Publications
Modular Diophantine inequalities and numerical semigroups. Pacific J. Math.. 2005;218:379-398.Edit
Finitely generated commutative monoids Nova Science Publishers, Inc., Commack, NY 1999.Edit
Arf numerical semigroups. J. Algebra. 2004;276:3-12.Edit
Presentations of finitely generated submonoids of finitely generated commutative monoids. Internat. J. Algebra Comput.. 2002;12:659-670.Edit
Reduced commutative monoids with two Archimedean components. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8). 2000;3:471-484.Edit
The set of solutions of a proportionally modular Diophantine inequality. J. Number Theory. 2008;128:453-467.Edit
Numerical semigroups. Vol 20 Springer, New York 2009.Edit
On Cohen-Macaulay and Gorenstein simplicial affine semigroups. Proc. Edinburgh Math. Soc. (2). 1998;41:517-537.Edit
Correction to: ``Modular Diophantine inequalities and numerical semigroups'' [Pacific J. Math. \bf 218 (2005), no. 2, 379–398; \refcno 2218353]. Pacific J. Math.. 2005;220:199.Edit
Numerical semigroups with maximal embedding dimension. Int. J. Commut. Rings. 2003;2:47-53.Edit
Saturated numerical semigroups. Houston J. Math.. 2004;30:321-330 (electronic).Edit
On complete intersection affine semigroups. Comm. Algebra. 1995;23:5395-5412.Edit
On the structure of simplicial affine semigroups. Proc. Roy. Soc. Edinburgh Sect. A. 2000;130:1017-1028.Edit
Every numerical semigroup is one half of infinitely many symmetric numerical semigroups. Comm. Algebra. 2008;36:2910-2916.Edit
$k$-factorized elements in telescopic numerical semigroups. In: Arithmetical properties of commutative rings and monoids. Vol 241. Chapman & Hall/CRC, Boca Raton, FL; 2005. 2. p. 260-271p. (Lect. Notes Pure Appl. Math.; vol 241).Edit
On normal affine semigroups. Linear Algebra Appl.. 1999;286:175-186.Edit
Atomic commutative monoids and their elasticity. Semigroup Forum. 2004;68:64-86.Edit
Minimal presentations of full subsemigroups of $\bold N^2$. Rocky Mountain J. Math.. 2001;31:1417-1422.Edit
On presentations of commutative monoids. Internat. J. Algebra Comput.. 1999;9:539-553.Edit
Numerical semigroups with maximal embedding dimension [\refcno 2056070]. In: Focus on commutative rings research. Nova Sci. Publ., New York; 2006. 4. p. 47-53p. Edit
Fundamental gaps in numerical semigroups with respect to their multiplicity. Acta Math. Sin. (Engl. Ser.). 2004;20:629-646.Edit
Nonnegative elements of subgroups of $\bf Z^n$. Linear Algebra Appl.. 1998;270:351-357.Edit
Ideals of finitely generated commutative monoids. Semigroup Forum. 2003;66:305-322.Edit
How to check if a finitely generated commutative monoid is a principal ideal commutative monoid. In: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (St. Andrews). ACM, New York; 2000. 2. p. 288-291p. (electronic).Edit
Constructing almost symmetric numerical semigroups from irreducible numerical semigroups. Comm. Algebra. 2014;42:1362-1367.Edit