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Introduction

De�nition

A Lie algebra all of whose nilpotent subalgebras are abelian is called an A-algebra.

Yang-Mills Potentials

Every non-abelian nilpotent Lie algebra admits a non-trivial solution of the constant
Yang-Mills equations.

Moreover, if a subalgebra of L admits a non-trivial solution of the Yang-Mills equations,
then so does L.

It is, therefore, useful to know if a given non-nilpotent Lie algebra has a non-abelian
nilpotent subalgebra.

Residually �nite varieties

Let F be a �nite �eld of characteristic p > 3. All algebras of the variety B of Lie algebras
over F are residually �nite if and only if B is generated by one �nite Lie A-algebra.
(Premet and Semenov, 1988)
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Introduction

De�nition

An algebra L over a �eld F is called a Leibniz algebra if, for every x , y , z ∈ L, we have

[x , [y , z]] = [[x , y ], z]− [[x , z], y ]

.

In other words the right multiplication operator Rx : L→ L : y 7→ [y , x ] is a derivation of
L. As a result such algebras are sometimes called right Leibniz algebras, and there is a
corresponding notion of left Leibniz algebra. Every Lie algebra is a Leibniz algebra and
every Leibniz algebra satisfying [x , x ] = 0 for every element is a Lie algebra.

De�nition

The Leibniz kernel of L is the set Leib(L)=span{x2 : x ∈ L}. This is a two-sided ideal of
L which is the smallest ideal such that L/Leib(L) is a Lie algebra. Also [L,Leib(L)] = 0.
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Introduction

De�nition

We de�ne the following series:

L1 = L, Lk+1 = [Lk , L] and L(0) = L, L(k+1) = [L(k), L(k)] for all k = 1, 2, 3, . . .

Then L is nilpotent (resp. solvable) if Ln = 0 (resp.L(n) = 0) for some n ∈ N. If L(n) = 0
but L(n−1) 6= 0 we say that L has derived length n. The nilradical, N(L), (resp. radical,
R(L)) is the largest nilpotent (resp. solvable) ideal of L.

De�nition

The centre of L is Z(L) = {z ∈ L | [z , x ] = [x , z] = 0 for all x ∈ L}.

De�nition

If U is a subalgebra of L, the centraliser of U in L is
CL(U) = {x ∈ L | [x ,U] = [U, x ] = 0}

Example

Let L be the two-dimensional cyclic Leibniz algebra with basis a, a2 and product
[a2, a] = a2.Then this is a solvable Leibniz algebra which is not nilpotent, but which is an
A-algebra.
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Introduction

Lemma

Let A be an abelian ideal of a Leibniz algebra L and suppose that x2 ∈ A. Then
Ln
x(A) ⊆ Rn−1

x (A) for all n > 1.

Lemma

Let L be a Leibniz A-algebra and let N be its nilradical. Then

(i) N is the unique maximal abelian ideal of L;

(ii) if B and C are abelian ideals of L, we have [B,C ] = 0.

Lemma

If L is a Leibniz A-algebra over any �eld and B is an ideal of L, then L/B is a Leibniz
A-algebra.
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Introduction

Lemma

Let B, C be ideals of the Leibniz algebra L.

(i) If L/B, L/C are A-algebras, then L/(B ∩ C) is an A-algebra.

(ii) If L = B ⊕ C , where B,C are A-algebras, then L is an A-algebra.

De�nition

The nilpotent residual, γ∞(L), of L be the smallest ideal of L such that L/γ∞(L) is
nilpotent. Clearly this is the intersection of the terms of the lower central series for L.
Then the lower nilpotent series for L is the sequence of ideals Ni (L) of L de�ned by
N0(L) = L, Ni+1(L) = γ∞(Ni (L)) for i > 0.

Lemma

Let L be a Leibniz A-algebra. Then the lower nilpotent series coincides with the derived
series.
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The non-solvable case

Theorem

Let L be a Leibniz A-algebra over a �eld F . If F has characteristic 6= 2, 3 and
cohomological dimension 6 1 (this means that the Brauer group of any algebraic
extension of the underlying �eld is trivial), then

(i) L2 ∩ Z(L) = 0; and

(ii) L has a Levi decomposition and every Levi subalgebra is representable as a direct
sum of simple ideals, each one of which splits over some �nite extension of the
ground �eld into a direct sum of ideals isomorphic to sl(2).

Lemma

Let L be a Leibniz algebra over a �eld of characteristic di�erent from 2 such that L/Z(L)
is a simple three-dimensional Lie algebra. Then L = L2+̇Z(L).

De�nition

We say that L is monolithic with monolith W if W is the unique minimal ideal of L.
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The non-solvable case

Outline Proof

Let L be a minimal counter-example.Then it is straightforward to show that L is
monolithic with monlith Z(L) and unique maximal ideal M which is abelian and is the
radical Then L/M = L is simple. It follows from results of Premet and Semenov that L
is a Lie p-algebra. Moreover, our assumption on the �eld F implies that L has a
non-zero nilpotent element. Hence there exists an element u ∈ L \M such that
Rpm

u (L) ⊆ M. Let u be the image of u under the canonical homomorphism from L to L .
The element upm lies in the centre of the universal enveloping algebra U(L ), and so in
any indecomposable L-module W the set λ1(W ), . . . , λr (W ) of eigenvalues of upm

consists of elements of K that are conjugate under the Galois group Gal(K/F ). The
right module M is indecomposable and contains Z(L), and so λk(M) = 0 for some
1 6 k 6 r . It follows that u acts nilpotently on the right in L. But now u2 ∈
Leib(L) ⊆ M, so, using our Lemma, Fu + M is a nilpotent subalgebra of L and thus
abelian. This yields that u ∈ CL(M), and so CL(M) = L and M = Z(L).
Now there is a �nite extension K of F over which (L/Z(L))K splits as a direct sum of
ideals S1/Z(L)⊕ . . .⊕ Sn/Z(L) isomorphic to sl(2), by the corresponding result for Lie
algebras.Using our Lemma about splitting over Z(L) we then get the claimed result.
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Solvable Leibniz A-algebras

Lemma

Let L be any solvable Leibniz algebra with nilradical N. Then CL(N) ⊆ N

Theorem

Let L be a solvable Leibniz A-algebra. Then L splits over each term in its derived series.
Moreover, the Cartan subalgebras of L(i)/L(i+2) are precisely the subalgebras that are
complementary to L(i+1)/L(i+2) for i > 0.

Corollary

Let L be a solvable Leibniz A-algebra of derived length n + 1. Then

(i) L = An+̇An−1+̇ . . . +̇A0 where Ai is an abelian subalgebra of L for each 0 6 i 6 n;
and

(ii) L(i) = An+̇An−1+̇ . . . +̇Ai for each 0 6 i 6 n
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Solvable Leibniz A-algebras

Theorem

Let L be a solvable Leibniz A-algebra. Then Z(L) ∩ L2 = 0.

Proof.

Let L be a minimal counter-example. Then, again, a straightforward argument shows that
L is monolithic with monolith Z(L) and has a unique maximal ideal M that is abelian. It
follows that L = M+̇Fx for some x ∈ L. Let L = L0+̇L1 be the Fitting decomposition of
L relative to Rx . Then L1 = ∩∞i=1R

i
x(L) ⊆ M, and [L1, L0] ⊆ L1, so L1 is a right ideal of L.

Now
[x , [L, x ]] ⊆ [[x , L], x ] + [x2, L] ⊆ [L, x ] + [x2,M + Fx ] ⊆ [L, x ]

since x2 ∈ Leib(L) ⊆ M, so [x2,M] = 0. Then an induction argument shows that
[x ,Rk

x (L)] ⊆ Rk
x (L). It follows that [L, L1] = [x , L1] ⊆ L1 and L1 is an ideal of L.

If L1 6= 0 then Z(L) ⊆ L1 ∩ L0 = 0, a contradiction. Hence L1 = 0 and Rx is nilpotent.
But then L = M + Fx is nilpotent and hence abelian, and the result follows.
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Solvable Leibniz A-algebras

Lemma

Let L be a solvable Leibniz A-algebra of derived length 6 n + 1, and suppose that
L = B+̇C where B = L(n) and C is a subalgebra of L. If D is an ideal of L then
D = (B ∩ D)+̇(C ∩ D).

Theorem

Let L be a solvable Leibniz A-algebra of derived length n + 1 with nilradical N, and let K
be an ideal of L and A a minimal ideal of L. Then, with the same notation as in the
Corollary above,

(i) K = (K ∩ An)+̇(K ∩ An−1)+̇ . . . +̇(K ∩ A0);

(ii) N = An ⊕ (N ∩ An−1)⊕ . . .⊕ (N ∩ A0);

(iii) Z(L(i)) = N ∩ Ai for each 0 6 i 6 n; and

(iv) A ⊆ N ∩ Ai for some 0 6 i 6 n.
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Completely solvable Leibniz A-algebras

De�nition

A Leibniz algebra L is completely solvable if L(1) is nilpotent.

Clearly completely solvable Leibniz A-algebras are metabelian.

In particular, over a �eld of characteristic zero every solvable Leibniz A-algebra is
metabelian.

This is not the case, however, if the ground �eld has characteristic p > 0.
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Completely solvable Leibniz A-algebras

General case Completely solvable case

L = An+̇An−1+̇ . . . +̇A0 L = L(1)+̇A0

where Ai is an abelian subalgebra of L;

N = An ⊕ (N ∩ An−1)⊕ . . .⊕ (N ∩ A0); N = L(1) ⊕ Z(L)

If A is a minimal ideal of L then (i) A ⊆ A0 or A ⊆ L(1)

A ⊆ N ∩ Ai . (ii) A ⊆ A0 if and only if A ⊆ Z(L)

(iii)A ⊆ L(1) if and only if [A, L] = A.
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Completely solvable Leibniz A-algebras (continued)

Lemma

Let L be a completely solvable Leibniz A-algebra, and let U be a maximal nilpotent
subalgebra of L. Then U = (U ∩ L(1))⊕ (U ∩ C) where C is a Cartan subalgebra of L.

Lemma

Let L be a metabelian Leibniz algebra, and let U be a maximal nilpotent subalgebra of L.
Then U ∩ L(1) is an abelian ideal of L and L(1) = (U ∩ L(1))⊕ K where K is an ideal of L
and [U,K ] = K .
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Monolithic solvable Leibniz A-algebras

De�nition

The Frattini subalgebra, F (L) of L is the intersection of the maximal subalgebras of L;
the Frattini ideal, ϕ(L), of L is the biggest ideal of L inside F (L). We call L ϕ-free if
ϕ(L) = 0.

Theorem

Let L be a monolithic solvable Leibniz A-algebra of derived length n + 1 with monolith
W . Then, with the same notation as in the Corollary above,

(i) W is abelian;

(ii) Z(L) = 0 and either [L,W ] = W or [W , L] = W ;

(iii) N = An = L(n);

(iv) N = CL(W ); and

(v) L is ϕ-free if and only if W = N.
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Monolithic solvable Leibniz A-algebras

Lemma

Let L = L2+̇B be a metabelian Leibniz algebra, where B is a subalgebra of L, and
suppose that [L2, b] = L2 for all b ∈ B. Then L is a completely solvable A-algebra.

Theorem

Let L be a monolithic Leibniz algebra. Then L is a completely solvable A-algebra if and
only if L = L2+̇B is metabelian, where B is a subalgebra of L and [L2, b] = L2 for all
b ∈ B (or, equivalently, Rb acts invertibly on L2).
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Cyclic Leibniz algebras

De�nition

Cyclic Leibniz algebras, L, are generated by a single element. In this case L has a basis
a, a2, . . . , an(n > 1) and product [an, a] = α2a

2 + . . .+ αna
n.

Let T be the matrix for Ra with respect to the above basis. Then T is the companion
matrix for p(x) = xn − αnx

n−1 − . . .− α2x = p1(x)n1 . . . pr (x)nr , where the pj are the
distinct irreducible factors of p(x).

Theorem

L is a cyclic Leibniz A-algebra if and only if α2 6= 0, and then
L = L2+̇F (an − αna

n−1 − · · · − α2a) and we can take p1(x)n1 = x .

Theorem

The cyclic Leibniz A-algebra L is monolithic if and only if p(x) has exactly two irreducible
factors (one of which is x).
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Cyclic Leibniz algebras

Corollary

The cyclic Leibniz A-algebra L is monolithic and ϕ-free if and only if p(x) = xp2(x)

Corollary

If the underlying �eld is algebraically closed, then the cyclic Leibniz A-algebra L is
monolithic and ϕ-free if and only if it is two dimensional with [a2, a] = a2.

David Towers (Lancaster University England) Leibniz A-algebras Porto, April 2019 18 / 23



Cyclic Leibniz algebras

Corollary

The cyclic Leibniz A-algebra L is monolithic and ϕ-free if and only if p(x) = xp2(x)

Corollary

If the underlying �eld is algebraically closed, then the cyclic Leibniz A-algebra L is
monolithic and ϕ-free if and only if it is two dimensional with [a2, a] = a2.

David Towers (Lancaster University England) Leibniz A-algebras Porto, April 2019 18 / 23



Solvable Leibniz A-algebras over an algebraically closed �eld

Over a �eld of characteristic zero the derived length of a solvable Leibniz A-algebra is at
most 2, but over a �eld of characteristic p it can have any �nite length. However, over
an algebraically closed �eld we have the following result.

Theorem

Let L be a solvable Leibniz A-algebra over an algebraically closed �eld F . Then the
derived length of L is at most 3.
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Solvable Leibniz A-algebras over an algebraically closed �eld

Proof.

Suppose that L is a minimal counter-example, so the derived length of L is four.

Let A
be a minimal ideal of L contained in Leib(L), and put N = L(2). We have that L(3) = A.
Put L̄ = L/Leib(L) and for each x ∈ L write x̄ = x+Leib(L). Then A is an irreducible
right L̄-module, and hence an irreducible right U-module, where U is the universal
enveloping algebra of L̄. Let ψ be the corresponding representation of U and let x̄ ∈ L̄,
n ∈ N. Then [[x̄ , n̄], n̄] = 0̄, whence [x̄ , n̄p] = 0 and so n̄p ∈ Z = Z(U).

Let n1, n2 ∈ N. Then n̄p
1, n̄

p
2 ∈ Z , so α1n̄

p
1 + α2n̄

p
2 ∈ ker(ψ), for some α1, α2 ∈ F , since

dim ψ(Z) 6 1, by Schur's Lemma. Since F is algebraically closed, there are β1, β2 ∈ F
such that α1 = βp

1 , α2 = βp
2 , so (β1n̄1 + β2n̄2)p = βp

1 n̄
p
1 + βp

2 n̄
p
2 ∈ ker(ψ), since

[n̄1, n̄2] = 0̄. It follows from this together with our earlier Lemma that
A + F (β1n1 + β2n2) is a nilpotent subalgebra of L and hence abelian. Thus
β1n̄1 + β2n̄2 ∈ ker(ψ) and so dim ψ(N̄) 6 1. Hence CN(A) has codimension at most 1 in
N.
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Solvable Leibniz A-algebras over an algebraically closed �eld

Then dimN/CN(A)) 6 1. Suppose that dimN/CN(A)) = 1.

Put S = L/CN(A). Then
dim(S (2)) = 1. It follows that S/CL(S (2)) ⊆ RS(S (2)) and so has dimension at most one,
giving [S (1),S (2)] + [S (2),S (1)] = 0. But now S (1) is nilpotent but not abelian. As S must
be an A-algebra, this is a contradiction. We therefore have that dim (L(2)/CL(2)(A)) = 0,
whence [A, L(2)] = 0.

Now we can include L(3) in a chief series for L. So let 0 = A0 ⊂ A1 ⊂ . . . ⊂ Ar = L(3) be
a chain of ideals of L each maximal in the next. By the above we have [Ai , L

(2)] ⊆ Ai−1
for each 1 6 i 6 r . It follows that L(2) is a nilpotent subalgebra of L and hence abelian.
We infer that L(3) = 0, a contradiction. The result follows.
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Questions

Residually �nite varieties

Is the following true: �Let F be a �nite �eld of characteristic p > 3. All algebras of the
variety B of Leibniz algebras over F are residually �nite if and only if B is generated by
one �nite Leibniz A-algebra"?

Question

Are there analogues of the following results for Lie A-algebras?

Theorem

Let L be a monolithic solvable Lie A-algebra of dimension greater than one over an
algebraically closed �eld F , with monolith W . Then either

L = L2+̇Fb where L2 is abelian and L2(ad b − λ1)k = 0 for some k > 0 and some
0 6= λ ∈ F , and dimW = 1; or

F has characteristic p > 0, dimW = p and L = L(2)+̇B where L(2) is abelian,
B = Fb + Fn, [n, b] = n, L(2)(ad n − λ1)k = 0 and L(2)((ad b)p − ad b − µp1)k = 0
for some k > 0 and some 0 6= λ, µ ∈ F .
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Questions

Theorem

Let L be a ϕ-free completely solvable Lie A-algebra over an algebraically closed �eld F .
Then

L =
m∑
i=1

Fai +
n∑

i=1

Fbi where [ai , bj ] = λijai

for all 1 6 i 6 m, 1 6 j 6 n, other products being zero.
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