Conditions on H

On an open problem of M.Cohen concerning smash products

Christian Lomp

Universidade do Porto

2013-11-09

The	problem
000	000000000

Conditions on *H*

Contents

The problem
 Preliminaries
 Hopf algebra actions

Conditions on A

- Separable extensions
- Finiteness conditions on A
- Extending the Hopf-action
- Commutativity
- Necessary condition
- Conditions on *H* Semisolvable Hopf algebras
 - Drinfeld twists

イロン イヨン イヨン イヨン

æ

The Question

Question (Miriam Cohen, 1985)

Is the smash product A # H semiprime in case H is a semisimple Hopf algebra acting on a semiprime algebra A?

イロト イヨト イヨト イヨト

Conditions on A

Conditions on H

Conclusion

Semiprime rings

Definition

A ring R is semiprime if its prime radical P(R) is zero.

Christian Lomp On an open problem of M.Cohen concerning smash products

イロト イヨト イヨト イヨト

Conditions on A

Conditions on H

Conclusion

Semiprime rings

Definition

A ring R is semiprime if its prime radical P(R) is zero.

$$P(R) = \bigcap \{ P \trianglelefteq R \mid P \text{ is prime } \}.$$

イロト イヨト イヨト イヨト

æ

Semiprime rings

Definition

A ring R is semiprime if its prime radical P(R) is zero.

$$P(R) = \bigcap \{ P \trianglelefteq R \mid P \text{ is prime } \}.$$

R is semiprime iff it has no nilpotent \neq 0 ideals.

イロン イヨン イヨン イヨン

The problem ○●○○○○○○○○○	Conditions on A	Conditions on H	Conclusion
Preliminaries			

For this talk char(k) = 0.

Definition

A coalgebra (C, Δ, ϵ) is a k-vector space with comultiplication

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

The problem ○●○○○○○○○○○	Conditions on A	Conditions on H	Conclusion
Preliminaries			

For this talk char(k) = 0.

Definition

A coalgebra (C, Δ, ϵ) is a k-vector space with comultiplication

Definition

Given a coalgebra (C, Δ, ϵ) and an algebra (A, m, 1) makes Hom(C, A) into an algebra with convolution product:

$$(f * g)(c) = m \circ (f \otimes g)\Delta(c)$$
:

Conditions on H

Definition

Hopf algebras

A Hopf algebra H over k is an algebra and a coalgebra (H, Δ, ϵ) such that Δ and ϵ are algebra maps and id_H has an inverse in (End(H), *).

イロン イヨン イヨン イヨン

Conditions on H

Definition

Hopf algebras

A Hopf algebra H over k is an algebra and a coalgebra (H, Δ, ϵ) such that Δ and ϵ are algebra maps and id_H has an inverse in (End(H), *).

Example

The dual $H^* = Hom(H, k)$ of a finite dimensional Hopf algebra H is a Hopf algebra.

・ロト ・回ト ・ヨト ・ヨト

The problem	Conditions on A	Conditions on H	Conclusion
Examples			
Let G be a	group.		

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

The problem	Conditions on A	Condit	ions on H	Conclusior
Examples	S			
Let G	be a group.			
Examp	le			
• TI	ne group ring $H = k[G]$	is a Hopf alge	bra with	
	$\Delta(g) = g \otimes g,$	$\epsilon(g) = 1,$	$S(g) = g^{-1}.$	

The p	oooooooo	Conditions on A	Condi 0000	tions on H	Conclusion
Ex	amples				
	Let G be a	group.			
	Example				
	 The g 	roup ring $H = k[G]$	is a Hopf alge	bra with	
		$\Delta(g)=g\otimes g,$	$\epsilon(g)=1,$	$S(g) = g^{-1}$	
	If G is with d	; finite, then the dua lual basis $\{p_g\}_{g\in G}$ i	al group ring <i>H</i> s a Hopf algeb	$H^* = \operatorname{Hom}(k[G])$;], k)
	$\Delta(p_g)$	$=\sum_{h\in G}p_{gh^{-1}}\otimes p_h,$	$\epsilon(p_g) = \delta$	$_{e,g}, \qquad S(p_g)$	$= p_{g^{-1}}.$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

The p	ocococococococococococococococococococ	Conditions on A	Conditions on H	Conclusion
Ex	amples			
	Let G be a	a group.		
	Example			
	The g	;roup ring $H = k[G]$ i	s a Hopf algebra with	
		$\Delta(g)=g\otimes g,$	$\epsilon(g)=1, \qquad S(g)=1$	$= g^{-1}$.
	If G i with c	s finite, then the dual dual basis $\{p_g\}_{g\in G}$ is	group ring $H^* = Hon$ a Hopf algebra with	n(k[G], k)
	$\Delta(\rho_g$	$)=\sum_{h\in G}p_{gh^{-1}}\otimes p_h,$	$\epsilon(p_g) = \delta_{e,g},$	$S(p_g)=p_{g^{-1}}.$

Definition

A Hopf algebra isomorphic to one of these is called trivial.

Conditions on H

Semisimple Hopf algebras

Theorem (Larson-Radford, 1988, char(k)=0)

The following are equivalent:

- H is a semisimple Hopf algebra;
- *• H*^{*} *is a semisimple Hopf algebra;*
- **3** $S^2 = id$.

イロン イヨン イヨン イヨン

Conditions on H

Semisimple Hopf algebras

Theorem (Larson-Radford, 1988, char(k)=0)

The following are equivalent:

- H is a semisimple Hopf algebra;
- *H^{*} is a semisimple Hopf algebra;*

3
$$S^2 = id$$
.

Corollary

Let H be any semisimple Hopf algebra.

(4月) (4日) (4日)

Semisimple Hopf algebras

Theorem (Larson-Radford, 1988, char(k)=0)

The following are equivalent:

- H is a semisimple Hopf algebra;
- *H^{*} is a semisimple Hopf algebra;*

3
$$S^2 = id$$
.

Corollary

Let H be any semisimple Hopf algebra.

1 H commutative
$$\Leftrightarrow$$
 H \simeq k[G]*.

(4月) (4日) (4日)

Semisimple Hopf algebras

Theorem (Larson-Radford, 1988, char(k)=0)

The following are equivalent:

- H is a semisimple Hopf algebra;
- *H^{*} is a semisimple Hopf algebra;*

3
$$S^2 = id$$
.

Corollary

Let H be any semisimple Hopf algebra.

- H commutative \Leftrightarrow $H \simeq k[G]^*$.
- **2** H^* commutative $\Leftrightarrow H \simeq k[G]$.

Semisimple Hopf algebras

Theorem (Larson-Radford, 1988, char(k)=0)

The following are equivalent:

- H is a semisimple Hopf algebra;
- *H^{*} is a semisimple Hopf algebra;*

3 $S^2 = id$.

Corollary

Let H be any semisimple Hopf algebra.

- H commutative \Leftrightarrow H \simeq k[G]*.
- **2** H^* commutative $\Leftrightarrow H \simeq k[G]$.

trivial = semisimple and (commutative or cocommutative)

イロト イヨト イヨト イヨト

Conditions on A

Conditions on H

Conclusion

A non-trivial semisimple Hopf algebra

Example (Fukuda, 1997)

$$H_8 = \mathbb{C}[G][z;\sigma]/\langle z^2 - \frac{1}{2}(1+x+y-xy)\rangle$$

is an 8-dimensional non-trivial semisimple Hopf algebra where $G = C_2 \times C_2$ with generators x, y and $\sigma(x) = y$, $\sigma(y) = x$ and

$$\Delta(z)=rac{1}{2}(1\otimes 1+1\otimes x+y\otimes 1-y\otimes x)(z\otimes z).$$

・ロト ・回ト ・ヨト ・ ヨト

The problem ○○○○○●○○○○○	Conditions on A	Conditions on H	Conclusion
Hopf module	algebras		

The category H-Mod of left H-modules is a tensor category

$$h \cdot (v \otimes w) = \Delta(h)(V \otimes W) = \sum_{(h)} (h_1 \cdot v) \otimes (h_2 \cdot w),$$

for all $h \in H, v \in V, w \in W$ for $V, W \in H$ -Mod.

回 と く ヨ と く ヨ と

The problem ○○○○○●○○○○○	Conditions on A	Conditions on H	Conclusion
Hopf module alg	gebras		

The category H-Mod of left H-modules is a tensor category

$$h \cdot (v \otimes w) = \Delta(h)(V \otimes W) = \sum_{(h)} (h_1 \cdot v) \otimes (h_2 \cdot w),$$

for all $h \in H, v \in V, w \in W$ for $V, W \in H$ -Mod.

Definition

An algebra A in the category of left H-modules is called a (left) H-module algebra.

<回と < 目と < 目と

The problem ○○○○○●○○○○○	Conditions on A	Conditions on H	Conclusion
Hopf module alg	gebras		

The category H-Mod of left H-modules is a tensor category

$$h \cdot (v \otimes w) = \Delta(h)(V \otimes W) = \sum_{(h)} (h_1 \cdot v) \otimes (h_2 \cdot w),$$

for all $h \in H, v \in V, w \in W$ for $V, W \in H$ -Mod.

Definition

An algebra A in the category of left H-modules is called a (left) H-module algebra.

That means H acts on A such that

$$h \cdot (ab) = \sum_{(h)} (h_1 \cdot a)(h_2 \cdot b)$$
 and $h \cdot 1_A = \epsilon(h)1_A$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The	problem
000	000000000

Conditions on H

smash product

Definition (Smash product)

The smash product of a Hopf algebra H and a module algebra A is defined on $A#H := A \otimes H$ with multiplication:

$$(a\#h)(b\#g) = \sum_{(h)} a(h_1 \cdot b)\#h_2g,$$

with identity $1_A \# 1_H$.

イロン イヨン イヨン イヨン

The	problem
000	000000000

Conditions on H

smash product

Definition (Smash product)

The smash product of a Hopf algebra H and a module algebra A is defined on $A#H := A \otimes H$ with multiplication:

$$(a\#h)(b\#g) = \sum_{(h)} a(h_1 \cdot b)\#h_2g,$$

with identity $1_A \# 1_H$.

Definition (Invariants)

$$A^{H} = \{ a \in A \mid h \cdot a = \epsilon(h)a \ \forall h \in H \}.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

The	problem
000	000000000

Conditions on H

smash product

Definition (Smash product)

The smash product of a Hopf algebra H and a module algebra A is defined on $A#H := A \otimes H$ with multiplication:

$$(a\#h)(b\#g) = \sum_{(h)} a(h_1 \cdot b)\#h_2g,$$

with identity $1_A \# 1_H$.

Definition (Invariants)

$$A^{H} = \{ a \in A \mid h \cdot a = \epsilon(h)a \ \forall h \in H \}.$$

$$\operatorname{End}_{A\#H}(A) \simeq A^H \qquad f \mapsto f(1).$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Examples

Example

An action $k[G] \otimes A \to A$ corresponds to the group homomorphism $\varphi : G \to Aut(A)$ given by

$$\varphi(g)(a) = g \cdot a.$$

Moreover A # k[G] is the ordinary skew group ring.

(ロ) (同) (E) (E) (E)

Examples

Example

An action $k[G] \otimes A \to A$ corresponds to the group homomorphism $\varphi : G \to Aut(A)$ given by

$$\varphi(g)(a)=g\cdot a.$$

Moreover A # k[G] is the ordinary skew group ring.

Theorem (Fisher-Montgomery, 1978; Lorenz-Passman, 1980)

A # k[G] is semiprime for a finite group G and A semiprime.

(ロ) (同) (E) (E) (E)

Examples

Example

An action $k[G]^* \otimes A \to A$ corresponds to the grading $A = \bigoplus_{g \in G} A_g$ given by

$$A_g = \{ p_g \cdot a \in A \mid a \in A \}.$$

Moreover $A \# k[G]^*$ has been used in the study of group gradings.

<ロ> (四) (四) (三) (三) (三)

Examples

Example

An action $k[G]^* \otimes A \to A$ corresponds to the grading $A = \bigoplus_{g \in G} A_g$ given by

$$A_g = \{ p_g \cdot a \in A \mid a \in A \}.$$

Moreover $A \# k[G]^*$ has been used in the study of group gradings.

Theorem (Cohen-Montgomery, 1984)

 $A \# k[G]^*$ is semiprime for a finite group G and A semiprime.

(ロ) (同) (E) (E) (E)

The problem ○○○○○○○○○●○	Conditions on A	Conditions on H	Conclusi
The Question			

Question (Miriam Cohen, 1985)

Is A#H semiprime if H is a semisimple and A semiprime ?

(人間) (人) (人) (人) (人)

on

Conditions on A

Conditions on H

Conclusion

A non-trivial action

$$H_8 = \mathbb{C}[C_2 \times C_2][z;\sigma]/\langle z^2 - \frac{1}{2}(1+x+y-xy)\rangle$$

Example (Kirkman-Kuzmanovich-Zhang, 2009)

 H_8 acts on the quantum plane $A = \mathbb{C}_q[u,v]$ with $q^2 = -1$ by

$x \cdot u$	=	-u,	у·и	=	и,	z·и	=	V
$x \cdot v$	=	ν,	$y \cdot v$	=	-v,	$z \cdot v$	=	и.

Note that $z \cdot (uv) = -vu \neq vu = (z \cdot u)(z \cdot v)$.

Conditions on A

Conditions on *H*

Conclusion

Contents

The problem Preliminaries Hopf algebra actions

Conditions on A

- Separable extensions
- Finiteness conditions on A
- Extending the Hopf-action
- Commutativity
- Necessary condition

Conditions on *H* Semisolvable Hopf algebras Drinfeld twists

Conclusion

イロン イヨン イヨン イヨン

Conditions on A

Conditions on H

Conclusion

Semisimple Hopf algebras

Theorem (Sweedler)

The following are equivalent:

- H is a semisimple Hopf algebra;
- 2 H is a separable k-algebra;
- **(3)** *k* is a projective left H-module;
- **4** $\exists t \in H : \forall h \in H : ht = \epsilon(h)t \text{ and } \epsilon(t) = 1.$

イロト イポト イヨト イヨト

Separable extensions

Definition (Hirata-Sugano, 1966)

A ring extension $R \subseteq S$ is separable if mult : $S \otimes_R S \to S$ splits as *S*-bimodule, i.e.

$$\exists \gamma = \sum_{i=1}^{n} e_i \otimes f_i \in S \otimes_R S, \qquad \text{mult}(\gamma) = 1 \text{ and } s\gamma = \gamma s \ \forall s \in S.$$

イロト イヨト イヨト イヨト

Separable extensions

Definition (Hirata-Sugano, 1966)

A ring extension $R \subseteq S$ is separable if mult : $S \otimes_R S \to S$ splits as *S*-bimodule, i.e.

$$\exists \gamma = \sum_{i=1}^{n} e_i \otimes f_i \in S \otimes_R S, \qquad \text{mult}(\gamma) = 1 \text{ and } s\gamma = \gamma s \ \forall s \in S.$$

Corollary

H is semisimple iff $A \subseteq A \# H$ is a separable extension for all A.

Choose $\gamma = \sum_{(t)} 1 \# t_1 \otimes_A 1 \# S(t_2) \in (A \# H) \otimes_A (A \# H).$
Conditions on A

Conditions on H

Conclusion

Von Neumann regular algebras

Transfer of homological properties via separable extensions:

Theorem

Let H be a semisimple Hopf algebra acting on A.

(4月) (4日) (4日)

Conditions on A

Conditions on H

Conclusion

Von Neumann regular algebras

Transfer of homological properties via separable extensions:

Theorem

Let H be a semisimple Hopf algebra acting on A.

 If A is von Neumann regular, i.e. all A-modules are flat, then A#H is von Neumann regular.

(4月) (4日) (4日)

Conditions on A

Conditions on H

Conclusion

Von Neumann regular algebras

Transfer of homological properties via separable extensions:

Theorem

Let H be a semisimple Hopf algebra acting on A.

- If A is von Neumann regular, i.e. all A-modules are flat, then A#H is von Neumann regular.
- **2** If A is semisimple Artinian, then A#H is semisimple Artinian.

The	problem

Conditions on H

Finiteness conditions

Question

Can one embed A into another H-module algebra Q such that

A semiprime $\implies Q \# H$ semiprime $\implies A \# H$ semiprime ?

イロン イヨン イヨン イヨン

Conditions on H

Classical ring of quotient

Theorem (Skryabin-VanOystayen, 2006)

If A has a right Artinian classical ring of quotient Q, then any left H-action on A extends to Q.

- - 4 回 ト - 4 回 ト

Classical ring of quotient

Theorem (Skryabin-VanOystayen, 2006)

If A has a right Artinian classical ring of quotient Q, then any left H-action on A extends to Q.

Corollary

If A is semiprime right Noetherian and H semisimple, then A # H is semiprime.

イロト イヨト イヨト イヨト

Classical ring of quotient

Theorem (Skryabin-VanOystayen, 2006)

If A has a right Artinian classical ring of quotient Q, then any left H-action on A extends to Q.

Corollary

If A is semiprime right Noetherian and H semisimple, then A # H is semiprime.

Example

 $\mathbb{C}_q[u, v] \# H_8$ is semiprime for $q^2 = -1$.

イロト イヨト イヨト イヨト

 The problem
 Conditions on A
 Conditions on H
 Conclusion

 00000000000
 0000000000
 000000000
 000000000

Idea of Skryabin-VanOystaeyen's proof

• A is a left module algebra if and only if there exists an algebra homomorphism

 $\rho: A \to \operatorname{Hom}(H, A).$

・ 母 と ・ ヨ と ・ ヨ と

 The problem
 Conditions on A
 Conditions on H
 Conclusion

 00000000000
 0000000000
 000000000
 000000000

Idea of Skryabin-VanOystaeyen's proof

• A is a left module algebra if and only if there exists an algebra homomorphism

$$\rho: A \to \operatorname{Hom}(H, A).$$

2 Reduction to finite dimensional coalgebras measuring A, i.e.

$$H = \sum \{C_i \mid C_i \text{ is f.d. subcoalgebra of } H\}.$$

 The problem
 Conditions on A
 Conditions on H
 Conclusion

 coordeecoord
 coordeecoord
 coordeecoord
 coordeecoord

Idea of Skryabin-VanOystaeyen's proof

• A is a left module algebra if and only if there exists an algebra homomorphism

$$\rho: A \to \operatorname{Hom}(H, A).$$

2 Reduction to finite dimensional coalgebras measuring A, i.e.

$$H = \sum \{C_i \mid C_i \text{ is f.d. subcoalgebra of } H\}.$$

• For any C the following diagram can be completed:

Conditions on A

Conditions on H

Gabriel localization

Question

When does the H-action extends to a localization $Q = A_{\mathcal{F}}$ with respect to a Gabriel filter ?

イロン イヨン イヨン イヨン

3

Gabriel localization

Question

When does the H-action extends to a localization $Q = A_{\mathcal{F}}$ with respect to a Gabriel filter ?

Theorem (Montgomery, 1992; Selvan, 1994)

A sufficient condition for this to happen is that for any right ideal $I \in \mathcal{F}$ there exists an H-stable right ideal $I_H \in \mathcal{F}$ with $I_H \subseteq I$. Equivalently for any $h \in H$ the action

$$\rho_h: A \longrightarrow A \qquad a \longmapsto h \cdot a$$

is continuous with respect to the Gabriel topology induced by \mathcal{F} .

(see also Rumynin, 1993; Sidorov 1996; L. 2002)

イロン イヨン イヨン イヨン

Conditions on A

Conditions on H

Conclusion

Martindale ring of quotient

Theorem (Cohen, 1985)

Let A be any semiprime left H-module algebra. The H-action extends to

 $Q_0 = \lim \{ \operatorname{Hom}(_A I, _A A) \mid I \trianglelefteq A \text{ is } H\text{-stable and } \operatorname{Ann}(I) = 0 \}.$

イロン イヨン イヨン イヨン

Conditions on A

Conditions on H

Conclusion

Martindale ring of quotient

Theorem (Cohen, 1985)

Let A be any semiprime left H-module algebra. The H-action extends to

 $Q_0 = \lim \{ \operatorname{Hom}(_A I, _A A) \mid I \trianglelefteq A \text{ is } H\text{-stable and } \operatorname{Ann}(I) = 0 \}.$

J.Matczuk, 1991, used Q_0 to define the *H*-central closure of *A* as the subalgebra $\langle A, Z(Q_0)^H \rangle$.

イロト イヨト イヨト イヨト

Conditions on A

Conditions on H

Conclusion

Extended Centroid

Definition

 $B = A \otimes A^{op} \otimes H$ becomes an algebra with

$$(a \otimes b \otimes h)(a' \otimes b' \otimes g) = \sum_{(h)} a(h_1 \cdot a') \otimes (h_3 \cdot b')b \otimes h_2g.$$

・ロト ・回ト ・ヨト ・ヨト

Conditions on H

Extended Centroid

Definition

 $B = A \otimes A^{op} \otimes H$ becomes an algebra with

$$(a \otimes b \otimes h)(a' \otimes b' \otimes g) = \sum_{(h)} a(h_1 \cdot a') \otimes (h_3 \cdot b')b \otimes h_2g.$$

Theorem (L.2002)

The self-injective hull \widehat{A} of A as left B-module is a left H-module algebra with subalgebra A.

イロト イヨト イヨト イヨト

Conditions on H

Extended Centroid

Definition

 $B = A \otimes A^{op} \otimes H$ becomes an algebra with

$$(a \otimes b \otimes h)(a' \otimes b' \otimes g) = \sum_{(h)} a(h_1 \cdot a') \otimes (h_3 \cdot b')b \otimes h_2g.$$

Theorem (L.2002)

The self-injective hull \widehat{A} of A as left B-module is a left H-module algebra with subalgebra A.

$$\widehat{A}\simeq \langle A, Z(Q_0)^H\rangle;$$

イロト イヨト イヨト イヨト

Conditions on H

Extended Centroid

Definition

 $B = A \otimes A^{op} \otimes H$ becomes an algebra with

$$(a \otimes b \otimes h)(a' \otimes b' \otimes g) = \sum_{(h)} a(h_1 \cdot a') \otimes (h_3 \cdot b')b \otimes h_2g.$$

Theorem (L.2002)

The self-injective hull \widehat{A} of A as left B-module is a left H-module algebra with subalgebra A.

$$\widehat{A} \simeq \langle A, Z(Q_0)^H \rangle;$$

2 End_B(
$$\widehat{A}$$
) $\simeq Z(Q_0)^H$.

イロト イヨト イヨト イヨト

Conditions on H

Extended Centroid

Definition

 $B = A \otimes A^{op} \otimes H$ becomes an algebra with

$$(a \otimes b \otimes h)(a' \otimes b' \otimes g) = \sum_{(h)} a(h_1 \cdot a') \otimes (h_3 \cdot b')b \otimes h_2g.$$

Theorem (L.2002)

The self-injective hull \widehat{A} of A as left B-module is a left H-module algebra with subalgebra A.

$$\widehat{A} \simeq \langle A, Z(Q_0)^H \rangle;$$

$$2 \operatorname{End}_B(\widehat{A}) \simeq Z(Q_0)^H.$$

3 $Z(Q_0)^H$ is von Neumann regular and self-injective.

イロト イポト イヨト イヨト

Conditions on A

Conditions on H

Conclusion

Commutative module algebras

Theorem

A commutative semprime and H semisimple $\Rightarrow A#H$ semiprime.

イロト イヨト イヨト イヨト

Conditions on A

Conditions on H

Conclusion

Commutative module algebras

Theorem

A commutative semprime and H semisimple $\Rightarrow A \# H$ semiprime.

Proof.

• A commutative $\Rightarrow \hat{A}$ commutative;

イロト イヨト イヨト イヨト

Commutative module algebras

Theorem

A commutative semprime and H semisimple $\Rightarrow A \# H$ semiprime.

Proof.

- A commutative $\Rightarrow \widehat{A}$ commutative;
- **2** $\widehat{A}^H \subseteq \widehat{A}$ is an integral extension (Zhu, 1996)

- - 4 回 ト - 4 回 ト

Commutative module algebras

Theorem

A commutative semprime and H semisimple $\Rightarrow A \# H$ semiprime.

Proof.

- A commutative $\Rightarrow \widehat{A}$ commutative;
- **2** $\widehat{A}^H \subseteq \widehat{A}$ is an integral extension (Zhu, 1996)
- **3** \widehat{A} is von Neumann regular as \widehat{A}^H is.

Commutative module algebras

Theorem

A commutative semprime and H semisimple $\Rightarrow A \# H$ semiprime.

Proof.

- A commutative $\Rightarrow \widehat{A}$ commutative;
- **2** $\widehat{A}^H \subseteq \widehat{A}$ is an integral extension (Zhu, 1996)
- **③** \widehat{A} is von Neumann regular as \widehat{A}^H is.
- $\widehat{A} \# H$ is von Neumann regular (separability).

Commutative module algebras

Theorem

A commutative semprime and H semisimple $\Rightarrow A \# H$ semiprime.

Proof.

- A commutative $\Rightarrow \widehat{A}$ commutative;
- **2** $\widehat{A}^H \subseteq \widehat{A}$ is an integral extension (Zhu, 1996)
- **③** \widehat{A} is von Neumann regular as \widehat{A}^H is.
- $\widehat{A} \# H$ is von Neumann regular (separability).
- A # H is semiprime (central extension).

Conditions on A

Conditions on H

Conclusion

Actions on integral domains

Theorem (Etingof-Walton, 2013)

Let A be an integral domain. For any action of a semisimple Hopf algebra H on A exists a Hopf ideal I of H and a group G such that

$$I \cdot A = 0$$
 and $H/I \simeq k[G]$.

Conditions on A

Conditions on H

Conclusion

Actions on integral domains

Theorem (Etingof-Walton, 2013)

Let A be an integral domain. For any action of a semisimple Hopf algebra H on A exists a Hopf ideal I of H and a group G such that

$$I \cdot A = 0$$
 and $H/I \simeq k[G]$.

This means that H acts virtually as a group algebra.

Conditions on A

Conditions on H

PI algebras

Theorem (Linchenko-Montgomery, 2007)

A P.I. semprime and H semisimple \Rightarrow A#H semiprime.

イロン イヨン イヨン イヨン

3

The	problem
000	000000000

PI algebras

Conditions on A

Conditions on H

Theorem (Linchenko-Montgomery, 2007)

A P.I. semprime and H semisimple \Rightarrow A#H semiprime.

Proof.

① Reduction to finite dimensional factors A/P of A

||◆同 || ◆ 臣 || ◆ 臣 ||

PI algebras

Conditions on A

Conditions on H

Theorem (Linchenko-Montgomery, 2007)

A P.I. semprime and H semisimple \Rightarrow A#H semiprime.

Proof.

- **①** Reduction to finite dimensional factors A/P of A
- 2 (Linchenko, 2003): Jac(A/P) is H-stable for A/P f.d.

イロト イポト イヨト イヨト

Conditions on H

PI algebras

Theorem (Linchenko-Montgomery, 2007)

A P.I. semprime and H semisimple \Rightarrow A#H semiprime.

Proof.

- **①** Reduction to finite dimensional factors A/P of A
- (Linchenko, 2003): Jac(A/P) is H-stable for A/P f.d.
- (Blattner-Montgomery duality):

 $A \# H \# H^* \simeq M_n(A)$ with $n = \dim(H)$.

Hence Cohen's question is equivalent to: $S#H^*$ semiprime $\Rightarrow S$ semiprime for S = A#H?

イロト イポト イヨト イヨト

Conditions on H

PI algebras

Theorem (Linchenko-Montgomery, 2007)

A P.I. semprime and H semisimple \Rightarrow A#H semiprime.

Proof.

- **①** Reduction to finite dimensional factors A/P of A
- (Linchenko, 2003): Jac(A/P) is H-stable for A/P f.d.
- (Blattner-Montgomery duality):

 $A \# H \# H^* \simeq M_n(A)$ with $n = \dim(H)$.

Hence Cohen's question is equivalent to: $S#H^*$ semiprime $\Rightarrow S$ semiprime for S = A#H?

(Borges-L., 2011): proof works for weak Hopf algebras

The problem	Conditions on <i>A</i> ○○○○○○○○○●	Conditions on H	Conclusion
Large invariants			

Let $t \in H$ be with $ht = \epsilon(h)t, \forall h \in H$ and $\epsilon(t) = 1$.

・ロト ・回ト ・ヨト ・ヨト

The problem	Conditions on <i>A</i> ○○○○○○○○○●	Conditions on H	Conclusion
Large invariants			

Let $t \in H$ be with $ht = \epsilon(h)t$, $\forall h \in H$ and $\epsilon(t) = 1$. If A # H is semiprime, then $(I \# t)^2 \neq 0$ for any *H*-stable left ideal *I* of *A*, i.e. $0 \neq (t \cdot I) \subseteq I \cap A^H$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The problem	Conditions on <i>A</i> ○○○○○○○○○●	Conditions on H	Conclusion
Large invariants			

Let $t \in H$ be with $ht = \epsilon(h)t$, $\forall h \in H$ and $\epsilon(t) = 1$. If A # H is semiprime, then $(I \# t)^2 \neq 0$ for any *H*-stable left ideal *I* of *A*, i.e. $0 \neq (t \cdot I) \subseteq I \cap A^H$.

Corollary

If A#H is semiprime and H semisimple, then any non-zero H-stable left ideal of A contains non-zero H-invariant elements.

・ 同 ト ・ ヨ ト ・ ヨ ト

The problem	Conditions on A	Conditions on H	Conclusion
	0000000000		
Large invariants			

Let $t \in H$ be with $ht = \epsilon(h)t$, $\forall h \in H$ and $\epsilon(t) = 1$. If A # H is semiprime, then $(I \# t)^2 \neq 0$ for any *H*-stable left ideal *I* of *A*, i.e. $0 \neq (t \cdot I) \subseteq I \cap A^H$.

Corollary

If A#H is semiprime and H semisimple, then any non-zero H-stable left ideal of A contains non-zero H-invariant elements.

Question

Is it always true, that $I \cap A^H \neq 0$ for I an H-stable left ideal of A, H semisimple and A semiprime ?

・ 同 ト ・ ヨ ト ・ ヨ
The problem	Conditions on A	Conditions on H	Conclusion
	0000000000		
Large invariants			

Let $t \in H$ be with $ht = \epsilon(h)t$, $\forall h \in H$ and $\epsilon(t) = 1$. If A # H is semiprime, then $(I \# t)^2 \neq 0$ for any *H*-stable left ideal *I* of *A*, i.e. $0 \neq (t \cdot I) \subseteq I \cap A^H$.

Corollary

If A#H is semiprime and H semisimple, then any non-zero H-stable left ideal of A contains non-zero H-invariant elements.

Question

Is it always true, that $I \cap A^H \neq 0$ for I an H-stable left ideal of A, H semisimple and A semiprime ?

Bergman-Isaacs, 1973 proved this for group actions.

(4月) (4日) (4日)

The problem	Conditions on A	Conditions on H	Conclusion
	0000000000		
Large invariants			

Let $t \in H$ be with $ht = \epsilon(h)t$, $\forall h \in H$ and $\epsilon(t) = 1$. If A # H is semiprime, then $(I \# t)^2 \neq 0$ for any *H*-stable left ideal *I* of *A*, i.e. $0 \neq (t \cdot I) \subseteq I \cap A^H$.

Corollary

If A#H is semiprime and H semisimple, then any non-zero H-stable left ideal of A contains non-zero H-invariant elements.

Question

Is it always true, that $I \cap A^H \neq 0$ for I an H-stable left ideal of A, H semisimple and A semiprime ?

Bergman-Isaacs, 1973 proved this for group actions. Bathurin-Linchenko, 1998 gave criteria for Hopf actions.

The	problem
000	000000000

Conditions on H

Conclusion

Contents

The problen

- Preliminaries
- Hopf algebra actions

Conditions on A

- Separable extensions
- Finiteness conditions on A
- Extending the Hopf-action
- Commutativity
- Necessary condition

Conclusion

イロン イヨン イヨン イヨン

æ

The problem

Conditions on A

Conditions on H

Trivial Hopf algebras

Recall that a semisimple Hopf algebra H is trivial if it is commutative or cocommutative, i.e. if H = k[G] or $H = k[G]^*$.

イロト イヨト イヨト イヨト

Trivial Hopf algebras

Recall that a semisimple Hopf algebra H is trivial if it is commutative or cocommutative, i.e. if H = k[G] or $H = k[G]^*$.

Theorem (Zhu, 1994)

A Hopf algebra of prime dimension is a group ring.

イロト イヨト イヨト イヨト

Trivial Hopf algebras

Recall that a semisimple Hopf algebra H is trivial if it is commutative or cocommutative, i.e. if H = k[G] or $H = k[G]^*$.

Theorem (Zhu, 1994)

A Hopf algebra of prime dimension is a group ring.

Theorem (Etingof-Gelaki, 1998)

Any Hopf algebra whose dimension is a product pq of two prime numbers is trivial.

イロト イポト イヨト イヨト

The	problem

Conditions on H

Normal sub-Hopfalgebras

Definition

A Hopf subalgebra U of H is called normal if it is stable under the adjoint action, i.e.

$$\forall h \in H : \operatorname{ad}_h(U) = \sum_{(h)} h_1 US(h_2) \subseteq U.$$

(4回) (4回) (4回)

The	problem

Conditions on *H* ●○○○○○○○

Normal sub-Hopfalgebras

Definition

A Hopf subalgebra U of H is called normal if it is stable under the adjoint action, i.e.

$$\forall h \in H : \mathrm{ad}_h(U) = \sum_{(h)} h_1 US(h_2) \subseteq U.$$

If U is normal in H, then $\overline{H} = H/U^+$ becomes a Hopf algebra with $U^+ = U \cap \text{Ker}(\epsilon)$.

(4回) (1日) (日)

Conditions on *H* ●○○○○○○○

Normal sub-Hopfalgebras

Definition

A Hopf subalgebra U of H is called normal if it is stable under the adjoint action, i.e.

$$\forall h \in H : \mathrm{ad}_h(U) = \sum_{(h)} h_1 US(h_2) \subseteq U.$$

If U is normal in H, then $\overline{H} = H/U^+$ becomes a Hopf algebra with $U^+ = U \cap \text{Ker}(\epsilon)$. Moreover H can be recovered from U and \overline{H} as a crossed product

$$H\simeq U\#_{\sigma}\overline{H}.$$

(人間) (人) (人) (人)

The	problem
000	

Conditions on *H*

Semisolvable Hopf algebras

Definition (Montgomery-Whiterspoon, 1998)

A Hopf algebra H is called semisolvable if it has a normal series

$$k = H_0 \trianglelefteq H_1 \trianglelefteq \cdots H_{m-1} \trianglelefteq H_m = H$$

such that H_i/H_{i-1}^+ is either commutative or cocommutative.

(日) (同) (E) (E) (E)

The	problem
000	

Conditions on H

Semisolvable Hopf algebras

Definition (Montgomery-Whiterspoon, 1998)

A Hopf algebra H is called semisolvable if it has a normal series

$$k = H_0 \trianglelefteq H_1 \trianglelefteq \cdots H_{m-1} \trianglelefteq H_m = H$$

such that H_i/H_{i-1}^+ is either commutative or cocommutative.

Example

For
$$H_8 = \mathbb{C}[C_2 \times C_2][z; \sigma]/\langle z^2 - \frac{1}{2}(1 + x + y - xy) \rangle$$
 one has
 $U = \mathbb{C}[C_2 \times C_2] \trianglelefteq H_8$ and $H_8/U^+ \simeq \mathbb{C}[C_2].$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

The problem	Conditions on A	Conditions on <i>H</i> ○○●○○○○○	Conclusion
Positive answer	for semisolvable H	opf algebras	

Theorem (Montgomery-Schneider, 1999)

If H is a semisolvable and semisimple Hopf algebra and A a semiprime, then A#H is semiprime.

The problem	Conditions on A	Conditions on <i>H</i> ○○●○○○○○	Conclusio
Positive answer	for semisolvable Ho	opf algebras	

Theorem (Montgomery-Schneider, 1999)

If H is a semisolvable and semisimple Hopf algebra and A a semiprime, then A#H is semiprime.

Theorem (Masuoka)

Every Hopf algebra of dimension p^n , p prime, is semisolvable.

The problem	Conditions on A	Conditions on H	Conclusio
Positive answer	for semisolvable Ho	opf algebras	

Theorem (Montgomery-Schneider, 1999)

If H is a semisolvable and semisimple Hopf algebra and A a semiprime, then A#H is semiprime.

Theorem (Masuoka)

Every Hopf algebra of dimension p^n , p prime, is semisolvable.

Theorem (Natale)

The only semisimple Hopf algebra of dimension less than 60 that is not semisolvable is a "twist" of $k[S_3 \times S_3]$ in dimension 36.

(4月) (4日) (4日)

Conditions on *H*

Twists

Definition

A twist for a Hopf algebra H is an invertible element $J \in H \otimes H$, such that

$$(J \otimes 1)(\Delta \otimes 1)(J) = (1 \otimes J)(1 \otimes \Delta)(J),$$

 $(\epsilon \otimes 1)(J) = 1 = (1 \otimes \epsilon)(J)$

holds.

イロト イヨト イヨト イヨト

æ

The problem

Conditions on A

Conditions on *H*

Conclusion

Twisting a Hopf algebra

Definition

Let $J \in H^{\otimes 2}$ be a twist. Then $(H, m, \Delta^J, \epsilon, S^J)$ is also a Hopf algebra with

$$\Delta^J(h) := J\Delta(h)J^{-1}, \qquad S^J(h) := US(h)U^{-1}$$

for all $h \in H$ with $U := m(1 \otimes S)(J) = \sum J^1 S(J^2)$.

(日) (同) (E) (E) (E)

The problem

Conditions on A

Conditions on H

Conclusion

Twisted module algebras

Definition

Let $(A, \mu, 1)$ be a left *H*-module algebra and *J* a twist for *H*. The new multiplication on *A* defined by

$$a\cdot_J b:=\mu^J(a\otimes b):=\sum (Q^1\cdot a)(Q^2\cdot b) \ \ ext{for all } a,b\in A.$$

makes A a left H^{J} -module algebra.

Here $J^{-1} = \sum Q^1 \otimes Q^2$.

・ロト ・回ト ・ヨト ・ヨト

Cohon's question	a far turiata		
		0000000	
The problem	Conditions on A	Conditions on H	Conclusion

Cohen's question for twists

Theorem (Majid, 1997)

 $A \# H \simeq A^J \# H^J$ as algebras.

(日) (同) (E) (E) (E)

The problem	Conditions on A	Conditions on <i>H</i> ○○○○○○●○	Conclusion
Cohon's quest	ion for twicts		

Cohen's question for twists

Theorem (Majid, 1997)

 $A \# H \simeq A^J \# H^J$ as algebras.

Theorem

If A # H is semiprime for all semiprime H-module algebras A, then the same is true for any H^J -module algebra over a twist H^J .

| 4 回 2 4 U = 2 4 U =

The	problem	

Conditions on *H*

Etingof-Gelaki 1998

Definition

A Hopf algebra is called *triangular*, if there exists an invertible element $\mathcal{R} \in H \otimes H$ with

 $(\Delta \otimes 1)(\mathcal{R}) = \mathcal{R}_{13}\mathcal{R}_{23},$

$$(1\otimes\Delta)(\mathcal{R})=\mathcal{R}_{13}\mathcal{R}_{12},$$

$$\Delta^{cop} = \mathcal{R}\Delta \mathcal{R}^{-1}$$
 und $\mathcal{R}^{-1} = \tau(\mathcal{R})$.

イロン イヨン イヨン イヨン

3

The	problem

Conditions on *H*

Etingof-Gelaki 1998

Definition

A Hopf algebra is called *triangular*, if there exists an invertible element $\mathcal{R} \in H \otimes H$ with

 $(\Delta \otimes 1)(\mathcal{R}) = \mathcal{R}_{13}\mathcal{R}_{23},$

$$(1\otimes\Delta)(\mathcal{R})=\mathcal{R}_{13}\mathcal{R}_{12},$$

$$\Delta^{cop} = \mathcal{R}\Delta \mathcal{R}^{-1}$$
 und $\mathcal{R}^{-1} = \tau(\mathcal{R})$.

Theorem (Etingof-Gelaki, 1998)

Any semisimple triangular Hopf algebra is isomorphic to a twist of a group algebra.

The	problem
000	000000000

Conditions on *H*

Contents

The problem

- Preliminaries
- Hopf algebra actions

Conditions on A

- Separable extensions
- Finiteness conditions on A
- Extending the Hopf-action
- Commutativity
- Necessary condition

Conditions on I

- Semisolvable Hopf algebras
- Drinfeld twists

イロン イヨン イヨン イヨン

æ

The problem

Conclusion

Conditions on A

Conditions on H

Conclusion

Corollary

Cohen's question has a positive solution for

Christian Lomp On an open problem of M.Cohen concerning smash products

イロン イヨン イヨン イヨン

æ

Conclusion

Corollary

Cohen's question has a positive solution for

• all semisimple Hopf algebras H that are twists of semisolvable Hopf algebras (in particular for $\dim(H) \le 60$).

- - 4 回 ト - 4 回 ト

Conclusion

Corollary

Cohen's question has a positive solution for

- all semisimple Hopf algebras H that are twists of semisolvable Hopf algebras (in particular for $\dim(H) \le 60$).
- all semiprime module algebras A that either satisfy a PI or have an Artinian quotient ring.

- 4 回 2 4 三 2 4 三 2 4

The problem	Conditions on A	Conditions on H	Conclusion
Future directions			

(日) (四) (注) (注) (注) (三)

The problem	Conditions on A	Conditions on H	Conclusion
Future directions			

 Find a semisimple Hopf algebra H that is not a twist of a semisolvable Hopf algebra and a suitable H-action on a semiprime algebra A.

The problem	Conditions on A	Conditions on H	Conclusion
Future directions	5		

- Find a semisimple Hopf algebra H that is not a twist of a semisolvable Hopf algebra and a suitable H-action on a semiprime algebra A.
- Extend Etingof-Walton's result on integral domains. Study Hopf algebra actions on domains (simple domains or free algebras).

The problem	Conditions on A	Conditions on H	Conclusion
Future directions	:		

- Find a semisimple Hopf algebra H that is not a twist of a semisolvable Hopf algebra and a suitable H-action on a semiprime algebra A.
- Extend Etingof-Walton's result on integral domains. Study Hopf algebra actions on domains (simple domains or free algebras).
- Look at more general actions than Hopf algebra actions like actions of weak Hopf algebras, Hopfish algebras, bialgebroids to find counterexamples.

The problem	Conditions on A	Conditions on H	Conclusion
Future directions	2		

- Find a semisimple Hopf algebra H that is not a twist of a semisolvable Hopf algebra and a suitable H-action on a semiprime algebra A.
- Extend Etingof-Walton's result on integral domains. Study Hopf algebra actions on domains (simple domains or free algebras).
- Look at more general actions than Hopf algebra actions like actions of weak Hopf algebras, Hopfish algebras, bialgebroids to find counterexamples.
- Recovered known results for module categories over fusion categories.

回 と く ヨ と く ヨ と