Publications
Overlapping of words in rational languages. In: Combinatorics on words (Waterloo, Ont., 1982). Academic Press, Toronto, ON; 1983. 1. p. 119-131p. Edit
A classification of aperiodic power monoids. J. Algebra. 1994;170:355-387.Edit
[2017-9] Towards a pseudoequational proof theory .Edit
Tameness of some locally trivial pseudovarieties. Comm. Algebra. 2003;31:61-77.Edit
On direct product decompositions of finite $\scr J$-trivial semigroups. Internat. J. Algebra Comput.. 1991;1:329-337.Edit
A counterexample to a conjecture concerning concatenation hierarchies. Inform. Process. Lett.. 2009;110:4-7.Edit
Tameness of the pseudovariety of abelian groups. Internat. J. Algebra Comput.. 2005;15:327-338.Edit
Hyperdecidability of pseudovarieties of orthogroups. Glasg. Math. J.. 2001;43:67-83.Edit
Hyperdecidable pseudovarieties and the calculation of semidirect products. Internat. J. Algebra Comput.. 1999;9:241-261.Edit
A geometric interpretation of the Schützenberger group of a minimal subshift. Arkiv för Matematik. 2016;54(2):243-275.Edit
[2004-21] Tameness of pseudovariety joins involving R .Edit
Factoriality and the Pin-Reutenauer procedure. Discrete Math. Theor. Comput. Sci.. 2016;18:Paper No. 1, 23.Edit
Multilead ECG Delineation Using Spatially Projected Leads From Wavelet Transform Loops. {IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING}. 2009;{56}:{1996-2005}.Edit
Semidirectly closed pseudovarieties of locally trivial semigroups. Semigroup Forum. 1990;40:315-323.Edit
Complete reducibility of systems of equations with respect to $\ssf R$. Port. Math. (N.S.). 2007;64:445-508.Edit
Minimal nonpermutative pseudovarieties of semigroups. I, II. Pacific J. Math.. 1986;121:257-270, 271-279.Edit
Idempotent-generated semigroups and pseudovarieties. Proceedings of the Edinburgh Mathematical Society. 2011;54:545-568.Edit
A syntactical proof of locality of DA. Internat. J. Algebra Comput.. 1996;6:165-177.Edit
Some pseudovariety joins involving the pseudovariety of finite groups. Semigroup Forum. 1988;37:53-57.Edit
The equational theory of ω-terms for finite $\scr R$-trivial semigroups. In: Semigroups and languages. World Sci. Publ., River Edge, NJ; 2004. 1. p. 1-22p. Edit