Publications
A note on Pérez de Moya's Principios de Geometria (1584). Revue d'histoire des mathématiques . 2008;14 ( fascicule 1 ):113-133.Edit
On the semilattice of idempotents of a free inverse monoid. Proc. Edinburgh Math. Soc. (2). 1993;36:349-360.
Finite automata for Schreier graphs of virtually free groups. J. Group Theory. 2016;19:25-54.Edit
On a class of automata groups generalizing lamplighter groups. Internat. J. Algebra Comput.. 2005;15:1213-1234.Edit
[2017-28] On finitely generated submonoids of free groups .
Finite idempotent inverse monoid presentations. Internat. J. Algebra Comput.. 2011;21:1111-1133.
Renaissance sources of Juan Pérez de Moya’s geometries. Asclepio. Revista de Historia de la Medicina y de la Ciencia. 2013;65 (2)(julio-diciembre ):1-18.Edit
Effects of pitch size and skill level on tactical behaviours of Association Football players during small-sided and conditioned games. International Journal of Sports Science & Coaching. 2014;9:993-1006.Edit
Rational subsets of partially reversible monoids. Theoret. Comput. Sci.. 2008;409:537-548.
Clifford monoid presentations. Math. Proc. Cambridge Philos. Soc.. 1992;111:445-454.
A geometric characterization of automatic monoids. Q. J. Math.. 2004;55:333-356.Edit
Fixed points of endomorphisms over special confluent rewriting systems. Monatsh. Math.. 2010;161:417-447.
The word problem for nilpotent inverse monoids. Semigroup Forum. 1995;51:285-293.
a partitional clustering algorithm validated by a clustering tendency index based on graph theory. pattern recognition. 2006;39:776-788.Edit
Luis Inacio Woodhouse (1857-1927). Vol 1. U. Porto Edições ed. 2018.Edit
Field dimension and skill level constrain team tactical behaviours in small-sided and conditioned games in football. Journal of sports sciences. 2014;32:1888-1896.Edit
[2010-14] Finite idempotent inverse monoid presentations .
Fixed points of endomorphisms of certain free products. RAIRO Theor. Inform. Appl.. 2012;46:165-179.