Publications
Simulation Based Design of Optimal Phasing Plans for an Intersection with Semi-Actuated Signals. In: Proceedings of the Twelfth International Conference on Civil, Structural and Environmental Engineering Computing.; 2009. 2. 246.Edit
Renaissance sources of Juan Pérez de Moya’s geometries. Asclepio. Revista de Historia de la Medicina y de la Ciencia. 2013;65 (2)(julio-diciembre ):1-18.Edit
On free inverse monoid languages. RAIRO Inform. Théor. Appl.. 1996;30:349-378.
On an algorithm to decide whether a free group is a free factor of another. Theor. Inform. Appl.. 2008;42:395-414.Edit
The homomorphism problem for trace monoids. Theoret. Comput. Sci.. 2003;307:199-215.
Recognizable subsets of a group: finite extensions and the abelian case. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS. 2002:195-215.
Automorphic orbits in free groups: words versus subgroups. Internat. J. Algebra Comput.. 2010;20:561-590.Edit
Normal-convex embeddings of inverse semigroups. Glasgow Math. J.. 1993;35:115-121.
[2015-25] On the circulation of algebraic knowledge in the Iberian península: the sources of Pérez de Moya's Tratado de Arithmetica (1573) .Edit
Groups and automata: a perfect match. J. Automata Lang. Combin.. 2012;17(2-4):277-292.
Howson’s property for semidirect products of semilattices by groups. Comm. Algebra. 2016;44(6):2482-2494.Edit
Equações no «Libro de Algebra» de Pedro Nunes. Vol 68 APM 2002.Edit
Shared knowledge or shared affordances? insights from an ecological dynamics approach to team coordination in sports. Sports Medicine. 2013;43:765-772.Edit
Heart Rate Variability in Children Submitted to Surgery. Journal of Anesthesia & Clinical Research. 2016;7.Edit
Free group languages: rational versus recognizable. Theor. Inform. Appl.. 2004;38:49-67.
Extensions and submonoids of automatic monoids. Theoret. Comput. Sci.. 2002;289:727-754.Edit
Numerical relations and skill level constrain co-adaptive behaviors of agents in sports teams. PloS one. 2014;9:e107112.Edit
Contribuição para o estudo do manuscrito Arte de Marear de Juan Pérez de Moya. LLULL. 2012;35(76):351-379.Edit
[2010-14] Finite idempotent inverse monoid presentations .
On the semilattice of idempotents of a free inverse monoid. Proc. Edinburgh Math. Soc. (2). 1993;36:349-360.