Publications

Found 2290 results
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Pinto CM. Strange patterns in one ring of Chen oscillators coupled to a `buffer' cell. Journal of Vibration and Control. 2016;22(4):3267-3295.Edit
Pinto CM. Strange Dynamics in a Fractional Derivative of Complex-Order Network of Chaotic Oscillators. International Journal of Bifurcation and Chaos. 2015;25:15550003.Edit
Díaz L., Rocha J., Viana M. Strange attractors in saddle-node cycles: prevalence and globality. Invent. Math.. 1996;125:37-74.Edit
Pinto N. Straightforward inference of ancestry and admixture proportions through ancestry-informative insertion deletion multiplexing. PLoS ONE. 2012;7.Edit
Borlido C, Czarnetzki S, Gehrke M, Krebs A. Stone Duality and the Substitution Principle. In: Computer Science Logic.; 2017. 1. 13:p. 1-13p. :20.Edit
Santamaria F, Boffetta G, Afonso MM, Mazzino A, Onorato M, Pugliese D. Stokes drift for inertial particles transported by water waves. Europhysics Letters. 2013;102(1):14003: 1-5.Edit
Alves JF, Araújo V, Vásquez CH. Stochastic stability of non-uniformly hyperbolic diffeomorphisms. Stoch. Dyn.. 2007;7:299-333.Edit
[2004-19] Araújo V, Tahzibi A. Stochastic stability at the boundary of expanding maps .Edit
Vieira P., Oliveira PM, Cunha Á. Stochastic Runge–Kutta Schemes for Discretization of Hysteretic Models. Vol Recent Developments in Modeling and Applications in Statistics, Studies in Theoretical and Applied Statistics Springer 2013.Edit
Bahij M, Nafidi A, Achchab B, Gama SM, Matos J.. A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering . 2016;10 (6):254-259.Edit
Yeldan O, Colorni A, Lue A, Rodaro E. A stochastic continuous cellular automata traffic flow model with a multi-agent fuzzy system. In: EWGT2012 - 15th Meeting of the EURO Working Group on Transportation, September 2012, Paris. Vol Procedia - Social and Behavioral Sciences vol. 54.; 2012. p. pp. p. 1350-1359p. Edit
Alves JF. Stochastic behavior of asymptotically expanding maps. Discrete Contin. Dynam. Systems. 2001:14-21.
de Oliveira AG. On the Steinitz exchange lemma. Discrete Math.. 1995;137:367-370.Edit
Freitas AC. Statistics of the maximum for the tent map. Chaos Solitons Fractals. 2009;42:604-608.
Amorim I, Machiavelo A, Reis R. Statistical Study on The Number of Injective Linear Finite Transducers. In: Non-Classical Models of Automata and Applications (NCMA 2014). Germany, Kassel: books@ocg.at; 2014. Edit
Amorim I, Machiavelo A, Reis R. Statistical Study on The Number of Injective Linear Finite Transducers. Bensch S, Freund R, Otto F, editors Oesterreichische Computer Gesellschaft 2014.Edit
[2004-26] Araújo V, Pacifico MJ. Statistical stability of saddle-node arcs .Edit
Alves JF, Soufi M. Statistical stability of geometric Lorenz attractors. Fund. Math.. 2014;224:219-231.Edit
[2007-27] Freitas JM, Todd M. Statistical stability of equilibrium states for interval maps .
Freitas JM, Todd M. The statistical stability of equilibrium states for interval maps. Nonlinearity. 2009;22:259-281.
Alves JF, Viana M. Statistical stability for robust classes of maps with non-uniform expansion. Ergodic Theory Dynam. Systems. 2002;22:1-32.Edit
Alves JF, Pumariño A., Vigil E. Statistical stability for multidimensional piecewise expanding maps. Proceedings of the American Mathematical Society. 2017;145:3057-3068.Edit
[2014-22] Alves JF, Pumariño A, Vigil E. Statistical stability for multidimensional piecewise expanding maps .Edit
Alves JF, Freitas JM. Statistical stability for Hénon maps of the Benedicks-Carleson type. Ann. Inst. H. Poincaré Anal. Non Linéaire. 2010;27:595-637.
Alves JF, Carvalho M, Freitas JM. Statistical stability for Hénon maps of the Benedicks-Carleson type. Ann. Inst. H. Poincaré Anal. Non Linéaire. 2010;27:595-637.

Pages