
Tau Toolbox Technical Report TR-1
available at www.fc.up.pt/tautoolbox

Tau Toolbox

for the solution of

integro-differential problems

Tau method: an introduction

J. M. A. Matos
M. Trindade

P. B. Vasconcelos

Last update: July 2016 (Tau Toolbox 1.0)
Previous updates: –

www.fc.up.pt/tautoolbox

Tau method: an introduction

J. M. A. Matos
CMUP and Polytechnic of Porto - School of Engineering

M. Trindade
CMUP and University of Porto - Faculty of Sciences

P. B. Vasconcelos
CMUP and University of Porto - Faculty of Economics

Abstract

This report introduces the Lanczos’ tau method to compute a polynomial approximate solu-
tion of differential problems. Furthermore, it also explains the first steps on how to use the Tau
Toolbox to solve the above mentioned problem.

1 Introduction

The tau method, introduced by Cornelius Lanczos (Lanczos, 1938), is a spectral method originally
developed to compute a polynomial that approximates the solution of a linear ordinary differential
problem with polynomial coefficients. The method has been used since then and extended to problems
with non polynomial coefficients, to functional and to nonlinear differential equations, among others.
This widespread was only possible from the pioneering work of Ortiz and Samara (1981) with the
introduction of an algebraic formulation of the method.

The Tau Toolbox is a project to aggregate all these contributions, to enhance the use of the
method by developing more stable algorithms and to offer efficient implementations of its algebraic
formulation. It is able to solve various integro-differential problems, linear and nonlinear, with initial
and/or boundary or others conditions, working with the most common polynomial orthogonal basis.

Non expert can now profit from this spectral method and its solutions properties. On the other
hand, experts can easily analyze new problems by exploring the large set of building blocks functions
provided.

2 Overview of the tau method

In what follows, we assume that the solution of the differential problem to be solved can be
expressed by an orthogonal polynomial series development. Furthermore, the tau method is introduced
considering linear differential equations, with polynomial coefficients.

In the tau method sense, we get an (n−1)th degree polynomial approximation yn to the differential
problem’s solution y by imposing that yn solves exactly the differential problem with a polynomial
perturbation term τn in the differential equation, or system of differential equations. To achieve good
minimization properties for the error, τn is projected onto an orthogonal polynomial basis.

The Tau Toolbox is based on the so called operational version of the tau method, introduced by
Ortiz and Samara (1981). The differential equation together with initial and/or boundary conditions,
expressed in an orthogonal polynomial basis, are casted onto an infinite algebraic system of equations,
relating the series coefficients. The approximate solution yn, can be obtained solving a truncated
algebraic linear system of order n. This truncation gives rise to an approximate solution in the tau
sense, that is, the residual polynomial τn in the differential equation has the maximum approximation
order for an (n− 1)th degree polynomial.

If the differential equation is non linear, an usual procedure is to build a succession of linear
equations in a linearization process (we refer the reader to Matos et al. (2016)). Other generalizations
are tackled on other Tau Toolbox Technical Reports.

1

http://www-history.mcs.st-andrews.ac.uk/Biographies/Lanczos.html

Several studies applying the tau method have been performed to approximate the solution of
differential linear and non-linear equations (Ortiz, 1978; Crisci and Russo, 1983; Liu and Pan, 1999),
partial differential equations (Namasivayam and Ortiz, 1981; Ortiz and Dinh, 1987; Matos et al., 2004)
and integro-differential equations (Pour-Mahmoud et al., 2005), among others. Nevertheless, in all
these works the tau method is tuned for the approximation of specific problems.

If we are interested in solving an ordinary (or partial) differential equation to high accuracy on a
simple domain and if the data problem are smooth, then spectral methods are usually the best tool.
With respect to the more usual finite differences or finite elements, spectral methods allow to achieve
high order accuracy (Trefethen, 2000). Their important spectral properties is a motivation to improve
the tau method with new techniques, and new software applications.

2.1 Preliminaries

Let us consider matrices M and N satisfying

XMa = xy, XNa =
d

dx
y,

where X = [x0, x1, x2, ...] is the powers basis for the polynomials space P of any non-negative integer

degree, and y =
∑
i≥0

aix
i = X a is a formal series with coefficients a = [a0, a1, . . .]

T . Thus we find,

respectively,

M =


0
1 0

1 0
1 0

. . .
. . .

 , N =


0 1

0 2
0 3

0 4
. . .

. . .

 .
Proposition 1 shows the basic procedure on how to change from the power basis X to another

orthogonal polynomial basis P.

Proposition 1. Let P = [P0, P1, P2, ...] be an orthogonal basis, VP the triangular matrix such that
P = XVP and aP = V−1P a. Then y = PaP , xy = PMPaP and d

dxy = PNPaP , where

MP = V−1P MVP and NP = V−1P NVP . (1)

Proof. See Ortiz and Samara (1981)

For theoretical purposes the similarity transformations (1) are established with no restrictions,
since, for any orthogonal polynomial basis P, each polynomial Pn has exact degree n, and so VP is
regular since it is triangular with non null entries in the main diagonal. For implementation purposes,
however, this matrix can be highly ill-conditioned and the computation of (1) must be avoided.
Proposition 2 presents an equivalent procedure but numerically more stable to compute MP and NP ,
based on recurrence relations.

Proposition 2. Let P = [P0, P1, P2, . . .] be an orthogonal basis satisfying the recurrence relation
xPj = αjPj+1 +βjPj +γjPj−1, j ≥ 0, P0 = 1, P−1 = 0. The coefficients of MP = [µij] can be obtained
by {

µj+1,j = αj−1, µj,j = βj−1, µj,j+1 = γj−1

µi,j = 0, |i− j| > 1
, j = 1, 2, . . . (2)

and those of NP = [ηij] by{
ηi,j+1 = 1

αj

[
αi−1ηj,i−1 + (βi − βj)ηj,i + γi+1ηj,i+1 − γjηj−1,i

]
, i = 0, . . . , j − 1

ηj,j+1 = 1
αj

(αj−1ηj,j−1 + 1)
(3)

for j = 1, 2,

Proof. See Matos et al.

2

2.2 Tau method for linear differential problems

Let D =
∑ν

k=0 pk
d
dxk

represent an order ν linear differential operator acting on P, where pk =∑nk
i=0 pkix

i are polynomial coefficients, nk ∈ N0, pk,i ∈ R and let f ∈ P with finite degree λ. An
approximate polynomial solution yn for the differential problem{

Dy = f

ci(y) = si, i = 1, . . . , ν
, (4)

is obtained in the tau sense by solving a perturbed system{
Dyn = f + τn

ci(yn) = si, i = 1, . . . , ν
, (5)

Problem (4) has a matrix representation given by{
CPaP = s

DPaP = fP
,

where
CP = [cij]ν×∞ = ci(Pj−1), i = 1, . . . , ν, j = 1, . . . ,

DP =

ν∑
k=0

pk(MP)NkP , pk(MP) =

nk∑
i=0

pkiM
i
P ,

aP = [a0, a1, . . .]
T contains the coefficients of the series representation of y in P, s = [s1, . . . , sν]T the

right hand side vector of the boundary conditions and fP = [f0, . . . , fλ, 0, 0, . . .]
T the coefficients of the

right hand side differential equations on the basis P.
The coefficients aP satisfies

TPaP = bP , with TP =

[
CP
DP

]
and bP =

[
s
fP

]
. (6)

Matrix TP has an upper trapezoidal structure, with h = sup {|DPk − k|, k = 0, 1, . . .} non-null sub-
diagonals.

Choosing an integer n ≥ ν + λ, an (n − 1)th degree polynomial approximate solution yn = Pnan,
expressed by the coefficients an = [an,0, an,1, . . . , an,n−1] on Pn = [P0, P1, . . . , Pn−1]

T , is obtained by
truncating system (6) to its first n columns. The resulting system has n + h equations. Restricting
this system to its first n equations, a linear system

Tnan = bn (7)

is obtained with Tn of dimension n× n, which is equivalent to introduce a polynomial residual

τn = Dy −Dyn =
ν+h∑
i=1

rn,iPn−ν+i (8)

in the right hand side. Defining P̂n = [Pn−ν+1, Pn−ν+2, . . . , Pn+h] and rn = [rn,1, rn,2, . . . , rn,ν+h], then
equation (8) can be written as

τn = P̂nrn, rn = Rnan, (9)

where Rn is the triangular block of matrix T, restricted to its first n columns and rows n+1, . . . , n+ν+h
(see Figure 1).

3

n

ν

h

n

C(1 : ν, 1 : n)

D(1 : n− ν, 1 : n)
Tn

Rn
ν

h

Figure 1: Schematic view for the coefficient matrix on the truncated system (7) and for the residual
τn

3 Tau method on Tau Toolbox

In this section we will briefly explain how to work with Tau Toolbox to compute approximate
solutions of differential systems of equations using the tau method.

The Tau Toolbox is a Matlab toolbox that uses object-oriented techniques in the programming
design.

The function [x, y] = tau(basis, domain, n) creates two objects: x an independent tau
variable and y an dependent tau variable. All necessary operations are created from the provided
parameters: the basis (e.g. Chebyshev of the first and second kind, Legendre, Hermite, Laguerre),
the required domain and the order n of the approximate polynomial solution.

The following example creates the objects to work with a polynomial approximation of degree 4,
on the [−1, 1] domain, using the Chebyshev of first kind basis:

>> [x, y] = tau('ChebyshevT', [-1 1], 5)

x = y =

itau with properties: dtau with properties:

basis: 'ChebyshevT' basis: 'ChebyshevT'
domain: [-1 1] domain: [-1 1]
n: 5 n: 5
mat: [] mat: []

By default the same result is obtained just by calling [x, y] = tau.
Now if we write x2−4x5, since x is an itau object, this is interpreted as the n×n matrix M2

T −4M5
T ,

where T is the Chebyshev basis of the first kind and MT is the matrix defined by (2) for that basis:

4

>> xˆ2-4*xˆ5
ans =

0.5000 -1.2500 0.2500 -0.6250 0
-2.5000 0.7500 -1.8750 0.2500 -0.6250
0.5000 -1.8750 0.5000 -1.2500 0.2500

-1.2500 0.2500 -1.2500 0.5000 -0.6250
0 -0.6250 0.2500 -0.6250 0.2500

Moreover, (x2 − 4x5) d
3y
dx3

is interpreted as (M2
T − 4M5

T)N3
T :

>> (xˆ2-4*xˆ5)*diff(y,3)
ans =

0 0 0 12 -240
0 0 0 -60 144
0 0 0 12 -360
0 0 0 -30 48
0 0 0 0 -144

With these objects is thus very easy to tackle any differential problem by the tau method. The
following examples illustrate how to use the Tau Toolbox in the solution of linear differential prob-
lems.

Example 1: a linear second order initial value problem

Using Tau Toolbox to approximate the solution of the following differential problem{
y′′(x) + y(x) = 0, x ∈]0, 5[

y(0) = 0, y′(0) = 1
, (10)

can be done using just two functions

Tau Toolbox code 1: basic level

% Create tau objects.
[x, y] = tau('ChebyshevT', [0 5], 20);
% Call the tausolver function.
a = tausolver(x, y, 'diff(y,2)+y=0', {'y(0)=0';'y''(0)=1'});

The sought approximation is a 19th degree polynomial projected on ChebyshevT basis (shifted to
[0, 5]). The a vector contains the 20 coefficients of the tau approximation (Figure 2).

Selecting the polynomial basis where to project the solution is simple. For instance, for the
Legendre case just perform [x, y] = tau('Legendre', [0 5], 20);. Figure 3 shows the distance
|y20(x)− y19(x)| for Legendre and ChebyshevT basis.

Remark 1. Function diff is a Tau Toolbox function that overwrites the one from Matlab.

Remark 2. The first derivative of y are written as 'y''(0)=1', since the initial conditions is intro-
duced as a string.

Remark 3. Note that the output coefficients in vector a are ordered from the lowest to the highest
degree term.

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x

-1

-0.5

0

0.5

1

y
2
0
(x
)

Figure 2: Approximate solution yn =

n−1∑
i=0

an,iTi(x) = Tnan, n = 20.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x

10-18

10-16

10-14

|y
2
0
(x
)
−
y
1
9
(x
)|

Legendre
Chebyshev

Figure 3: |y20(x)− y19(x)|

At an intermediate level, the user can parameterize the tausolver function specifying parameters.
For instances, if the exact solution is known (in this case y(x) = sin(x)), this can be specified by the
parameter 'exact_solution', and the solver retrieves a graphic of the absolute error |y(x)− y20(x)|
(Figure 4a).

Tau Toolbox code 2: intermediate level

% Create tau objects.
[x, y] = tau('ChebyshevT', [0 5], 20);
% Call the tausolver function.
a = tausolver(x, y, 'diff(y,2)+y=0', ...

{'y(0)=0';'y''(0)=1'}, 'exact_solution', 'sin(x)', 'spy', ...

1);

The differential problem was translated to the linear system Tnan = bn, where

Tn =

[
CT (1 : ν, 1 : n)

DT (1 : n− ν, 1 : n)

]
, bn = [0, 1, 0, . . . , 0︸ ︷︷ ︸

n− ν

]T ,

with DT = N2
T + I, CT = [ci,j], c1,j = Tj(0), c2,j = T ′j(0), j = 0, 1, . . . , n− 1, n = 20 and ν = 2.

The tausolver function provides a graphical representation of Tn: this is accomplished by setting
the binary parameter 'spy' to 1 (Figure 4b).

6

0 1 2 3 4 5
x

10-17

10-16

10-15

|y
(x
)
−
y
20
(x
)|

(a) error | sin(x)− y20(x)|

0 5 10 15 20

0

5

10

15

20
0

200

400

600

800

1000

(b) spy of T20 matrix

Figure 4: Error and spy

More advanced Tau Toolbox users can detail their codes making use of more elaborate functions
and explore new approaches. Matrix Tn and vector bn can be easily accessed using Tau Toolbox
function tausystem, and the linear system Tnan = bn can be solved by a specific solver. In the next
illustration the Gaussian elimination provided by Matlab is used.

Tau Toolbox code 3: advanced level

% Create tau objects.
[x, y] = tau('ChebyshevT', [0 5], 6);
% Obtain T matrix and b vector.
[T, b] = tausystem(x, y, 'diff(y,2)+y=0',{'y(0)=0';'y''(0)=1'});
% Solve the linear system.
a = T\b;

Among the set of functions available at Tau Toolbox (see Tau Toolbox functions) we illus-
trate that idea with the function orthoval, returning pointwise values of a polynomial from their
coefficients in an orthonormal polynomial basis. In Figure 5 we compare orthoval function with the
well known polyval Matlab function. Our evaluation, by avoiding change of basis, is more stable
and thus provides a better approximation.

Tau Toolbox code 4: advanced level

% Create tau objets.
[x, y] = tau('ChebyshevT', [0 20], 100);
% Call the tausolver function.
a = tausolver(x, y, 'diff(y,2)+y=0', {'y(0)=0';'y''(0)=1'});
% Points for evaluation.
points = linspace(x.domain(1), x.domain(2));
% Change of basis.
a_bar = orth2powmatrix(y)*a;
% Polynomial evaluation (power basis).
yn_bar = polyval(a_bar(end:-1:1), points);
% Polynomial evaluation (orthogonal basis).
yn = orthoval(x, points, 'coef', a);
% Plot the error (with polyval)
semilogy(points, abs(yn_bar-sin(points))); hold on;
% Plot the error (with orthoval)
semilogy(points, abs(yn-sin(points))); hold off;

7

0 2 4 6 8 10 12 14 16 18 20
x

10-20

10-15

10-10

10-5

|y
(x
)
−
y
1
0
0
(x
)|

polyval
orthoval

Figure 5: Error using orthoval and polyval functions

Example 2: a third order equation with multipoint conditions

Let us now solve the differential problem{
(x2 + 1)y′′′(x)− (x2 + 3x)y′′(x) + 5xy′(x)− 5y = 60x2 − 10 x ∈]− 1, 1[

y(−1) = 4, y′(1) = 2, y′′(0) = 0
(11)

The problem can be solved by Tau Toolbox as:

Tau Toolbox code 5: basic level

% Create tau objects.
[x, y] = tau('ChebyshevT', [-1 1], 5);
% Call the tausolver function.
a = tausolver(x, y, ...

['(xˆ2+1)*diff(y,3)-(xˆ2+3*x)*diff(y,2)+5*x*diff(y)-5*y', ...
' = 60*xˆ2-10'], ...
{'y(-1)=4';'y''(1)=2';'y''''(0)=0'}, ...
'spy', 1, 'exact_solution', 'xˆ5-3*x+2');

The vector solution a obtained, with n = 6, was a = [2, −2.375, 0, 0.3125, 0, 0.0625] which
corresponds to the Chebyshev form of y(x) = 2T0(x)− 19

8 T1(x) + 5
16T3(x) + 1

16T5(x) = 2− 3x+x5 the
exact solution. This illustrate the tau method’s property that, with n large enough, we recover the
exact solution whenever it is a polynomial.

With tausolver function we recover the exact solution even when working with n values consid-
erably greater then the degree of exact solution. Figure 6 shows the absolute errors |a− an| observed
in the coefficients of the tausolver solution an with sample values for n.

Example 3: a system of differential equations

In order to illustrate an application to a system of differential equations, the previous example is
translated into a system of first order differential equations, as

y2(x)− y′1(x) = 0

y3(x)− y′2(x) = 0

(x2 + 1)y′3(x)− (x2 + 3x)y′2(x) + 5xy2(x)− 5y1 = 60x2 − 10

y1(−1) = 4, y2(1) = 2, y3(0) = 0

. (12)

The Tau Toolbox tausolver function allows a fast and basic approach to solve problem (12):

8

0 2 4 6 8
10-25

10-20

10-15
n=8

0 16 32 48 64
10-50

10-25

100
n=64

0 256 512
10-300

10-200

10-100

100
n=512

0 400 800
10-300

1e-200

1e-100

100
n=4096

Figure 6: errors |a− an|, n = 8, 64, 512, 4096

Tau Toolbox code 6: basic level

% Create tau objects.
[x, y] = tau('ChebyshevT', [-1 1], 15);
% Call the tausolver function.
a = tausolver(x, y, {'y2-1*diff(y1)=0'; ...

'y3-1*diff(y2)=0'; ...
['(xˆ2+1)*diff(y3)-(xˆ2+3*x)*diff(y2)+5*x*y2-5*y1=', ...
'60*xˆ2-10']}, ...
{'y1(-1)=4';'y2(1)=2';'y3(0)=0'}, ...
'exact_solution', {'xˆ5-3*x+2';'5*xˆ4-3';'20*xˆ3'}, 'spy', ...

1);

The shape of TT is presented at Figure 7b and the solution plots shown at Figure 7a.

-1 -0.5 0 0.5 1
x

-20

-10

0

10

20

y
6
(x
)

y1
y2
y3

(a) Solution plots (b) Spy of the coefficent matrix

Figure 7: Solution and spy plots for problem (12)

Once the problem (12) is translated into an algebraic linear system [CP ; DP]aP = bP , where

DP =

−NP I 0
0 −NP I
−5I 5MP I− (M2

P + 3MP)NP (M2
P + I)NP



9

translates the differential operator,

CP =


c1,i = Pi(−1)

c2,n+i = Pi(1)

c3,2n+i = Pi(0)

, i = 0, 1, 2, ..., n− 1

translates the boundary conditions and

bP = [4, 2, 0︸ ︷︷ ︸
ν = 3

, 0, . . . , 0︸ ︷︷ ︸
2(n− 1)

, fP]T .

simultaneously the left-hand-side of boundary conditions and of differential equations.
The solution of the system provides

y ≈
n−1∑
i=0

aPiPi, y′ ≈
n−1∑
i=0

aPi+nPi and y′′ ≈
n−1∑
i=0

aPi+2nPi.

More advanced users can explore even more the Tau Toolbox to detail their solution approach.
The following sequence of codes present, in detail, all the steps to tackle problem (12):

� Define the tau objects and the block matrix:

% Create tau objects.
[x, y] = tau('ChebyshevT', [-1 1], 6);

% Building the blocks for compose D.
A = -diff(y); B = 1*y; C = zeros(x.n);
D = zeros(x.n); E = -diff(y); F = 1*y;
G = -5*y; H = 5*x*eye(x.n)-(xˆ2+3*x)*diff(y); I = (xˆ2+1)*diff(y);

� Define the boundary conditions and store them in b and T:

% Allocating the conditions.
x1 = -1; x2 = 1; x3 = 0;
nu = 3; b = zeros(3*x.n, 1); b(1) = x1ˆ5-3*x1+2;

b(2) = 5*x2ˆ4-3;
b(3) = 20*x3ˆ3;

� Define and store the matrix C

T(1,1:y.n) = orthoval(x, x1, 'difforder', 0);
T(2,y.n+1:2*y.n) = orthoval(x, x2, 'difforder', 0);
T(3,2*y.n+1:3*y.n) = orthoval(x, x3, 'difforder', 0);

� Define and store the operator at D:

% Allocating the truncated blocks.
T(nu+1:y.n-1+nu,1:y.n) = A.mat(1:end-1,:);
T(nu+1:y.n-1+nu,y.n+1:2*y.n) = B.mat(1:end-1,:);
T(nu+1:y.n-1+nu,2*y.n+1:3*y.n) = C(1:end-1,:);

T(y.n+nu:2*(y.n-1)+nu,1:y.n) = D(1:end-1,:);
T(y.n+nu:2*(y.n-1)+nu,y.n+1:2*y.n) = E.mat(1:end-1,:);
T(y.n+nu:2*(y.n-1)+nu,2*y.n+1:3*y.n) = F.mat(1:end-1,:);

T(2*y.n-1+nu:3*(y.n-1)+nu,1:y.n)= G.mat(1:end-1,:);
T(2*y.n-1+nu:3*(y.n-1)+nu,y.n+1:2*y.n)= H.mat(1:end-1,:);
T(2*y.n-1+nu:3*(y.n-1)+nu,2*y.n+1:3*y.n)= I.mat(1:end-1,:);

10

� Right-hand-side

% Transforming and allocating the right-hand-side.
p = pow2orth(x, '60*xˆ2-10');
b(2*y.n-1+nu:3*(y.n-1)+nu) = p(1:end-1);

� Compute the tau solution:

% Solving the system.
a = T\b; a = reshape(a, y.n, 3);

� Results are shown by:

% Showing the results.
points = linspace(x.domain(1), x.domain(2), 100);
y1 = orthoval(x, points, 'coef', a(:,1));
y2 = orthoval(x, points, 'coef', a(:,2));
y3 = orthoval(x, points, 'coef', a(:,3));
semilogy(points, abs(y1-(points.ˆ5-3*points+2))); hold on
semilogy(points, abs(y2-(5*points.ˆ4-3)));
semilogy(points, abs(y3-(20*points.ˆ3)));
l=legend('$|y(x)-y_{6}(x)|$','$|y''(x)-y''_{6}(x)|$','$|y''''(x)-y''''_...

{6}(x)|$');
set(l,'Interpreter','Latex'); xlabel('x','Interpreter','Latex')
figure; spy(T)

4 Highlights

In this Technical Report:

� the tau method is introduced;

� first insights on the Tau Toolbox are provided

� the three level functions of Tau Toolbox are presented: basic, intermediate and advanced.

References

M. R. Crisci and E. Russo. An extension of Ortiz recursive formulation of the Tau method to certain
linear systems of ordinary differential equations. Mathematics of computation, pages 27–42, 1983.

C. Lanczos. Trigonometric interpolation of empirical and analytical functions. Journal of Mathematics
and Physics, 17(1):123–199, 1938.

K. Liu and C. Pan. The automatic solution to systems of ordinary differential equations by the Tau
method. Computers & Mathematics with Applications, 38(9):197–210, 1999.

J. Matos, M. J. Rodrigues, and J. C. de Matos. Avoiding similarity transformations in the operational
Tau method. submitted.

J. Matos, M. J. Rodrigues, and P. B. Vasconcelos. New implementation of the Tau method for pdes.
Journal of computational and applied mathematics, 164:555–567, 2004.

J. Matos, P. B. Vasconcelos, and M. Trindade. Tau Toolbox for nonlinear ordinary differential systems.
Technical Report TR4, CMUP and University of Porto, 2016.

11

S. Namasivayam and E. L. Ortiz. Best approximation and the numerical solution of partial differential
equations with the Tau method. Portugaliae mathematica, 40(1):97–119, 1981.

E. Ortiz. On the numerical solution of nonlinear and functional differential equations with the Tau
method. In Numerical treatment of differential equations in applications, pages 127–139. Springer,
1978.

E. Ortiz and A. P. N. Dinh. Linear recursive schemes associated with some nonlinear partial differential
equations in one dimension and the Tau method. SIAM Journal on Mathematical Analysis, 18(2):
452–464, 1987.

E. L. Ortiz and H. Samara. An operational approach to the Tau method for the numerical solution
of non-linear differential equations. Computing, 27(1):15–25, 1981.

J. Pour-Mahmoud, M. Rahimi-Ardabili, and S. Shahmorad. Numerical solution of the system of
fredholm integro-differential equations by the Tau method. Applied Mathematics and Computation,
168(1):465–478, 2005.

L. N. Trefethen. Spectral methods in MATLAB, volume 10. SIAM, 2000.

12

	Introduction
	Overview of the tau method
	Preliminaries
	Tau method for linear differential problems

	Tau method on Tau Toolbox
	Highlights

