odeSystem = {@(x,y) cos(x)*diff(y{1})-(x^2-3*x^4)*y{2}+3*diff(y{3}), @(x) cos(x)^2-cos(exp(x))*(-3*x^4+x^2)-6*sin(2*x); ... @(x,y) sin(x)*diff(y{1})+diff(y{2})-y{3}, @(x) sin(x)*cos(x)-cos(2*x)-sin(exp(x))*exp(x); ... @(x,y) -y{1}+exp(x)*y{2}+x^3*diff(y{3}), @(x) cos(exp(x))*exp(x)-sin(x)-2*x^3*sin(2*x)}; domain = [-pi pi]; conditions = @(y) {y{1}(-pi); ... y{2}(0)-cos(1); ... y{3}(pi)-1}; options = tau.settings('degree', 101); problem = tau.problem(odeSystem, domain, conditions, options); yn = tau.solve(problem); ye = tau.polynomial({@(x) sin(x); @(x) cos(exp(x)); @(x) cos(2*x)}, options); figure() subplot(1,2,1) plot(yn) legend('$y_1$','$y_2$','$y_3$', 'interpreter', 'latex') title('Approximate solution') subplot(1,2,2) plot(yn-ye) legend('$y_1$','$y_2$','$y_3$', 'interpreter', 'latex') title('Absolute error') % % Create tau objects. % [x, y] = tau('ChebyshevT', [-pi pi], 101); % % % Specify problem, conditions and exact solution (if it is known). % sys = {'cos(x)*diff(y1)-(x^2-3*x^4)*y2+3*diff(y3)=cos(x)^2-cos(exp(x))*(-3*x^4+x^2)-6*sin(2*x)'; % 'sin(x)*diff(y1)+diff(y2)-y3=sin(x)*cos(x)-cos(2*x)-sin(exp(x))*exp(x)'; % '-y1+exp(x)*y2+x^3*diff(y3)=cos(exp(x))*exp(x) - sin(x) - 2*x^3*sin(2*x)'}; % cond = {'y1(-pi)=0';'y2(0)=cos(1)';'y3(pi)=1'}; % es = {'sin(x)';'cos(exp(x))';'cos(2*x)'}; % % % Solve the problem. % a = tausolver(x, y, ............................................................% Tau variables. % sys, ..........................................% System of differential equations. % cond, ...............................................................% Conditions. % 'exact_solution', es, ......................................% Solution (optional). % 'spy', 1); ...............................................% Shows spy of T matrix.
