Publications
An automata-theoretic approach to the word problem for ω-terms over $\ssfR$. Theoret. Comput. Sci.. 2007;370:131-169.Edit
Some quasi-ordered classes of finite commutative semigroups. Semigroup Forum. 1985;32:189-200.Edit
Pseudovariety joins involving $\scr J$-trivial semigroups. Internat. J. Algebra Comput.. 1999;9:99-112.Edit
Reducibility vs. definability for pseudovarieties of semigroups. International Journal of Algebra and Computation. 2016;26(7):1483-1495.Edit
Presentations of Schützenberger groups of minimal subshifts. Israel J. Math.. 2013;196:1-31.Edit
Implicit operations on certain classes of semigroups. In: Semigroups and their applications (Chico, Calif., 1986). Reidel, Dordrecht; 1987. 1. p. 1-11p. Edit
José Morgado: in memoriam. Bol. Soc. Port. Mat.. 2004:1-18.Edit
Free profinite semigroups over semidirect products. Izv. Vyssh. Uchebn. Zaved. Mat.. 1995:3-31.Edit
On the hyperdecidability of semidirect products of pseudovarieties. Comm. Algebra. 1998;26:4065-4077.Edit
Sur certains systèmes d'équations avec contraintes dans un groupe libre–-addenda. Port. Math. (N.S.). 2001;58:379-387.Edit
Hedonic and descriptive skinfeel analysis of two oleogels: Comparison with other topical formulations. Journal of Sensory Studies. 2008;23:92-113.Edit
A wavelet-based method for assessing fetal cardiac rhythms from abdominal ECGs. In: Computing in Cardiology. Vol 40.; 2013. 2. p. 289-292p. Edit
On the power semigroup of a finite semigroup. Portugal. Math.. 1992;49:295-331.Edit
New decidable upper bound of the second level in the Straubing-Thérien concatenation hierarchy of star-free languages. Discrete Math. Theor. Comput. Sci.. 2010;12:41-58.Edit
Decidability and tameness in the theory of finite semigroups. Bull. Iranian Math. Soc.. 2008;34:1-22.Edit
[2009-39] New decidable upper bound of the second level in the Straubing-Thérien concatenation hierarchy .Edit
On the decidability of iterated semidirect products with applications to complexity. Proc. London Math. Soc. (3). 2000;80:50-74.Edit
The equation $\bf PX=\bf PJ$. In: Proceedings of the International Symposium on the Semigroup Theory and its Related Fields (Kyoto, 1990). Shimane Univ., Matsue; 1990. 1. p. 1-11p. Edit
On power varieties of semigroups. J. Algebra. 1989;120:1-17.Edit