Publications
On the $L_p$-theorems for index transforms. S\=urikaisekikenky\=usho Kōky\=uroku. 1995:72-83.Edit
Lebedev's type index transforms with the modified Bessel functions. Commun. Math. Anal.. 2016;19(2):68-81.
Corrigendum to the note ``The Fourier-Stieltjes transform of Minkowski's $?(x)$ function and an affirmative answer to Salem's problem'' [C. R. Acad. Sci. Paris, Ser. I 349 (11–12) (2011) 633–636] [\refcno 2817381]. C. R. Math. Acad. Sci. Paris. 2012;350:147.
Index transforms associated with products of Whittaker's functions. J. Comput. Appl. Math.. 2002;148:419-427.
New summation and transformation formulas of the Poisson, Müntz, Möbius and Voronoi type. Integral Transforms Spec. Functions. 2015;26(10):768-795.
$L_2$-interpretation of the Kontorovich-Lebedev integrals. Int. J. Pure Appl. Math.. 2008;42:99-110.
[2010-19] A general class of Voronoi’s and Koshliakov-Ramanujan’s summation formulas involving d_k(n) .
Some asymptotic expansions of special functions by their indices. Fukuoka Univ. Sci. Rep.. 1995;25:23-32.Edit
Index transforms with Weber-type kernels . Integral Transforms and Special Functions. 2018;29(3):171-188.
On Parseval equalities and boundedness properties for Kontorovich-Lebedev type operators. Novi Sad J. Math.. 1999;29:185-205.Edit
[2009-24] On the Watson L2-theory for index transforms .
[2008-1] A class of integral equations and index transformations related to the modified and incomplete Besse .
A stochastic continuous cellular automata traffic flow model with a multi-agent fuzzy system. In: EWGT2012 - 15th Meeting of the EURO Working Group on Transportation, September 2012, Paris. Vol Procedia - Social and Behavioral Sciences vol. 54.; 2012. p. pp. p. 1350-1359p. Edit
An estimate for the rank of the intersection of subgroups in free amalgamated products of two groups with normal finite amalgamated subgroup. Matematicheskii Sbornik . 2013;204(2):73-86.
On the rank of the intersection of free subgroups in virtually free groups. Journal of Algebra. 2014;418:29-43.
[2010-4] Submanifolds in Poisson geometry: a survey .