Leibniz A-algebras

David Towers

Lancaster University England

Porto, April 2019

Definition

A Lie algebra all of whose nilpotent subalgebras are abelian is called an A-algebra.

Definition

A Lie algebra all of whose nilpotent subalgebras are abelian is called an A-algebra.

Yang-Mills Potentials

Every non-abelian nilpotent Lie algebra admits a non-trivial solution of the constant Yang-Mills equations.

Moreover, if a subalgebra of L admits a non-trivial solution of the Yang-Mills equations, then so does L.

It is, therefore, useful to know if a given non-nilpotent Lie algebra has a non-abelian nilpotent subalgebra.

Definition

A Lie algebra all of whose nilpotent subalgebras are abelian is called an A-algebra.

Yang-Mills Potentials

Every non-abelian nilpotent Lie algebra admits a non-trivial solution of the constant Yang-Mills equations.

Moreover, if a subalgebra of L admits a non-trivial solution of the Yang-Mills equations, then so does L.

It is, therefore, useful to know if a given non-nilpotent Lie algebra has a non-abelian nilpotent subalgebra.

Residually finite varieties

Let F be a finite field of characteristic p > 3. All algebras of the variety B of Lie algebras over F are residually finite if and only if B is generated by one finite Lie A-algebra. (Premet and Semenov, 1988)

Definition

An algebra L over a field F is called a Leibniz algebra if, for every $x, y, z \in L$, we have

$$[x, [y, z]] = [[x, y], z] - [[x, z], y]$$

Definition

An algebra L over a field F is called a Leibniz algebra if, for every $x, y, z \in L$, we have

$$[x, [y, z]] = [[x, y], z] - [[x, z], y]$$

In other words the right multiplication operator $R_x : L \to L : y \mapsto [y, x]$ is a derivation of L. As a result such algebras are sometimes called right Leibniz algebras, and there is a corresponding notion of left Leibniz algebra.

Definition

An algebra L over a field F is called a Leibniz algebra if, for every $x, y, z \in L$, we have

$$[x, [y, z]] = [[x, y], z] - [[x, z], y]$$

In other words the right multiplication operator $R_x : L \to L : y \mapsto [y, x]$ is a derivation of L. As a result such algebras are sometimes called right Leibniz algebras, and there is a corresponding notion of left Leibniz algebra. Every Lie algebra is a Leibniz algebra and every Leibniz algebra satisfying [x, x] = 0 for every element is a Lie algebra.

Definition

An algebra L over a field F is called a Leibniz algebra if, for every $x, y, z \in L$, we have

$$[x, [y, z]] = [[x, y], z] - [[x, z], y]$$

In other words the right multiplication operator $R_x: L \to L: y \mapsto [y,x]$ is a derivation of L. As a result such algebras are sometimes called right Leibniz algebras, and there is a corresponding notion of left Leibniz algebra. Every Lie algebra is a Leibniz algebra and every Leibniz algebra satisfying [x,x]=0 for every element is a Lie algebra.

Definition

The Leibniz kernel of L is the set Leib(L)=span{ $x^2 : x \in L$ }. This is a two-sided ideal of L which is the smallest ideal such that L/Leib(L) is a Lie algebra. Also [L, Leib(L)] = 0.

Definition

We define the following series:

$$L^1 = L, L^{k+1} = [L^k, L]$$
 and $L^{(0)} = L, L^{(k+1)} = [L^{(k)}, L^{(k)}]$ for all $k = 1, 2, 3, ...$

Definition

We define the following series:

$$L^{1} = L, L^{k+1} = [L^{k}, L]$$
 and $L^{(0)} = L, L^{(k+1)} = [L^{(k)}, L^{(k)}]$ for all $k = 1, 2, 3, ...$

Then L is nilpotent (resp. solvable) if $L^n = 0$ (resp. $L^{(n)} = 0$) for some $n \in \mathbb{N}$. If $L^{(n)} = 0$ but $L^{(n-1)} \neq 0$ we say that L has derived length n. The nilradical, N(L), (resp. radical, R(L)) is the largest nilpotent (resp. solvable) ideal of L.

Definition

We define the following series:

$$L^1 = L, L^{k+1} = [L^k, L]$$
 and $L^{(0)} = L, L^{(k+1)} = [L^{(k)}, L^{(k)}]$ for all $k = 1, 2, 3, ...$

Then L is nilpotent (resp. solvable) if $L^n = 0$ (resp. $L^{(n)} = 0$) for some $n \in \mathbb{N}$. If $L^{(n)} = 0$ but $L^{(n-1)} \neq 0$ we say that L has derived length n. The nilradical, N(L), (resp. radical, R(L)) is the largest nilpotent (resp. solvable) ideal of L.

Definition

The centre of L is $Z(L) = \{z \in L \mid [z, x] = [x, z] = 0 \text{ for all } x \in L\}.$

Definition

We define the following series:

$$L^1 = L, L^{k+1} = [L^k, L]$$
 and $L^{(0)} = L, L^{(k+1)} = [L^{(k)}, L^{(k)}]$ for all $k = 1, 2, 3, ...$

Then L is nilpotent (resp. solvable) if $L^n = 0$ (resp. $L^{(n)} = 0$) for some $n \in \mathbb{N}$. If $L^{(n)} = 0$ but $L^{(n-1)} \neq 0$ we say that L has derived length n. The nilradical, N(L), (resp. radical, R(L)) is the largest nilpotent (resp. solvable) ideal of L.

Definition

The centre of L is $Z(L) = \{z \in L \mid [z, x] = [x, z] = 0 \text{ for all } x \in L\}.$

Definition

If U is a subalgebra of L, the centraliser of U in L is $C_L(U) = \{x \in L \mid [x, U] = [U, x] = 0\}$

Definition

We define the following series:

$$L^1 = L, L^{k+1} = [L^k, L]$$
 and $L^{(0)} = L, L^{(k+1)} = [L^{(k)}, L^{(k)}]$ for all $k = 1, 2, 3, ...$

Then L is nilpotent (resp. solvable) if $L^n = 0$ (resp. $L^{(n)} = 0$) for some $n \in \mathbb{N}$. If $L^{(n)} = 0$ but $L^{(n-1)} \neq 0$ we say that L has derived length n. The nilradical, N(L), (resp. radical, R(L)) is the largest nilpotent (resp. solvable) ideal of L.

Definition

The centre of L is $Z(L) = \{z \in L \mid [z, x] = [x, z] = 0 \text{ for all } x \in L\}.$

Definition

If U is a subalgebra of L, the centraliser of U in L is $C_L(U) = \{x \in L \mid [x, U] = [U, x] = 0\}$

Example

Let L be the two-dimensional cyclic Leibniz algebra with basis a, a^2 and product $[a^2, a] = a^2$. Then this is a solvable Leibniz algebra which is not nilpotent, but which is an A-algebra.

Lemma

Let A be an abelian ideal of a Leibniz algebra L and suppose that $x^2 \in A$. Then $L_x^n(A) \subseteq R_x^{n-1}(A)$ for all $n \geqslant 1$.

Lemma

Let A be an abelian ideal of a Leibniz algebra L and suppose that $x^2 \in A$. Then $L_x^n(A) \subseteq R_x^{n-1}(A)$ for all $n \geqslant 1$.

Lemma

Let L be a Leibniz A-algebra and let N be its nilradical. Then

- (i) N is the unique maximal abelian ideal of L;
- (ii) if B and C are abelian ideals of L, we have [B, C] = 0.

Lemma

Let A be an abelian ideal of a Leibniz algebra L and suppose that $x^2 \in A$. Then $L_x^n(A) \subseteq R_x^{n-1}(A)$ for all $n \geqslant 1$.

Lemma

Let L be a Leibniz A-algebra and let N be its nilradical. Then

- (i) N is the unique maximal abelian ideal of L;
- (ii) if B and C are abelian ideals of L, we have [B, C] = 0.

Lemma

If L is a Leibniz A-algebra over any field and B is an ideal of L, then L/B is a Leibniz A-algebra.

Lemma

Let B, C be ideals of the Leibniz algebra L.

- (i) If L/B, L/C are A-algebras, then $L/(B \cap C)$ is an A-algebra.
- (ii) If $L = B \oplus C$, where B, C are A-algebras, then L is an A-algebra.

Lemma

Let B, C be ideals of the Leibniz algebra L.

- (i) If L/B, L/C are A-algebras, then $L/(B \cap C)$ is an A-algebra.
- (ii) If $L = B \oplus C$, where B, C are A-algebras, then L is an A-algebra.

Definition

The nilpotent residual, $\gamma_{\infty}(L)$, of L be the smallest ideal of L such that $L/\gamma_{\infty}(L)$ is nilpotent. Clearly this is the intersection of the terms of the lower central series for L. Then the lower nilpotent series for L is the sequence of ideals $N_i(L)$ of L defined by $N_0(L) = L$, $N_{i+1}(L) = \gamma_{\infty}(N_i(L))$ for $i \ge 0$.

Lemma

Let B, C be ideals of the Leibniz algebra L.

- (i) If L/B, L/C are A-algebras, then $L/(B \cap C)$ is an A-algebra.
- (ii) If $L = B \oplus C$, where B, C are A-algebras, then L is an A-algebra.

Definition

The nilpotent residual, $\gamma_{\infty}(L)$, of L be the smallest ideal of L such that $L/\gamma_{\infty}(L)$ is nilpotent. Clearly this is the intersection of the terms of the lower central series for L. Then the lower nilpotent series for L is the sequence of ideals $N_i(L)$ of L defined by $N_0(L) = L$, $N_{i+1}(L) = \gamma_{\infty}(N_i(L))$ for $i \ge 0$.

Lemma

Let L be a Leibniz A-algebra. Then the lower nilpotent series coincides with the derived series.

Theorem

Let L be a Leibniz A-algebra over a field F. If F has characteristic $\neq 2,3$ and cohomological dimension ≤ 1 (this means that the Brauer group of any algebraic extension of the underlying field is trivial), then

- (i) $L^2 \cap Z(L) = 0$; and
- (ii) L has a Levi decomposition and every Levi subalgebra is representable as a direct sum of simple ideals, each one of which splits over some finite extension of the ground field into a direct sum of ideals isomorphic to sl(2).

Theorem

Let L be a Leibniz A-algebra over a field F. If F has characteristic $\neq 2,3$ and cohomological dimension ≤ 1 (this means that the Brauer group of any algebraic extension of the underlying field is trivial), then

- (i) $L^2 \cap Z(L) = 0$; and
- (ii) L has a Levi decomposition and every Levi subalgebra is representable as a direct sum of simple ideals, each one of which splits over some finite extension of the ground field into a direct sum of ideals isomorphic to sl(2).

Lemma

Let L be a Leibniz algebra over a field of characteristic different from 2 such that L/Z(L) is a simple three-dimensional Lie algebra. Then $L = L^2 \dotplus Z(L)$.

Theorem

Let L be a Leibniz A-algebra over a field F. If F has characteristic $\neq 2,3$ and cohomological dimension ≤ 1 (this means that the Brauer group of any algebraic extension of the underlying field is trivial), then

- (i) $L^2 \cap Z(L) = 0$; and
- (ii) L has a Levi decomposition and every Levi subalgebra is representable as a direct sum of simple ideals, each one of which splits over some finite extension of the ground field into a direct sum of ideals isomorphic to sl(2).

Lemma

Let L be a Leibniz algebra over a field of characteristic different from 2 such that L/Z(L) is a simple three-dimensional Lie algebra. Then $L = L^2 \dotplus Z(L)$.

Definition

We say that L is monolithic with monolith W if W is the unique minimal ideal of L.

Outline Proof Let L be a minimal counter-example.

Outline Proof

Let L be a minimal counter-example. Then it is straightforward to show that L is monolithic with monlith Z(L) and unique maximal ideal M which is abelian and is the radical

Outline Proof

Let L be a minimal counter-example. Then it is straightforward to show that L is monolithic with monlith Z(L) and unique maximal ideal M which is abelian and is the radical Then $L/M=\mathcal{L}$ is simple. It follows from results of Premet and Semenov that \mathcal{L} is a Lie p-algebra.

Outline Proof

Let L be a minimal counter-example. Then it is straightforward to show that L is monolithic with monlith Z(L) and unique maximal ideal M which is abelian and is the radical Then $L/M=\mathcal{L}$ is simple. It follows from results of Premet and Semenov that \mathcal{L} is a Lie p-algebra. Moreover, our assumption on the field F implies that \mathcal{L} has a non-zero nilpotent element.

Outline Proof

Let L be a minimal counter-example. Then it is straightforward to show that L is monolithic with monlith Z(L) and unique maximal ideal M which is abelian and is the radical Then $L/M=\mathcal{L}$ is simple. It follows from results of Premet and Semenov that \mathcal{L} is a Lie p-algebra. Moreover, our assumption on the field F implies that \mathcal{L} has a non-zero nilpotent element. Hence there exists an element $u \in L \setminus M$ such that $R_u^{p^m}(L) \subseteq M$. Let \overline{u} be the image of u under the canonical homomorphism from L to \mathcal{L} .

Outline Proof

Let L be a minimal counter-example. Then it is straightforward to show that L is monolithic with monlith Z(L) and unique maximal ideal M which is abelian and is the radical Then $L/M=\mathscr{L}$ is simple. It follows from results of Premet and Semenov that \mathscr{L} is a Lie p-algebra. Moreover, our assumption on the field F implies that \mathscr{L} has a non-zero nilpotent element. Hence there exists an element $u \in L \setminus M$ such that $R_u^{p^m}(L) \subseteq M$. Let \overline{u} be the image of u under the canonical homomorphism from L to \mathscr{L} . The element \overline{u}^{p^m} lies in the centre of the universal enveloping algebra $U(\mathscr{L})$, and so in any indecomposable L-module W the set $\lambda_1(W),\ldots,\lambda_r(W)$ of eigenvalues of \overline{u}^{p^m} consists of elements of K that are conjugate under the Galois group Gal(K/F).

Outline Proof

Let L be a minimal counter-example. Then it is straightforward to show that L is monolithic with monlith Z(L) and unique maximal ideal M which is abelian and is the radical Then $L/M=\mathcal{L}$ is simple. It follows from results of Premet and Semenov that \mathcal{L} is a Lie p-algebra. Moreover, our assumption on the field F implies that \mathcal{L} has a non-zero nilpotent element. Hence there exists an element $u \in L \setminus M$ such that $R_u^{p^m}(L) \subseteq M$. Let \overline{u} be the image of u under the canonical homomorphism from L to \mathcal{L} . The element \overline{u}^{p^m} lies in the centre of the universal enveloping algebra $U(\mathcal{L})$, and so in any indecomposable L-module W the set $\lambda_1(W),\ldots,\lambda_r(W)$ of eigenvalues of \overline{u}^{p^m} consists of elements of K that are conjugate under the Galois group Gal(K/F). The right module M is indecomposable and contains Z(L), and so $\lambda_k(M)=0$ for some $1\leqslant k\leqslant r$.

Outline Proof

Let L be a minimal counter-example. Then it is straightforward to show that L is monolithic with monlith Z(L) and unique maximal ideal M which is abelian and is the radical Then $L/M=\mathcal{L}$ is simple. It follows from results of Premet and Semenov that \mathcal{L} is a Lie p-algebra. Moreover, our assumption on the field F implies that \mathcal{L} has a non-zero nilpotent element. Hence there exists an element $u \in L \setminus M$ such that $R_u^{p^m}(L) \subseteq M$. Let \overline{u} be the image of u under the canonical homomorphism from L to \mathcal{L} . The element \overline{u}^{p^m} lies in the centre of the universal enveloping algebra $U(\mathcal{L})$, and so in any indecomposable L-module W the set $\lambda_1(W),\ldots,\lambda_r(W)$ of eigenvalues of \overline{u}^{p^m} consists of elements of K that are conjugate under the Galois group Gal(K/F). The right module M is indecomposable and contains Z(L), and so $\lambda_k(M)=0$ for some $1\leqslant k\leqslant r$. It follows that u acts nilpotently on the right in L.

Outline Proof

Let L be a minimal counter-example. Then it is straightforward to show that L is monolithic with monlith Z(L) and unique maximal ideal M which is abelian and is the radical Then $L/M=\mathcal{L}$ is simple. It follows from results of Premet and Semenov that \mathcal{L} is a Lie p-algebra. Moreover, our assumption on the field F implies that \mathcal{L} has a non-zero nilpotent element. Hence there exists an element $u \in L \setminus M$ such that $R_u^{p^m}(L) \subseteq M$. Let \overline{u} be the image of u under the canonical homomorphism from L to \mathcal{L} . The element \overline{u}^{p^m} lies in the centre of the universal enveloping algebra $U(\mathcal{L})$, and so in any indecomposable L-module W the set $\lambda_1(W),\ldots,\lambda_r(W)$ of eigenvalues of \overline{u}^{p^m} consists of elements of K that are conjugate under the Galois group Gal(K/F). The right module M is indecomposable and contains Z(L), and so $\lambda_k(M)=0$ for some $1\leqslant k\leqslant r$. It follows that u acts nilpotently on the right in L. But now $u^2\in Leib(L)\subseteq M$, so, using our Lemma, Fu+M is a nilpotent subalgebra of L and thus abelian.

Outline Proof

Let L be a minimal counter-example. Then it is straightforward to show that L is monolithic with monlith Z(L) and unique maximal ideal M which is abelian and is the radical Then $L/M=\mathcal{L}$ is simple. It follows from results of Premet and Semenov that \mathcal{L} is a Lie p-algebra. Moreover, our assumption on the field F implies that \mathcal{L} has a non-zero nilpotent element. Hence there exists an element $u \in L \setminus M$ such that $R_u^{p^m}(L) \subseteq M$. Let \overline{u} be the image of u under the canonical homomorphism from L to \mathcal{L} . The element \overline{u}^{p^m} lies in the centre of the universal enveloping algebra $U(\mathcal{L})$, and so in any indecomposable L-module W the set $\lambda_1(W),\ldots,\lambda_r(W)$ of eigenvalues of \overline{u}^{p^m} consists of elements of K that are conjugate under the Galois group Gal(K/F). The right module M is indecomposable and contains Z(L), and so $\lambda_k(M)=0$ for some $1\leqslant k\leqslant r$. It follows that u acts nilpotently on the right in L. But now $u^2\in Leib(L)\subseteq M$, so, using our Lemma, Fu+M is a nilpotent subalgebra of L and thus abelian. This yields that $u\in C_L(M)$, and so $C_L(M)=L$ and M=Z(L).

The non-solvable case

Outline Proof

Let L be a minimal counter-example. Then it is straightforward to show that L is monolithic with monlith Z(L) and unique maximal ideal M which is abelian and is the radical Then $L/M=\mathscr{L}$ is simple. It follows from results of Premet and Semenov that \mathscr{L} is a Lie p-algebra. Moreover, our assumption on the field F implies that $\mathscr L$ has a non-zero nilpotent element. Hence there exists an element $u \in L \setminus M$ such that $R_{u}^{p^{m}}(L) \subseteq M$. Let \overline{u} be the image of u under the canonical homomorphism from L to \mathscr{L} . The element \overline{u}^{p^m} lies in the centre of the universal enveloping algebra $U(\mathcal{L})$, and so in any indecomposable L-module W the set $\lambda_1(W), \ldots, \lambda_r(W)$ of eigenvalues of $\overline{u}^{p'''}$ consists of elements of K that are conjugate under the Galois group Gal(K/F). The right module M is indecomposable and contains Z(L), and so $\lambda_k(M) = 0$ for some $1 \le k \le r$. It follows that u acts nilpotently on the right in L. But now $u^2 \in I$ Leib(L) $\subseteq M$, so, using our Lemma, Fu + M is a nilpotent subalgebra of L and thus abelian. This yields that $u \in C_L(M)$, and so $C_L(M) = L$ and M = Z(L). Now there is a finite extension K of F over which $(L/Z(L))_K$ splits as a direct sum of ideals $S_1/Z(L) \oplus \ldots \oplus S_n/Z(L)$ isomorphic to sl(2), by the corresponding result for Lie algebras.

The non-solvable case

Outline Proof

Let L be a minimal counter-example. Then it is straightforward to show that L is monolithic with monlith Z(L) and unique maximal ideal M which is abelian and is the radical Then $L/M=\mathscr{L}$ is simple. It follows from results of Premet and Semenov that \mathscr{L} is a Lie p-algebra. Moreover, our assumption on the field F implies that $\mathscr L$ has a non-zero nilpotent element. Hence there exists an element $u \in L \setminus M$ such that $R_u^{p^m}(L) \subseteq M$. Let \overline{u} be the image of u under the canonical homomorphism from L to \mathscr{L} . The element \overline{u}^{p^m} lies in the centre of the universal enveloping algebra $U(\mathcal{L})$, and so in any indecomposable L-module W the set $\lambda_1(W), \ldots, \lambda_r(W)$ of eigenvalues of \overline{u}^{p^m} consists of elements of K that are conjugate under the Galois group Gal(K/F). The right module M is indecomposable and contains Z(L), and so $\lambda_k(M) = 0$ for some $1 \le k \le r$. It follows that u acts nilpotently on the right in L. But now $u^2 \in I$ Leib(L) $\subseteq M$, so, using our Lemma, Fu + M is a nilpotent subalgebra of L and thus abelian. This yields that $u \in C_L(M)$, and so $C_L(M) = L$ and M = Z(L). Now there is a finite extension K of F over which $(L/Z(L))_K$ splits as a direct sum of ideals $S_1/Z(L) \oplus \ldots \oplus S_n/Z(L)$ isomorphic to sl(2), by the corresponding result for Lie algebras. Using our Lemma about splitting over Z(L) we then get the claimed result.

Lemma

Let L be any solvable Leibniz algebra with nilradical N. Then $C_L(N) \subseteq N$

Lemma

Let L be any solvable Leibniz algebra with nilradical N. Then $C_L(N) \subseteq N$

Theorem

Let L be a solvable Leibniz A-algebra. Then L splits over each term in its derived series. Moreover, the Cartan subalgebras of $L^{(i)}/L^{(i+2)}$ are precisely the subalgebras that are complementary to $L^{(i+1)}/L^{(i+2)}$ for $i \ge 0$.

Lemma

Let L be any solvable Leibniz algebra with nilradical N. Then $C_L(N) \subseteq N$

Theorem

Let L be a solvable Leibniz A-algebra. Then L splits over each term in its derived series. Moreover, the Cartan subalgebras of $L^{(i)}/L^{(i+2)}$ are precisely the subalgebras that are complementary to $L^{(i+1)}/L^{(i+2)}$ for $i \ge 0$.

Corollary

Let L be a solvable Leibniz A-algebra of derived length n+1. Then

- (i) $L = A_n \dot{+} A_{n-1} \dot{+} \dots \dot{+} A_0$ where A_i is an abelian subalgebra of L for each $0 \leqslant i \leqslant n$; and
- (ii) $L^{(i)} = A_n \dot{+} A_{n-1} \dot{+} \dots \dot{+} A_i$ for each $0 \leqslant i \leqslant n$

Theorem

Let L be a solvable Leibniz A-algebra. Then $Z(L) \cap L^2 = 0$.

Theorem

Let L be a solvable Leibniz A-algebra. Then $Z(L) \cap L^2 = 0$.

Proof.

Let L be a minimal counter-example. Then, again, a straightforward argument shows that L is monolithic with monolith Z(L) and has a unique maximal ideal M that is abelian. It follows that $L = M \dotplus Fx$ for some $x \in L$. Let $L = L_0 \dotplus L_1$ be the Fitting decomposition of L relative to R_x . Then $L_1 = \bigcap_{i=1}^{\infty} R_x^i(L) \subseteq M$, and $[L_1, L_0] \subseteq L_1$, so L_1 is a right ideal of L. Now

$$[x, [L, x]] \subseteq [[x, L], x] + [x^2, L] \subseteq [L, x] + [x^2, M + Fx] \subseteq [L, x]$$

since $x^2 \in \text{Leib}(L) \subseteq M$, so $[x^2, M] = 0$. Then an induction argument shows that $[x, R_x^k(L)] \subseteq R_x^k(L)$. It follows that $[L, L_1] = [x, L_1] \subseteq L_1$ and L_1 is an ideal of L. If $L_1 \neq 0$ then $Z(L) \subseteq L_1 \cap L_0 = 0$, a contradiction. Hence $L_1 = 0$ and R_x is nilpotent. But then L = M + Fx is nilpotent and hence abelian, and the result follows.

Lemma

Let L be a solvable Leibniz A-algebra of derived length $\leq n+1$, and suppose that $L=B\dotplus C$ where $B=L^{(n)}$ and C is a subalgebra of L. If D is an ideal of L then $D=(B\cap D)\dotplus (C\cap D)$.

Lemma

Let L be a solvable Leibniz A-algebra of derived length $\leq n+1$, and suppose that $L=B\dotplus C$ where $B=L^{(n)}$ and C is a subalgebra of L. If D is an ideal of L then $D=(B\cap D)\dotplus (C\cap D)$.

Theorem

Let L be a solvable Leibniz A-algebra of derived length n+1 with nilradical N, and let K be an ideal of L and A a minimal ideal of L. Then, with the same notation as in the Corollary above,

(i)
$$K = (K \cap A_n) \dot{+} (K \cap A_{n-1}) \dot{+} \dots \dot{+} (K \cap A_0);$$

- (ii) $N = A_n \oplus (N \cap A_{n-1}) \oplus \ldots \oplus (N \cap A_0)$;
- (iii) $Z(L^{(i)}) = N \cap A_i$ for each $0 \leqslant i \leqslant n$; and
- (iv) $A \subseteq N \cap A_i$ for some $0 \leqslant i \leqslant n$.

Definition

A Leibniz algebra L is completely solvable if $L^{(1)}$ is nilpotent.

Definition

A Leibniz algebra L is completely solvable if $L^{(1)}$ is nilpotent.

Clearly completely solvable Leibniz A-algebras are metabelian.

Definition

A Leibniz algebra L is completely solvable if $L^{(1)}$ is nilpotent.

Clearly completely solvable Leibniz A-algebras are metabelian.

In particular, over a field of characteristic zero every solvable Leibniz A-algebra is metabelian.

Definition

A Leibniz algebra L is completely solvable if $L^{(1)}$ is nilpotent.

Clearly completely solvable Leibniz A-algebras are metabelian.

In particular, over a field of characteristic zero every solvable Leibniz A-algebra is metabelian.

This is not the case, however, if the ground field has characteristic p > 0.

General case Completely solvable case

General case

Completely solvable case

 $L = A_n \dot{+} A_{n-1} \dot{+} \dots \dot{+} A_0$ where A_i is an abelian subalgebra of L;

General case

$$L = A_n \dot{+} A_{n-1} \dot{+} \dots \dot{+} A_0$$

where A_i is an abelian subalgebra of L ;

$$L=L^{(1)}\dot{+}A_0$$

General case

$$L = A_n \dot{+} A_{n-1} \dot{+} \dots \dot{+} A_0$$
 where A_i is an abelian subalgebra of L ;

$$N = A_n \oplus (N \cap A_{n-1}) \oplus \ldots \oplus (N \cap A_0);$$

General case

$$L = A_n \dot{+} A_{n-1} \dot{+} \dots \dot{+} A_0$$
 Where A_i is an abelian subalgebra of L ;

$$N = A_n \oplus (N \cap A_{n-1}) \oplus \ldots \oplus (N \cap A_0); \quad N = L^{(1)} \oplus Z(L)$$

General case

Completely solvable case

$$L = A_n \dot{+} A_{n-1} \dot{+} \dots \dot{+} A_0$$
 Where A_i is an abelian subalgebra of L ;

$$N = A_n \oplus (N \cap A_{n-1}) \oplus \ldots \oplus (N \cap A_0); \quad N = L^{(1)} \oplus Z(L)$$

If A is a minimal ideal of L then $A \subseteq N \cap A_i$.

General case

$$L = A_n \dot{+} A_{n-1} \dot{+} \dots \dot{+} A_0$$

where A_i is an abelian subalgebra of L ;

$$L=L^{(1)}\dot{+}A_0$$

$$N = A_n \oplus (N \cap A_{n-1}) \oplus \ldots \oplus (N \cap A_0); \quad N = L^{(1)} \oplus Z(L)$$

If
$$A$$
 is a minimal ideal of L then $A \subseteq N \cap A_i$.

(i)
$$A \subseteq A_0$$
 or $A \subseteq L^{(1)}$

General case

$$L = A_n \dot{+} A_{n-1} \dot{+} \dots \dot{+} A_0$$

where A_i is an abelian subalgebra of L ;

$$L=L^{(1)}\dot{+}A_0$$

$$N = A_n \oplus (N \cap A_{n-1}) \oplus \ldots \oplus (N \cap A_0); \quad N = L^{(1)} \oplus Z(L)$$

If A is a minimal ideal of L then
$$A \subseteq N \cap A_i$$
.

(i)
$$A \subseteq A_0$$
 or $A \subseteq L^{(1)}$

(ii)
$$A \subseteq A_0$$
 if and only if $A \subseteq Z(L)$

General case

$$L = A_n \dot{+} A_{n-1} \dot{+} \dots \dot{+} A_0$$

where A_i is an abelian subalgebra of L ;

$$L=L^{(1)}\dot{+}A_0$$

$$N = A_n \oplus (N \cap A_{n-1}) \oplus \ldots \oplus (N \cap A_0); \quad N = L^{(1)} \oplus Z(L)$$

$$N=L^{(1)}\oplus Z(L)$$

If A is a minimal ideal of L then
$$A \subseteq N \cap A_i$$
.

(i)
$$A \subseteq A_0$$
 or $A \subseteq L^{(1)}$

(ii)
$$A \subseteq A_0$$
 if and only if $A \subseteq Z(L)$

(iii)
$$A \subseteq L^{(1)}$$
 if and only if $[A, L] = A$.

Completely solvable Leibniz A-algebras (continued)

Lemma

Let L be a completely solvable Leibniz A-algebra, and let U be a maximal nilpotent subalgebra of L. Then $U = (U \cap L^{(1)}) \oplus (U \cap C)$ where C is a Cartan subalgebra of L.

Completely solvable Leibniz A-algebras (continued)

Lemma

Let L be a completely solvable Leibniz A-algebra, and let U be a maximal nilpotent subalgebra of L. Then $U = (U \cap L^{(1)}) \oplus (U \cap C)$ where C is a Cartan subalgebra of L.

Lemma

Let L be a metabelian Leibniz algebra, and let U be a maximal nilpotent subalgebra of L. Then $U \cap L^{(1)}$ is an abelian ideal of L and $L^{(1)} = (U \cap L^{(1)}) \oplus K$ where K is an ideal of L and [U, K] = K.

Definition

The Frattini subalgebra, F(L) of L is the intersection of the maximal subalgebras of L; the Frattini ideal, $\varphi(L)$, of L is the biggest ideal of L inside F(L). We call L φ -free if $\varphi(L) = 0$.

Definition

The Frattini subalgebra, F(L) of L is the intersection of the maximal subalgebras of L; the Frattini ideal, $\varphi(L)$, of L is the biggest ideal of L inside F(L). We call $L \varphi$ -free if $\varphi(L) = 0$.

Theorem

Let L be a monolithic solvable Leibniz A-algebra of derived length n+1 with monolith W. Then, with the same notation as in the Corollary above,

- (i) W is abelian;
- (ii) Z(L) = 0 and either [L, W] = W or [W, L] = W;
- (iii) $N = A_n = L^{(n)}$;
- (iv) $N = C_L(W)$; and
- (v) L is φ -free if and only if W = N.

Lemma

Let $L = L^2 \dot{+} B$ be a metabelian Leibniz algebra, where B is a subalgebra of L, and suppose that $[L^2, b] = L^2$ for all $b \in B$. Then L is a completely solvable A-algebra.

Lemma

Let $L = L^2 \dot{+} B$ be a metabelian Leibniz algebra, where B is a subalgebra of L, and suppose that $[L^2, b] = L^2$ for all $b \in B$. Then L is a completely solvable A-algebra.

Theorem

Let L be a monolithic Leibniz algebra. Then L is a completely solvable A-algebra if and only if $L = L^2 \dot{+} B$ is metabelian, where B is a subalgebra of L and $[L^2, b] = L^2$ for all $b \in B$ (or, equivalently, R_b acts invertibly on L^2).

Definition

Cyclic Leibniz algebras, L, are generated by a single element. In this case L has a basis $a, a^2, \ldots, a^n (n > 1)$ and product $[a^n, a] = \alpha_2 a^2 + \ldots + \alpha_n a^n$.

Definition

Cyclic Leibniz algebras, L, are generated by a single element. In this case L has a basis $a, a^2, \ldots, a^n (n > 1)$ and product $[a^n, a] = \alpha_2 a^2 + \ldots + \alpha_n a^n$.

Let T be the matrix for R_a with respect to the above basis. Then T is the companion matrix for $p(x) = x^n - \alpha_n x^{n-1} - \ldots - \alpha_2 x = p_1(x)^{n_1} \ldots p_r(x)^{n_r}$, where the p_j are the distinct irreducible factors of p(x).

Definition

Cyclic Leibniz algebras, L, are generated by a single element. In this case L has a basis $a, a^2, \ldots, a^n (n > 1)$ and product $[a^n, a] = \alpha_2 a^2 + \ldots + \alpha_n a^n$.

Let T be the matrix for R_a with respect to the above basis. Then T is the companion matrix for $p(x) = x^n - \alpha_n x^{n-1} - \ldots - \alpha_2 x = p_1(x)^{n_1} \ldots p_r(x)^{n_r}$, where the p_j are the distinct irreducible factors of p(x).

Theorem

L is a cyclic Leibniz A-algebra if and only if $\alpha_2 \neq 0$, and then $L = L^2 \dot{+} F(a^n - \alpha_n a^{n-1} - \cdots - \alpha_2 a)$ and we can take $p_1(x)^{n_1} = x$.

Definition

Cyclic Leibniz algebras, L, are generated by a single element. In this case L has a basis $a, a^2, \ldots, a^n (n > 1)$ and product $[a^n, a] = \alpha_2 a^2 + \ldots + \alpha_n a^n$.

Let T be the matrix for R_a with respect to the above basis. Then T is the companion matrix for $p(x) = x^n - \alpha_n x^{n-1} - \ldots - \alpha_2 x = p_1(x)^{n_1} \ldots p_r(x)^{n_r}$, where the p_j are the distinct irreducible factors of p(x).

Theorem

L is a cyclic Leibniz A-algebra if and only if $\alpha_2 \neq 0$, and then $L = L^2 \dot{+} F(a^n - \alpha_n a^{n-1} - \cdots - \alpha_2 a)$ and we can take $p_1(x)^{n_1} = x$.

Theorem

The cyclic Leibniz A-algebra L is monolithic if and only if p(x) has exactly two irreducible factors (one of which is x).

Cyclic Leibniz algebras

Corollary

The cyclic Leibniz A-algebra L is monolithic and φ -free if and only if $p(x) = xp_2(x)$

Cyclic Leibniz algebras

Corollary

The cyclic Leibniz A-algebra L is monolithic and φ -free if and only if $p(x) = xp_2(x)$

Corollary

If the underlying field is algebraically closed, then the cyclic Leibniz A-algebra L is monolithic and φ -free if and only if it is two dimensional with $[a^2, a] = a^2$.

Over a field of characteristic zero the derived length of a solvable Leibniz A-algebra is at most 2, but over a field of characteristic p it can have any finite length. However, over an algebraically closed field we have the following result.

Over a field of characteristic zero the derived length of a solvable Leibniz A-algebra is at most 2, but over a field of characteristic p it can have any finite length. However, over an algebraically closed field we have the following result.

Theorem

Let L be a solvable Leibniz A-algebra over an algebraically closed field F. Then the derived length of L is at most 3.

Proof.

Suppose that L is a minimal counter-example, so the derived length of L is four.

Proof.

Suppose that L is a minimal counter-example, so the derived length of L is four. Let A be a minimal ideal of L contained in Leib(L), and put $N = L^{(2)}$. We have that $L^{(3)} = A$.

Proof.

Suppose that L is a minimal counter-example, so the derived length of L is four. Let A be a minimal ideal of L contained in Leib(L), and put $N = L^{(2)}$. We have that $L^{(3)} = A$. Put $\bar{L} = L/\text{Leib}(L)$ and for each $x \in L$ write $\bar{x} = x + \text{Leib}(L)$. Then A is an irreducible right \bar{L} -module, and hence an irreducible right U-module, where U is the universal enveloping algebra of \bar{L} .

Proof.

Suppose that L is a minimal counter-example, so the derived length of L is four. Let A be a minimal ideal of L contained in Leib(L), and put $N = L^{(2)}$. We have that $L^{(3)} = A$. Put $\bar{L} = L/\text{Leib}(L)$ and for each $x \in L$ write $\bar{x} = x + \text{Leib}(L)$. Then A is an irreducible right \bar{L} -module, and hence an irreducible right U-module, where U is the universal enveloping algebra of \bar{L} . Let ψ be the corresponding representation of U and let $\bar{x} \in \bar{L}$, $n \in N$.

Proof.

Suppose that L is a minimal counter-example, so the derived length of L is four. Let A be a minimal ideal of L contained in Leib(L), and put $N = L^{(2)}$. We have that $L^{(3)} = A$. Put $\bar{L} = L/\text{Leib}(L)$ and for each $x \in L$ write $\bar{x} = x + \text{Leib}(L)$. Then A is an irreducible right \bar{L} -module, and hence an irreducible right U-module, where U is the universal enveloping algebra of \bar{L} . Let ψ be the corresponding representation of U and let $\bar{x} \in \bar{L}$, $n \in N$. Then $[[\bar{x}, \bar{n}], \bar{n}] = \bar{0}$, whence $[\bar{x}, \bar{n}^p] = 0$ and so $\bar{n}^p \in Z = Z(U)$.

Proof.

Suppose that L is a minimal counter-example, so the derived length of L is four. Let A be a minimal ideal of L contained in Leib(L), and put $N = L^{(2)}$. We have that $L^{(3)} = A$. Put $\bar{L} = L/\text{Leib}(L)$ and for each $x \in L$ write $\bar{x} = x + \text{Leib}(L)$. Then A is an irreducible right \bar{L} -module, and hence an irreducible right U-module, where U is the universal enveloping algebra of \bar{L} . Let ψ be the corresponding representation of U and let $\bar{x} \in \bar{L}$, $n \in N$. Then $[[\bar{x}, \bar{n}], \bar{n}] = \bar{0}$, whence $[\bar{x}, \bar{n}^p] = 0$ and so $\bar{n}^p \in Z = Z(U)$.

Let $n_1, n_2 \in N$. Then $\bar{n}_1^p, \bar{n}_2^p \in Z$, so $\alpha_1 \bar{n}_1^p + \alpha_2 \bar{n}_2^p \in \ker(\psi)$, for some $\alpha_1, \alpha_2 \in F$, since dim $\psi(Z) \leq 1$, by Schur's Lemma.

Proof.

Suppose that L is a minimal counter-example, so the derived length of L is four. Let A be a minimal ideal of L contained in Leib(L), and put $N = L^{(2)}$. We have that $L^{(3)} = A$. Put $\bar{L} = L/\text{Leib}(L)$ and for each $x \in L$ write $\bar{x} = x + \text{Leib}(L)$. Then A is an irreducible right \bar{L} -module, and hence an irreducible right U-module, where U is the universal enveloping algebra of \bar{L} . Let ψ be the corresponding representation of U and let $\bar{x} \in \bar{L}$, $n \in N$. Then $[[\bar{x}, \bar{n}], \bar{n}] = \bar{0}$, whence $[\bar{x}, \bar{n}^p] = 0$ and so $\bar{n}^p \in Z = Z(U)$.

Let $n_1, n_2 \in N$. Then $\bar{n}_1^p, \bar{n}_2^p \in Z$, so $\alpha_1 \bar{n}_1^p + \alpha_2 \bar{n}_2^p \in \ker(\psi)$, for some $\alpha_1, \alpha_2 \in F$, since dim $\psi(Z) \leqslant 1$, by Schur's Lemma. Since F is algebraically closed, there are $\beta_1, \beta_2 \in F$ such that $\alpha_1 = \beta_1^p, \alpha_2 = \beta_2^p$, so $(\beta_1 \bar{n}_1 + \beta_2 \bar{n}_2)^p = \beta_1^p \bar{n}_1^p + \beta_2^p \bar{n}_2^p \in \ker(\psi)$, since $[\bar{n}_1, \bar{n}_2] = \bar{0}$.

Proof.

Suppose that L is a minimal counter-example, so the derived length of L is four. Let A be a minimal ideal of L contained in Leib(L), and put $N = L^{(2)}$. We have that $L^{(3)} = A$. Put $\bar{L} = L/\text{Leib}(L)$ and for each $x \in L$ write $\bar{x} = x + \text{Leib}(L)$. Then A is an irreducible right \bar{L} -module, and hence an irreducible right U-module, where U is the universal enveloping algebra of \bar{L} . Let ψ be the corresponding representation of U and let $\bar{x} \in \bar{L}$, $n \in N$. Then $[[\bar{x}, \bar{n}], \bar{n}] = \bar{0}$, whence $[\bar{x}, \bar{n}^p] = 0$ and so $\bar{n}^p \in Z = Z(U)$.

Let $n_1, n_2 \in N$. Then $\bar{n}_1^p, \bar{n}_2^p \in Z$, so $\alpha_1 \bar{n}_1^p + \alpha_2 \bar{n}_2^p \in \ker(\psi)$, for some $\alpha_1, \alpha_2 \in F$, since dim $\psi(Z) \leqslant 1$, by Schur's Lemma. Since F is algebraically closed, there are $\beta_1, \beta_2 \in F$ such that $\alpha_1 = \beta_1^p, \alpha_2 = \beta_2^p$, so $(\beta_1 \bar{n}_1 + \beta_2 \bar{n}_2)^p = \beta_1^p \bar{n}_1^p + \beta_2^p \bar{n}_2^p \in \ker(\psi)$, since $[\bar{n}_1, \bar{n}_2] = \bar{0}$. It follows from this together with our earlier Lemma that $A + F(\beta_1 n_1 + \beta_2 n_2)$ is a nilpotent subalgebra of L and hence abelian.

Proof.

Suppose that L is a minimal counter-example, so the derived length of L is four. Let A be a minimal ideal of L contained in Leib(L), and put $N = L^{(2)}$. We have that $L^{(3)} = A$. Put $\bar{L} = L/\text{Leib}(L)$ and for each $x \in L$ write $\bar{x} = x + \text{Leib}(L)$. Then A is an irreducible right \bar{L} -module, and hence an irreducible right U-module, where U is the universal enveloping algebra of \bar{L} . Let ψ be the corresponding representation of U and let $\bar{x} \in \bar{L}$, $n \in N$. Then $[[\bar{x}, \bar{n}], \bar{n}] = \bar{0}$, whence $[\bar{x}, \bar{n}^p] = 0$ and so $\bar{n}^p \in Z = Z(U)$.

Let $n_1, n_2 \in N$. Then $\bar{n}_1^\rho, \bar{n}_2^\rho \in Z$, so $\alpha_1 \bar{n}_1^\rho + \alpha_2 \bar{n}_2^\rho \in \ker(\psi)$, for some $\alpha_1, \alpha_2 \in F$, since dim $\psi(Z) \leqslant 1$, by Schur's Lemma. Since F is algebraically closed, there are $\beta_1, \beta_2 \in F$ such that $\alpha_1 = \beta_1^\rho, \alpha_2 = \beta_2^\rho$, so $(\beta_1 \bar{n}_1 + \beta_2 \bar{n}_2)^\rho = \beta_1^\rho \bar{n}_1^\rho + \beta_2^\rho \bar{n}_2^\rho \in \ker(\psi)$, since $[\bar{n}_1, \bar{n}_2] = \bar{0}$. It follows from this together with our earlier Lemma that $A + F(\beta_1 n_1 + \beta_2 n_2)$ is a nilpotent subalgebra of L and hence abelian. Thus $\beta_1 \bar{n}_1 + \beta_2 \bar{n}_2 \in \ker(\psi)$ and so dim $\psi(\bar{N}) \leqslant 1$.

Proof.

Suppose that L is a minimal counter-example, so the derived length of L is four. Let A be a minimal ideal of L contained in Leib(L), and put $N = L^{(2)}$. We have that $L^{(3)} = A$. Put $\bar{L} = L/\text{Leib}(L)$ and for each $x \in L$ write $\bar{x} = x + \text{Leib}(L)$. Then A is an irreducible right \bar{L} -module, and hence an irreducible right U-module, where U is the universal enveloping algebra of \bar{L} . Let ψ be the corresponding representation of U and let $\bar{x} \in \bar{L}$, $n \in N$. Then $[[\bar{x}, \bar{n}], \bar{n}] = \bar{0}$, whence $[\bar{x}, \bar{n}^p] = 0$ and so $\bar{n}^p \in Z = Z(U)$.

Let $n_1, n_2 \in N$. Then $\bar{n}_1^p, \bar{n}_2^p \in Z$, so $\alpha_1 \bar{n}_1^p + \alpha_2 \bar{n}_2^p \in \ker(\psi)$, for some $\alpha_1, \alpha_2 \in F$, since dim $\psi(Z) \leqslant 1$, by Schur's Lemma. Since F is algebraically closed, there are $\beta_1, \beta_2 \in F$ such that $\alpha_1 = \beta_1^p, \alpha_2 = \beta_2^p$, so $(\beta_1 \bar{n}_1 + \beta_2 \bar{n}_2)^p = \beta_1^p \bar{n}_1^p + \beta_2^p \bar{n}_2^p \in \ker(\psi)$, since $[\bar{n}_1, \bar{n}_2] = \bar{0}$. It follows from this together with our earlier Lemma that $A + F(\beta_1 n_1 + \beta_2 n_2)$ is a nilpotent subalgebra of L and hence abelian. Thus $\beta_1 \bar{n}_1 + \beta_2 \bar{n}_2 \in \ker(\psi)$ and so dim $\psi(\bar{N}) \leqslant 1$. Hence $C_N(A)$ has codimension at most 1 in N.

Then dim $N/C_N(A)$) ≤ 1 . Suppose that dim $N/C_N(A)$) = 1.

Then dim $N/C_N(A)$) ≤ 1 . Suppose that dim $N/C_N(A)$) = 1. Put $S = L/C_N(A)$. Then dim $(S^{(2)}) = 1$.

Then dim $N/C_N(A)$) ≤ 1 . Suppose that dim $N/C_N(A)$) = 1. Put $S = L/C_N(A)$. Then dim $(S^{(2)}) = 1$. It follows that $S/C_L(S^{(2)}) \subseteq R_S(S^{(2)})$ and so has dimension at most one, giving $[S^{(1)}, S^{(2)}] + [S^{(2)}, S^{(1)}] = 0$.

Then dim $N/C_N(A)$ ≤ 1 . Suppose that dim $N/C_N(A)$ = 1. Put $S = L/C_N(A)$. Then dim $(S^{(2)}) = 1$. It follows that $S/C_L(S^{(2)}) \subseteq R_S(S^{(2)})$ and so has dimension at most one, giving $[S^{(1)}, S^{(2)}] + [S^{(2)}, S^{(1)}] = 0$. But now $S^{(1)}$ is nilpotent but not abelian. As S must be an A-algebra, this is a contradiction.

Then dim $N/C_N(A)$) ≤ 1 . Suppose that dim $N/C_N(A)$) = 1. Put $S = L/C_N(A)$. Then dim $(S^{(2)}) = 1$. It follows that $S/C_L(S^{(2)}) \subseteq R_S(S^{(2)})$ and so has dimension at most one, giving $[S^{(1)}, S^{(2)}] + [S^{(2)}, S^{(1)}] = 0$. But now $S^{(1)}$ is nilpotent but not abelian. As S must be an A-algebra, this is a contradiction. We therefore have that dim $(L^{(2)}/C_{L^{(2)}}(A)) = 0$, whence $[A, L^{(2)}] = 0$.

Then dim $N/C_N(A)$) ≤ 1 . Suppose that dim $N/C_N(A)$) = 1. Put $S = L/C_N(A)$. Then dim $(S^{(2)}) = 1$. It follows that $S/C_L(S^{(2)}) \subseteq R_S(S^{(2)})$ and so has dimension at most one, giving $[S^{(1)}, S^{(2)}] + [S^{(2)}, S^{(1)}] = 0$. But now $S^{(1)}$ is nilpotent but not abelian. As S must be an A-algebra, this is a contradiction. We therefore have that dim $(L^{(2)}/C_{L^{(2)}}(A)) = 0$, whence $[A, L^{(2)}] = 0$.

Now we can include $L^{(3)}$ in a chief series for L. So let $0 = A_0 \subset A_1 \subset \ldots \subset A_r = L^{(3)}$ be a chain of ideals of L each maximal in the next.

Then dim $N/C_N(A)$) ≤ 1 . Suppose that dim $N/C_N(A)$) = 1. Put $S = L/C_N(A)$. Then dim $(S^{(2)}) = 1$. It follows that $S/C_L(S^{(2)}) \subseteq R_S(S^{(2)})$ and so has dimension at most one, giving $[S^{(1)}, S^{(2)}] + [S^{(2)}, S^{(1)}] = 0$. But now $S^{(1)}$ is nilpotent but not abelian. As S must be an A-algebra, this is a contradiction. We therefore have that dim $(L^{(2)}/C_{L^{(2)}}(A)) = 0$, whence $[A, L^{(2)}] = 0$.

Now we can include $L^{(3)}$ in a chief series for L. So let $0 = A_0 \subset A_1 \subset ... \subset A_r = L^{(3)}$ be a chain of ideals of L each maximal in the next. By the above we have $[A_i, L^{(2)}] \subseteq A_{i-1}$ for each $1 \le i \le r$.

Then dim $N/C_N(A)$) ≤ 1 . Suppose that dim $N/C_N(A)$) = 1. Put $S = L/C_N(A)$. Then dim $(S^{(2)}) = 1$. It follows that $S/C_L(S^{(2)}) \subseteq R_S(S^{(2)})$ and so has dimension at most one, giving $[S^{(1)}, S^{(2)}] + [S^{(2)}, S^{(1)}] = 0$. But now $S^{(1)}$ is nilpotent but not abelian. As S must be an A-algebra, this is a contradiction. We therefore have that dim $(L^{(2)}/C_{L^{(2)}}(A)) = 0$, whence $[A, L^{(2)}] = 0$.

Now we can include $L^{(3)}$ in a chief series for L. So let $0 = A_0 \subset A_1 \subset ... \subset A_r = L^{(3)}$ be a chain of ideals of L each maximal in the next. By the above we have $[A_i, L^{(2)}] \subseteq A_{i-1}$ for each $1 \le i \le r$. It follows that $L^{(2)}$ is a nilpotent subalgebra of L and hence abelian.

Then dim $N/C_N(A)$) ≤ 1 . Suppose that dim $N/C_N(A)$) = 1. Put $S = L/C_N(A)$. Then dim $(S^{(2)}) = 1$. It follows that $S/C_L(S^{(2)}) \subseteq R_S(S^{(2)})$ and so has dimension at most one, giving $[S^{(1)}, S^{(2)}] + [S^{(2)}, S^{(1)}] = 0$. But now $S^{(1)}$ is nilpotent but not abelian. As S must be an A-algebra, this is a contradiction. We therefore have that dim $(L^{(2)}/C_{L^{(2)}}(A)) = 0$, whence $[A, L^{(2)}] = 0$.

Now we can include $L^{(3)}$ in a chief series for L. So let $0 = A_0 \subset A_1 \subset ... \subset A_r = L^{(3)}$ be a chain of ideals of L each maximal in the next. By the above we have $[A_i, L^{(2)}] \subseteq A_{i-1}$ for each $1 \le i \le r$. It follows that $L^{(2)}$ is a nilpotent subalgebra of L and hence abelian. We infer that $L^{(3)} = 0$, a contradiction. The result follows.

Residually finite varieties

Is the following true: "Let F be a finite field of characteristic p > 3. All algebras of the variety B of Leibniz algebras over F are residually finite if and only if B is generated by one finite Leibniz A-algebra"?

Residually finite varieties

Is the following true: "Let F be a finite field of characteristic p > 3. All algebras of the variety B of Leibniz algebras over F are residually finite if and only if B is generated by one finite Leibniz A-algebra"?

Question

Are there analogues of the following results for Lie A-algebras?

Residually finite varieties

Is the following true: "Let F be a finite field of characteristic p > 3. All algebras of the variety B of Leibniz algebras over F are residually finite if and only if B is generated by one finite Leibniz A-algebra"?

Question

Are there analogues of the following results for Lie A-algebras?

Theorem

Let L be a monolithic solvable Lie A-algebra of dimension greater than one over an algebraically closed field F, with monolith W. Then either

- $L = L^2 \dot{+} Fb$ where L^2 is abelian and $L^2 (adb \lambda 1)^k = 0$ for some k > 0 and some $0 \neq \lambda \in F$, and dim W = 1; or
- F has characteristic p>0, $\dim W=p$ and $L=L^{(2)}\dot{+}B$ where $L^{(2)}$ is abelian, B=Fb+Fn, [n,b]=n, $L^{(2)}(adn-\lambda 1)^k=0$ and $L^{(2)}((adb)^p-adb-\mu^p 1)^k=0$ for some k>0 and some $0\neq\lambda,\mu\in F$.

Theorem

Let L be a φ -free completely solvable Lie A-algebra over an algebraically closed field F. Then

$$L = \sum_{i=1}^{m} Fa_i + \sum_{i=1}^{n} Fb_i$$
 where $[a_i, b_j] = \lambda_{ij}a_i$

for all $1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$, other products being zero.