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The problem

The Question

Question (Miriam Cohen, 1985)

Is the smash product A#H semiprime in case H is a semisimple
Hopf algebra acting on a semiprime algebra A ?
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Semiprime rings

Definition

A ring R is semiprime if its prime radical P(R) is zero.
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Semiprime rings

Definition
A ring R is semiprime if its prime radical P(R) is zero.

P(R) =(){P < R | P is prime }.
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The problem
©00000

Semiprime rings

Definition
A ring R is semiprime if its prime radical P(R) is zero.

P(R) =(){P < R | P is prime }.

R is semiprime iff it has no nilpotent # O ideals.
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The problem
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Preliminaries

For this talk char(k) = 0.

A coalgebra (C, A, ¢€) is a k-vector space with comultiplication

C A .coC koC<E coc®cok

ST

C®CT®>AC®C®C
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Preliminaries

For this talk char(k) = 0.

A coalgebra (C, A, ¢€) is a k-vector space with comultiplication

C CeC kaC< coc cok

S

C®CT®>AC®C®C C

A

Definition

Given a coalgebra (C, A, €) and an algebra (A, m, 1) makes
Hom(C, A) into an algebra with convolution product:

(fFxg)(c)=mo(f ®g)A(c):
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Hopf algebras

Definition

A Hopf algebra H over k is an algebra and a coalgebra (H, A, ¢)
such that A and € are algebra maps and idy has an inverse in
(End(H), *).
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Hopf algebras

Definition

A Hopf algebra H over k is an algebra and a coalgebra (H, A, ¢)
such that A and € are algebra maps and idy has an inverse in
(End(H), *).

The dual H* = Hom(H, k) of a finite dimensional Hopf algebra H
is a Hopf algebra.
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Examples

Let G be a group.
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Examples

Let G be a group.

@ The group ring H = k[G] is a Hopf algebra with

Alg)=gwg, €g)=1 S =g"
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Examples

Let G be a group.

@ The group ring H = k[G] is a Hopf algebra with

Alg)=gwg, €g)=1 S =g"

@ If G is finite, then the dual group ring H* = Hom(k[G], k)
with dual basis {pg }gcc is a Hopf algebra with

A(Pg) = Z pgh_1 @ Ph; 6(pg) - 6e,g7 S(Pg) = pg—l.
heG

v
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Examples

Let G be a group.

@ The group ring H = k[G] is a Hopf algebra with

Alg)=gwg, €g)=1 S =g"

@ If G is finite, then the dual group ring H* = Hom(k[G], k)
with dual basis {pg }gcc is a Hopf algebra with

A(Pg) = Z pgh_1 @ Ph; 6(pg) - 6e,g7 S(Pg) = pg—l.
heG

Definition

A Hopf algebra isomorphic to one of these is called trivial.
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Semisimple Hopf algebras

Theorem (Larson-Radford, 1988, char(k)=0)
The following are equivalent:

Q@ H is a semisimple Hopf algebra;

@ H* is a semisimple Hopf algebra;

Q S$?=id.
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Semisimple Hopf algebras

Theorem (Larson-Radford, 1988, char(k)=0)
The following are equivalent:

Q@ H is a semisimple Hopf algebra;

@ H* is a semisimple Hopf algebra;

Q S$?=id.

Let H be any semisimple Hopf algebra.
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Semisimple Hopf algebras

Theorem (Larson-Radford, 1988, char(k)=0)
The following are equivalent:

Q@ H is a semisimple Hopf algebra;

@ H* is a semisimple Hopf algebra;

Q S$?=id.

Let H be any semisimple Hopf algebra.
Q@ H commutative & H ~ k[G]*.
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Semisimple Hopf algebras

Theorem (Larson-Radford, 1988, char(k)=0)
The following are equivalent:

Q@ H is a semisimple Hopf algebra;

@ H* is a semisimple Hopf algebra;

Q S$?=id.

Let H be any semisimple Hopf algebra.
Q@ H commutative & H ~ k[G]*.
@ H* commutative & H ~ k[G].
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Semisimple Hopf algebras

Theorem (Larson-Radford, 1988, char(k)=0)

The following are equivalent:

Q@ H is a semisimple Hopf algebra;
@ H* is a semisimple Hopf algebra;
Q S$?=id.

Let H be any semisimple Hopf algebra.

Q@ H commutative & H ~ k[G]*.
@ H* commutative & H ~ k[G].

trivial = semisimple and (commutative or cocommutative)
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A non-trivial semisimple Hopf algebra

Example (Fukuda, 1997)

Ho = CIGizi)/(2% — 31+ x-+y )

is an 8-dimensional non-trivial semisimple Hopf algebra where
G = G x G, with generators x,y and o(x) =y, o(y) = x and

1
A2)=7(181+18x+y@1-y@x)(2®2).
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Hopf module algebras

The category H-Mod of left H-modules is a tensor category
h-(vew)=AR)(VeW)=> (h-v)a (- w),
(h)
forallhe Hyve V,we W for V, W € H-Mod.
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Hopf module algebras

The category H-Mod of left H-modules is a tensor category

h-(vew)=AR)(VeW)=> (h-v)a (- w),
(h)

forallhe Hyve V,we W for V, W € H-Mod.

Definition
An algebra A in the category of left H-modules is called a (left)
H-module algebra.

| A
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The problem
©00000

Hopf module algebras

The category H-Mod of left H-modules is a tensor category

h-(vew)=AR)(VeW)=> (h-v)a (- w),
(h)

forallhe Hyve V,we W for V, W € H-Mod.

| A

Definition
An algebra A in the category of left H-modules is called a (left)
H-module algebra.

That means H acts on A such that

h-(ab)=> (h-a)(ha-b) and  h-1a=e(h)la.
(h)
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smash product

Definition (Smash product)

The smash product of a Hopf algebra H and a module algebra A is
defined on A#H := A® H with multiplication:

(a#h)(b#g) = > a(h1 - b)#hag,
(h)

with identity 1a#1y.
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0®0000

smash product

Definition (Smash product)

The smash product of a Hopf algebra H and a module algebra A is
defined on A#H := A® H with multiplication:

(a#h)(b#g) = > a(h1 - b)#hag,
(h)

with identity 1a#1y.

Definition (Invariants)

AH ={ac A| h-a=e(h)a Yhe H}.

A\
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0®0000

smash product

Definition (Smash product)

The smash product of a Hopf algebra H and a module algebra A is
defined on A#H := A® H with multiplication:

(a#h)(b#g) = > a(h1 - b)#hag,
(h)

with identity 1a#1y.

Definition (Invariants)

AH ={ac A| h-a=e(h)a Yhe H}.

Endagn(A) ~ AF i F(1).
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Examples

Example
An action k[G] ® A — A corresponds to the group homomorphism
¢ : G — Aut(A) given by

p(g)a) =g a

Moreover A#k[G] is the ordinary skew group ring.
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Examples

Example

An action k[G] ® A — A corresponds to the group homomorphism
¢ : G — Aut(A) given by

p(g)a) =g a

Moreover A#k[G] is the ordinary skew group ring.

Theorem (Fisher-Montgomery, 1978; Lorenz-Passman, 1980)

A#k|G] is semiprime for a finite group G and A semiprime.
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Examples

Example
An action k[G]* ® A — A corresponds to the grading
A= D,cc Ag given by

Ag ={pg-acAlacA}.

Moreover A#k[G]* has been used in the study of group gradings.
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Examples

Example

An action k[G]* ® A — A corresponds to the grading
A= D,cc Ag given by

Ag ={pg-acAlacA}.

Moreover A#k[G]* has been used in the study of group gradings.

Theorem (Cohen-Montgomery, 1984)

A#k[G]* is semiprime for a finite group G and A semiprime.
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The Question

Question (Miriam Cohen, 1985)

Is A#H semiprime if H is a semisimple and A semiprime ?
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A non-trivial action

Hg = (C[CQ X Cz][z; O']/<Z2 — %(1 +X+y— Xy»

Example (Kirkman-Kuzmanovich-Zhang, 2009)

Hg acts on the quantum plane A = C,4[u, v] with g2 = —1 by

X-u = -—u, y-u = u, zZ-u = v
X-v = v, y-v = —v, z-v = u.

Note that z - (uv) = —vu # vu = (z - u)(z - v).
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Contents

Conditions on A

@ Separable extensions

@ Finiteness conditions on A
@ Extending the Hopf-action
@ Commutativity

@ Necessary condition
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Conditions on A

Semisimple Hopf algebras

Theorem (Sweedler)

The following are equivalent:
@ H is a semisimple Hopf algebra;
@ H is a separable k-algebra;
© k is a projective left H-module;
Q Jdte H:Vhe H: ht =e(h)t and e(t) = 1.
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Conditions on A
[ 1]

Separable extensions

Definition (Hirata-Sugano, 1966)

A ring extension R C S is separable if mult : S®rS — S splits as
S-bimodule, i.e.

Elfy:Ze;@f;GS@RS, mult(y) =1 and sy =~vs Vs € S.
i=1
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Conditions on A
[ 1]

Separable extensions

Definition (Hirata-Sugano, 1966)

A ring extension R C S is separable if mult : S®rS — S splits as
S-bimodule, i.e.

Elfy:Ze;@f;GS@RS, mult(y) =1 and sy =~vs Vs € S.
i=1

v

H is semisimple iff A C A#H is a separable extension for all A.

Choose v =} 1#t1 ®a 14£5(12) € (A#H) ®a (A#H).
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Von Neumann regular algebras

Transfer of homological properties via separable extensions:

Let H be a semisimple Hopf algebra acting on A.

Christian Lomp On an open problem of M.Cohen concerning smash products
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Von Neumann regular algebras

Transfer of homological properties via separable extensions:

Let H be a semisimple Hopf algebra acting on A.

Q If A is von Neumann regular, i.e. all A-modules are flat, then
A#H is von Neumann regular.
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oe

Von Neumann regular algebras

Transfer of homological properties via separable extensions:

Let H be a semisimple Hopf algebra acting on A.

Q If A is von Neumann regular, i.e. all A-modules are flat, then
A#H is von Neumann regular.

@ If A is semisimple Artinian, then A#H is semisimple Artinian.
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Finiteness conditions

Can one embed A into another H-module algebra Q such that

A semiprime =—> Q#H semiprime —> A#H semiprime ?
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Classical ring of quotient

Theorem (Skryabin-VanOystayen, 2006)

If A has a right Artinian classical ring of quotient Q, then any left
H-action on A extends to Q.

Christian Lomp On an open problem of M.Cohen concerning smash products



Conditions on A
oe0

Classical ring of quotient

Theorem (Skryabin-VanOystayen, 2006)

If A has a right Artinian classical ring of quotient Q, then any left
H-action on A extends to Q.

If A is semiprime right Noetherian and H semisimple, then A#H is
semiprime.
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Classical ring of quotient

Theorem (Skryabin-VanOystayen, 2006)

If A has a right Artinian classical ring of quotient Q, then any left
H-action on A extends to Q.

If A is semiprime right Noetherian and H semisimple, then A#H is
semiprime.

Cqlu, v]#Hs is semiprime for g2 = —1.
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|dea of Skryabin-VanOystaeyen's proof

O A is a left module algebra if and only if there exists an algebra
homomorphism
p: A— Hom(H, A).
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|dea of Skryabin-VanOystaeyen's proof

O A is a left module algebra if and only if there exists an algebra
homomorphism
p: A— Hom(H, A).

@ Reduction to finite dimensional coalgebras measuring A, i.e.

H= Z{C; | G is f.d. subcoalgebra of H}.
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|dea of Skryabin-VanOystaeyen's proof

O A is a left module algebra if and only if there exists an algebra
homomorphism
p: A— Hom(H, A).

@ Reduction to finite dimensional coalgebras measuring A, i.e.

H= Z{C; | G is f.d. subcoalgebra of H}.

© For any C the following diagram can be completed:

Plc

A Hom(C, A)
|
Q _____ > HOHI(C, Q)
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Gabriel localization

When does the H-action extends to a localization Q@ = Ax with
respect to a Gabriel filter ?
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Gabriel localization

When does the H-action extends to a localization Q@ = Ax with
respect to a Gabriel filter ?

\

Theorem (Montgomery, 1992; Selvan, 1994)

A sufficient condition for this to happen is that for any right ideal
| € F there exists an H-stable right ideal Iy € F with Iy C I.
Equivalently for any h € H the action

ph:A— A a— h-a

is continuous with respect to the Gabriel topology induced by F.

(see also Rumynin, 1993; Sidorov 1996; L. 2002)
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Conditions on A
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Martindale ring of quotient

Theorem (Cohen, 1985)

Let A be any semiprime left H-module algebra. The H-action
extends to

Qo = lim{Hom(al, aA) | | Q A is H-stable and Ann(/) = 0}.
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feY 1o}

Martindale ring of quotient

Theorem (Cohen, 1985)

Let A be any semiprime left H-module algebra. The H-action
extends to

Qo = lim{Hom(al, aA) | | Q A is H-stable and Ann(/) = 0}.

J.Matczuk, 1991, used Qg to define the H-central closure of A as
the subalgebra (A, Z(Qo)").
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Extended Centroid

Definition
B =A® A% ® H becomes an algebra with

(a@b@h)(d @b ©g)=> a(h a)®(hs b)b® hg.
(h)
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Extended Centroid

B =A® A% ® H becomes an algebra with

(a@b@h)(d @b ©g)=> a(h a)®(hs b)b® hg.
(h)

Theorem (L.2002)

The self-injective hull A of A as left B-module is a left H-module
algebra with subalgebra A.
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Extended Centroid

B =A® A% ® H becomes an algebra with

(a@b@h)(d @b ©g)=> a(h a)®(hs b)b® hg.
(h)

Theorem (L.2002)

The self-injective hull A of A as left B-module is a left H-module
algebra with subalgebra A.

0 A~ (A Z(Q));
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Extended Centroid

B =A® A% ® H becomes an algebra with

(a@b@h)(d @b ©g)=> a(h a)®(hs b)b® hg.
(h)

Theorem (L.2002)

The self-injective hull A of A as left B-module is a left H-module
algebra with subalgebra A.

0 A~ (A Z(Q));
@ Endg(A) ~ Z(Qo)".
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Extended Centroid

B =A® A% ® H becomes an algebra with

(a@b@h)(d @b ©g)=> a(h a)®(hs b)b® hg.
(h)

Theorem (L.2002)

The self-injective hull A of A as left B-module is a left H-module
algebra with subalgebra A.

0 A= (A Z(Q)")
Q EndB(A) ~ Z(Qo)H.
© Z(Qo)" is von Neumann regular and self-injective.
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Commutative module algebras

A commutative semprime and H semisimple = A#H semiprime.
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®00

Commutative module algebras

A commutative semprime and H semisimple = A#H semiprime.

@ A commutative = A commutative;
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Commutative module algebras

A commutative semprime and H semisimple = A#H semiprime.

@ A commutative = A commutative;
Q AH - Ais an integral extension (Zhu, 1996)
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Commutative module algebras

A commutative semprime and H semisimple = A#H semiprime.

@ A commutative = A commutative;
Q AH - Ais an integral extension (Zhu, 1996)

O Ais von Neumann regular as A" is.

Christian Lomp On an open problem of M.Cohen concerning smash products
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®00

Commutative module algebras

A commutative semprime and H semisimple = A#H semiprime.

@ A commutative = A commutative;
Q AH - Ais an integral extension (Zhu, 1996)

O Ais von Neumann regular as A" is.

(4] E#H is von Neumann regular (separability).
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Conditions on A
®00

Commutative module algebras

A commutative semprime and H semisimple = A#H semiprime.

@ A commutative = A commutative;
Q AH - Ais an integral extension (Zhu, 1996)

O Ais von Neumann regular as A" is.

(4] E#H is von Neumann regular (separability).

@ A#H is semiprime (central extension).
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Actions on integral domains

Theorem (Etingof-Walton, 2013)

Let A be an integral domain. For any action of a semisimple Hopf
algebra H on A exists a Hopf ideal | of H and a group G such that

I-A=0 and H/I ~ k[G].
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Conditions on A
oeo

Actions on integral domains

Theorem (Etingof-Walton, 2013)

Let A be an integral domain. For any action of a semisimple Hopf
algebra H on A exists a Hopf ideal | of H and a group G such that

I-A=0 and H/I ~ k[G].

This means that H acts virtually as a group algebra.
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Pl algebras

Theorem (Linchenko-Montgomery, 2007)

A P.I. semprime and H semisimple = A#H semiprime.
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Pl algebras

Theorem (Linchenko-Montgomery, 2007)
A P.I. semprime and H semisimple = A#H semiprime.

Proof.
@ Reduction to finite dimensional factors A/P of A
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Pl algebras

Theorem (Linchenko-Montgomery, 2007)
A P.I. semprime and H semisimple = A#H semiprime.

Proof.
@ Reduction to finite dimensional factors A/P of A
@ (Linchenko, 2003): Jac(A/P) is H-stable for A/P f.d.
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Pl algebras

Theorem (Linchenko-Montgomery, 2007)
A P.I. semprime and H semisimple = A#H semiprime.

@ Reduction to finite dimensional factors A/P of A
@ (Linchenko, 2003): Jac(A/P) is H-stable for A/P f.d.
© (Blattner-Montgomery duality):

A#H#H* ~ My(A)  with n = dim(H).

Hence Cohen's question is equivalent to:
S#H* semiprime = S semiprime for S = A#H?

Ol
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Pl algebras

Theorem (Linchenko-Montgomery, 2007)
A P.I. semprime and H semisimple = A#H semiprime.

@ Reduction to finite dimensional factors A/P of A
@ (Linchenko, 2003): Jac(A/P) is H-stable for A/P f.d.
© (Blattner-Montgomery duality):

A#H#H* ~ My(A)  with n = dim(H).

Hence Cohen's question is equivalent to:
S#H* semiprime = S semiprime for S = A#H?

Ol

(Borges-L., 2011): proof works for weak Hopf algebras



Conditions on A
°

Large invariants

Let t € H be with ht = €(h)t,Vh € H and €(t) = 1.
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Conditions on A
°

Large invariants

Let t € H be with ht = €(h)t,Vh € H and €(t) = 1.
If A#H is semiprime, then (/#t)% # 0 for any H-stable left ideal /
of A ie. 0 (t-1) C 1N A"
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Conditions on A
°

Large invariants

Let t € H be with ht = €(h)t,Vh € H and €(t) = 1.
If A#H is semiprime, then (/#t)% # 0 for any H-stable left ideal /
of A ie. 0 (t-1) C 1N A"

If A#H is semiprime and H semisimple, then any non-zero
H-stable left ideal of A contains non-zero H-invariant elements.
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Conditions on A
°

Large invariants

Let t € H be with ht = €(h)t,Vh € H and €(t) = 1.
If A#H is semiprime, then (/#t)% # 0 for any H-stable left ideal /
of A ie. 0 (t-1) C 1N A"

Corollary

If A#H is semiprime and H semisimple, then any non-zero
H-stable left ideal of A contains non-zero H-invariant elements.

Question

Is it always true, that | N A =0 for | an H-stable left ideal of A,
H semisimple and A semiprime ?

A\
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°

Large invariants

Let t € H be with ht = €(h)t,Vh € H and €(t) = 1.
If A#H is semiprime, then (/#t)% # 0 for any H-stable left ideal /
of A ie. 0 (t-1) C 1N A"

Corollary

If A#H is semiprime and H semisimple, then any non-zero
H-stable left ideal of A contains non-zero H-invariant elements.

Question

Is it always true, that | N A =0 for | an H-stable left ideal of A,
H semisimple and A semiprime ?

A\

Bergman-Isaacs, 1973 proved this for group actions.
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Conditions on A
°

Large invariants

Let t € H be with ht = €(h)t,Vh € H and €(t) = 1.
If A#H is semiprime, then (/#t)% # 0 for any H-stable left ideal /
of A ie. 0 (t-1) C 1N A"

Corollary

If A#H is semiprime and H semisimple, then any non-zero
H-stable left ideal of A contains non-zero H-invariant elements.

Question

Is it always true, that | N A =0 for | an H-stable left ideal of A,
H semisimple and A semiprime ?

A\

Bergman-Isaacs, 1973 proved this for group actions.
Bathurin-Linchenko, 1998 gave criteria for Hopf actions.
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Conditions on H

Trivial Hopf algebras

Recall that a semisimple Hopf algebra H is trivial if it is
commutative or cocommutative, i.e. if H = k[G] or H = k[G]".
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Conditions on H

Trivial Hopf algebras

Recall that a semisimple Hopf algebra H is trivial if it is
commutative or cocommutative, i.e. if H = k[G] or H = k[G]".

Theorem (Zhu, 1994)
A Hopf algebra of prime dimension is a group ring.
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Conditions on H

Trivial Hopf algebras

Recall that a semisimple Hopf algebra H is trivial if it is
commutative or cocommutative, i.e. if H = k[G] or H = k[G]".

Theorem (Zhu, 1994)
A Hopf algebra of prime dimension is a group ring.

Theorem (Etingof-Gelaki, 1998)

Any Hopf algebra whose dimension is a product pq of two prime
numbers is trivial.
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Normal sub-Hopfalgebras

Definition

A Hopf subalgebra U of H is called normal if it is stable under the
adjoint action, i.e.

Vhe H:adp(U) =Y mUS(h) C U.
(h)
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©00

Normal sub-Hopfalgebras

Definition

A Hopf subalgebra U of H is called normal if it is stable under the
adjoint action, i.e.

Vhe H:adp(U) =Y mUS(h) C U.
(h)

If U is normal in H, then H = H/U" becomes a Hopf algebra with
Ut = UnKer(e).
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Conditions on H
©00

Normal sub-Hopfalgebras

Definition

A Hopf subalgebra U of H is called normal if it is stable under the
adjoint action, i.e.

Vhe H:adp(U) =Y mUS(h) C U.
(h)

If U is normal in H, then H = H/U" becomes a Hopf algebra with
Ut = UnKer(e). Moreover H can be recovered from U and H as

a crossed product B
H~ U#,H.
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Semisolvable Hopf algebras

Definition (Montgomery-Whiterspoon, 1998)

A Hopf algebra H is called semisolvable if it has a normal series
k=Ho<H < ---Hpn1<dHn=H

such that H,-/Hit1 is either commutative or cocommutative.
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Semisolvable Hopf algebras

Definition (Montgomery-Whiterspoon, 1998)

A Hopf algebra H is called semisolvable if it has a normal series
k=Ho<H < ---Hpn1<dHn=H

such that H,-/Hit1 is either commutative or cocommutative.

Example

For Hg = C[C, x G][z;0]/(z> — 3(1 4+ x + y — xy)) one has

U= (C[CQ X C2] < H8 and f’l’g/UJr ~ (C[Cg]
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Positive answer for semisolvable Hopf algebras

Theorem (Montgomery-Schneider, 1999)

If H is a semisolvable and semisimple Hopf algebra and A a
semiprime, then A#H is semiprime.

Christian Lomp On an open problem of M.Cohen concerning smash products



Conditions on H
ooe

Positive answer for semisolvable Hopf algebras

Theorem (Montgomery-Schneider, 1999)

If H is a semisolvable and semisimple Hopf algebra and A a
semiprime, then A#H is semiprime.

Theorem (Masuoka)

Every Hopf algebra of dimension p", p prime, is semisolvable.
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Positive answer for semisolvable Hopf algebras

Theorem (Montgomery-Schneider, 1999)

If H is a semisolvable and semisimple Hopf algebra and A a
semiprime, then A#H is semiprime.

Theorem (Masuoka)

Every Hopf algebra of dimension p", p prime, is semisolvable.

Theorem (Natale)

The only semisimple Hopf algebra of dimension less than 60 that is
not semisolvable is a “twist” of k[S3 x S3| in dimension 36.
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Twists

Definition
A twist for a Hopf algebra H is an invertible element J € H® H,
such that

Uel)(Ax)() =011 A))),
(ex)(J)=1=(1¢€())
holds. J
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Twisting a Hopf algebra

Definition
Let J € H®? be a twist. Then (H, m, A7, ¢,S7) is also a Hopf
algebra with

AJ(h) = JA(R)JTY,  SY(h):= US(h)U™?

for all h € H with U := m(1® S)(J) = > J1S(J?).
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Twisted module algebras

Definition
Let (A, i, 1) be a left H-module algebra and J a twist for H. The
new multiplication on A defined by

a.yb=p'(a@b):=) (Q'-a)(Q>-b) forallabe A

makes A a left H/-module algebra.

Here J71 = Q' ® Q2.
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Cohen's question for twists

Theorem (Majid, 1997)
A#H ~ A#H? as algebras.
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Cohen's question for twists

Theorem (Majid, 1997)
A#H ~ A#H? as algebras.

If A#H is semiprime for all semiprime H-module algebras A, then
the same is true for any H?-module algebra over a twist H”.
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Etingof-Gelaki 1998

A Hopf algebra is called triangular, if there exists an invertible
element R € H ® H with

(A ®1)(R) = RizRos,

(1 &® A)(R) = Ri13R12,
A =RAR 1 und R7! = 7(R).
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Etingof-Gelaki 1998

A Hopf algebra is called triangular, if there exists an invertible
element R € H ® H with

(A®1)(R) = Ri13Ras,

(1 (9] A)(R) = Ri13R12,
A =RAR 1 und R7! = 7(R).

Theorem (Etingof-Gelaki, 1998)

Any semisimple triangular Hopf algebra is isomorphic to a twist of
a group algebra.
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Corollary

Cohen’s question has a positive solution for
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Conclusion

Corollary

Cohen’s question has a positive solution for

@ all semisimple Hopf algebras H that are twists of semisolvable
Hopf algebras (in particular for dim(H) < 60).
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Conclusion

Conclusion

Corollary

Cohen’s question has a positive solution for

@ all semisimple Hopf algebras H that are twists of semisolvable
Hopf algebras (in particular for dim(H) < 60).

@ all semiprime module algebras A that either satisfy a Pl or
have an Artinian quotient ring.
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Conclusion

Future directions

© Find a semisimple Hopf algebra H that is not a twist of a
semisolvable Hopf algebra and a suitable H-action on a
semiprime algebra A.

Christian Lomp On an open problem of M.Cohen concerning smash products



Conclusion

Future directions

© Find a semisimple Hopf algebra H that is not a twist of a
semisolvable Hopf algebra and a suitable H-action on a
semiprime algebra A.

@ Extend Etingof-Walton's result on integral domains. Study
Hopf algebra actions on domains (simple domains or free
algebras).
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Conclusion

Future directions

© Find a semisimple Hopf algebra H that is not a twist of a
semisolvable Hopf algebra and a suitable H-action on a
semiprime algebra A.

@ Extend Etingof-Walton's result on integral domains. Study
Hopf algebra actions on domains (simple domains or free
algebras).

© Look at more general actions than Hopf algebra actions like

actions of weak Hopf algebras, Hopfish algebras, bialgebroids
to find counterexamples.
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Conclusion

Future directions

© Find a semisimple Hopf algebra H that is not a twist of a
semisolvable Hopf algebra and a suitable H-action on a
semiprime algebra A.

@ Extend Etingof-Walton's result on integral domains. Study
Hopf algebra actions on domains (simple domains or free
algebras).

© Look at more general actions than Hopf algebra actions like
actions of weak Hopf algebras, Hopfish algebras, bialgebroids
to find counterexamples.

Q@ Recovered known results for module categories over fusion
categories.
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