generated bykt11(1) + kt11(2) + kt11(3) kt12(1) + kt12(2) + kt12(3) kt13(1) + kt13(2) + kt13(3)
0 kt22(1) + kt22(2) kt23(1) + kt23(2)
0 0 t33(1)



Arvid Siqveland The geometry of noncommutative k-algebras
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Example: 3-dimensional endomorphisms

and let

f11(1) = t11(3)t11(2)− t11(2)t11(3)

f11(2) = t11(3)t11(1)− t11(1)t11(3)

f11(3) = t11(2)t11(1)− t11(1)t11(2)

f12(1) = t11(3)t12(2)− t11(2)t12(3)− t12(2)t22(1)

− 3t12(3)t2
22(2) + 2t12(3)t22(1)t22(2)

f12(2) = t11(3)t12(1)− t11(1)t12(3)− t12(1)t22(1)

+ t12(3)t22(1)t2
22(2)− 2t12(3)t3

22(2)

f12(3) = t11(2)t12(1)− t11(1)t12(2)− 2t12(1)t22(1)t22(2)

+ 3t12(1)t2
22(2) + t12(2)t2

22(2)t22(1)− 2t12(2)t3
22(2)

Arvid Siqveland The geometry of noncommutative k-algebras
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Example: 3-dimensional endomorphisms

f13(1) = t11(3)t13(2)− t11(2)t13(3)− 3t13(2)t33(1)− t12(2)t23(1)− 3t12(3)t23(2)

+ 3t13(3)t2
33(1)− 2t12(1)t22(2)t23(1)− 2t12(2)t22(2)t23(2)

f13(2) = t11(3)t13(1)− t11(1)t13(3)− 3t13(1)t33(1)− t12(1)t23(1)

− t12(3)t23(2)t33(1)− 2t12(3)t22(2)t23(2) + t13(3)t3
33(1)

f13(3) = t11(2)t13(1)− t11(1)t13(2) + 3t12(1)t23(2)

− t11(3)t13(1)t33(1) + t11(1)t13(3)t33(1) + t12(1)t23(1)t33(1)− t12(2)t23(2)t33(1)

− 2t12(1)t22(2)t23(1)− 2t12(2)t22(2)t23(2)

1

3
t11(3)t13(2)t2

33(1)− 1

3
t11(2)t13(3)t2

33(1)

− t12(3)t23(2)t2
33(1)− 1

3
t12(2)t23(1)t2

33(1)− 6t12(3)t22(2)t23(2)t33(1)

− 2t12(3)t22(2)t23(1)t2
33(1)
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Example: 3-dimensional endomorphisms

f22(1) = t22(2)t22(1)− t22(1)t22(2)

f23(1) = −t22(1)t23(2) + 3t23(2)t33(1)

+ t23(1)t2
33(1)− 2t22(2)t23(1)t33(1) + t2

22(2)t23(1)
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Example: 3-dimensional endomorphisms

Proposition

The noncommutative local formal moduli of the modules
corresponding to the closure of the orbits of

M1 =

λ 1 0
0 λ 1
0 0 λ

 , M2 =

λ 1 0
0 λ 0
0 0 λ

 and M3 =

λ 0 0
0 λ 0
0 0 λ


under the action of Gl(3) is

T/(fij(l))
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Example: 3-dimensional endomorphisms

The case with two different eigenvalues, that is matrices of the
form λ1 0 0

0 λ1 0
0 0 λ2

 ,

gives the parametric surface

(28)
s1 = 2λ1 + λ2

s2 = −2λ1λ2 − λ2
1

s3 = λ2
1λ2

⇒ 4s3
1 s3−s2

1 s2
2 +18s1s2s3−4s3

2 +27s2
3 = 0.
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Example: 3-dimensional endomorphisms

The case with all eigenvalues equal, that is matrices of the formλ 0 0
0 λ 0
0 0 λ

 ,

gives the parametric curve

s1 = 3λ
s2 = −3λ2

s3 = λ3
⇒ s2 = −1

3
s2

1 ∧ s3 =
1

27
s3

1 .
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Example: 3-dimensional endomorphisms

Lead by our geometric intuition, the geometric picture should show
three generic points. The case with all three eigenvalues different
is well known to be parameterized by the points in affine 3-space.
A point in this affine 3-space, on the surface, represents a new
3-dimensional affine space. This is glued onto this point. A point
on the curve on the surface represents a new 3-dimensional affine
space which is glued onto this point. Outside the curve and the
surface, all points are identified. In this section, we will use some
effort to understand how the geometric picture fits in with the
local computations.
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Example: 3-dimensional endomorphisms

Consider the local formal moduli Ĥ(V1,V2,V3), that is the local
formal moduli of the worst case, the case corresponding to all
eigenvalues equal. Let H = H(V1,V2,V3) be an algebraization.
Necessary conditions for this k-algebra to give the moduli, i.e. the
affine ring for M3(k)/Gl3(k), is that the simple modules of this
ring are in one to one correspondence with the orbits, and that it is
closed under forming local moduli (of the simple modules). In
particular, the Ext1-dimensions must be the same. The simple
H-modules corresponds to the quotients V1(∗), V2(∗) and V3(∗) of
the rings on the diagonal of H by their maximal ideals. Recalling
that

Ext1
H(Vi ,Vj) ∼= HH1(H,Homk(Vi ,Vj)) ∼= Derk(H,Homk(Vi ,Vj))),

we can compute the tangent space dimensions Ext1
H(Vi ,Vj) by

looking at k-derivations δ. We see that this dimension drops if
δ(f ) 6= 0 for some relation f .
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Example: 3-dimensional endomorphisms

This means that regarding tangent space dimensions, we can work
with the relations as commutative polynomials. Let
V1(t11(1), t11(2), t11(3)), V2(t22(1), t22(2)) and V3 = t33(1) be
three points (simple modules) on the diagonal of H. Then the
constant ext1-locus is given as follows:
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Example: 3-dimensional endomorphisms

f12(1) = t12(3)(−t11(2)− 3t2
22(2) + 2t22(1)t22(2))

+ t12(2)(t11(3)− t22(1)) = 0

f12(2) = t12(1)(t11(3)− t22(1)) + t12(3)(−t11(1) + t22(1)t2
22(2)− 2t3

22(2)) = 0

f12(3) = t12(1)(t11(2)− 2t22(1)t22(2) + 3t2
22(2))

+ t12(2)(−t11(1) + t22(1)t2
22(2)− 2t3

22(2)) = 0
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Example: 3-dimensional endomorphisms

We put

t11(1) = s3, t11(2) = s2, t11(3) = s1, t22(1) = λ2, t22(2) = λ1

and we get the equations

s1 = λ2

s2 = 2λ1λ2 − 3λ2
1

s3 = λ2
1λ2 − 2λ3

1
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Example: 3-dimensional endomorphisms

which is exactly the pointλ1 0 0
0 λ1 0
0 0 λ2 − 2λ1


on the surface (28).
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Example: 3-dimensional endomorphisms

f13(1) = t13(2)(t11(3)− 3t33(1)) + t13(3)(−t11(2) + 3t2
33(1)) = 0

f13(2) = t13(1)(t11(3)− 3t33(1)) + t13(3)(−t11(1) + t3
33(1)) = 0

f13(3) = t13(1)(t11(2)− t11(3)t33(1)) + t13(2)(−t11(1) +
1

3
t11(3)t2

33(1)

+ t13(3)(t11(1)t33(1)− 1

3
t11(2)t2

33(1)) = 0.
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Example: 3-dimensional endomorphisms

We put

t11(1) = s3, t11(2) = s2, t11(3) = s1, t33(1)λ1,

and we get the following equations:

s1 = 3λ1 s1 = 3λ1

s2 = 3λ2
1 ⇔ s2 = 3λ2

1

s3 = λ3
1 s3 = λ3

1

s2 = s1λ1

s3 = 1
3 s1λ

2
1

s3λ1 = 1
3 s2λ

2
1
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Example: 3-dimensional endomorphisms

This gives the points on the curveλ1 0 0
0 λ1 0
0 0 λ1

 .

(2,3)

f23(1) = t23(1)(t2
33(1)− 2t22(2)t33(1) + t2

22(2))

+ t23(2)(−t22(1) + 3t33(1)).

On the curve, the above chosen parameters corresponds toλ1 0 0
0 λ1 0
0 0 λ1

 =

λ1 0 0
0 λ1 0
0 0 3λ1 − 2λ1

 =

λ1 0 0
0 λ1 0
0 0 λ2 − 2λ1

 ,
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Example: 3-dimensional endomorphisms

that is
t22(1) = 3λ1, t22(2) = λ1, t33(1) = λ1.

This is true for both equations above:
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Example: 3-dimensional endomorphisms

t22(1) = 3t33(1)⇔ 3λ1 = 3λ1

2t22(2)t33(1) = t2
33(1) + t2

22(2)⇔ 2λ2
1 = 2λ2

1.

Thus the constant ext1-locus is preserved on the curve.

The constant ext1-locus for the local formal moduli for a point on
the surface, that is the case with exactly two different eigenvalues,
is given by the equations ( for simplicity we put λ = 1)
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Example: 3-dimensional endomorphisms

f12(1) = t12(3)(−t11(2)− 2t22(2) + 2t22(1)t22(2)− 3t2
22(2))

+ t12(2)(t11(3)− t22(1))

f12(2) = t12(3)(−t11(1)− t2
22(2) + t22(1)t2

22(2)− 2t3
22(2))

+ t12(1)(t11(3)− t22(1))

f12(3) = t12(2)(−t11(1)− t2
22(2) + t22(1)t2

22(2)− 2t3
22(2))

+ t12(1)(t11(2) + 2t22(2)− 2t22(1)t22(2) + 3t2
22(2)).

We let

t11(3) = s1+1, t11(2) = s2, t11(1) = s3, t22(2) = λ1, t22(1) = λ2.

Then we get the equations
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Example: 3-dimensional endomorphisms

s1 = λ2 − 1

s2 = −2λ1 + 2λ1λ2 − 3λ2
1

s3 = −λ2
1 + λ2

1λ2 − 2λ3
1,

which is the surfaceλ1 0 0
0 λ1 0
0 0 λ2 − 1− 2λ1

 .
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Example: 3-dimensional endomorphisms

All in all, we have proved:

Theorem
The simple modules of M3(k)Gl3(k) =k[s1, s2, s3] < t12(1), t12(2), t12(3) > < t13(1), t13(2), t13(3) >

0 k[t1, t2] < t23(1), t23(2) >
0 0 k[u]

 /b

where b is the two-sided ideal generated by the relations in the
case with all eigenvalues equal, are in one to one correspondence
with the Gl3(k)−orbits of M3(k). Letting a finite family V of
A− G -modules correspond to the simple modules V Gl3(k), the
formal moduli ĤV of A− G -modules is isomorphic to the formal
moduli ĤV Gl3(k) of M3(k)Gl3(k)-modules. As such
M3(k)Gl3(k) = OGl3(k).
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Example: 3-dimensional endomorphisms

This gives the picture of the moduli for Gl3(k) as the affine
3-space, the affine 2-space and the curve. Notice that the affine
2-space in the middle is the blowup of the surface along the curve.
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On Lie algebras of dimension 3

Proposition

The noncommutative moduli Lie(3) is

M =



k[C ] k[C ](C− 1
2

) < t12 > 0 0 0 0

0 k 0 0 0 0
0 0 k 0 0 0
0 0 0 k 0 0
0 0 0 0 k 0
0 0 0 0 0 k


where the two first rows correspond to the Lie-algebras g(C ) and l1
respectively, and where the four last rows corresponds to sl2(k),
n3, l−1, and ab = g0 (respectively).
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