Publications
A constructive method for constructing integral convolutions. Dokl. Akad. Nauk BSSR. 1990;34:588-591, 666.
The Titchmarsh integral transformation by the index of a Bessel function. J. Comput. Appl. Math.. 2000;118:353-361.
The Plancherel, Titchmarsh and convolution theorems for the half-Hartley transform. Integral Transforms Spec. Funct.. 2014;25:836-848.
An analog of Morgan's theorem for the Kontorovich-Lebedev transform. Adv. Pure Appl. Math.. 2010;1:159-162.Edit
On the construction of integral transformations by the composition method. Izv. Vyssh. Uchebn. Zaved. Mat.. 1993:71-79 (1994).
Index transforms with Weber-type kernels . Integral Transforms and Special Functions. 2018;29(3):171-188.
On some Rajchman measures and equivalent Salem's problem. Commun. Math. Anal.. 2013;14:28-41.
A real inversion formula for the bilateral Laplace transform. Izv. Nats. Akad. Nauk Armenii Mat.. 2005;40:67-79.
On the Lebedev-Skal\cprime skaya transform. Vests\=ı Akad. Navuk Belarus\=ı Ser. F\=ız. Mat. Navuk. 1995:28-35, 124.Edit
Integral convolutions for $H$-transformations. Izv. Vyssh. Uchebn. Zaved. Mat.. 1991:72-79.Edit
On the index-convolution Kontorovich-Lebedev transform. Integral Transform. Spec. Funct.. 1994;2:77-80.
Boundedness and inversion properties of certain convolution transforms. J. Korean Math. Soc.. 2003;40:999-1014.
Closed-form evaluation of two-dimensional static lattice sums. Proc. R. Soc. A. 2016;472: 20160510.Edit
The Fourier-Stieltjes transform of Minkowski's $?(x)$ function and an affirmative answer to Salem's problem. C. R. Math. Acad. Sci. Paris. 2011;349:633-636.
On the convolution for the Kontorovich-Lebedev transformation and its applications to integral equations. Dokl. Akad. Nauk BSSR. 1987;31:101-103, 188.
On the generalized Dixon integral equation. Intern. Journ. of Math. And Comput.. 2017;28(1):25-32.
[2010-19] A general class of Voronoi’s and Koshliakov-Ramanujan’s summation formulas involving d_k(n) .
[2011-1] The use of Kontorovich-Lebedev's transform in an analysis of regularized Schrodinger equation .Edit
On the non-convolution transformation with the Macdonald type kernel function. Fract. Calc. Appl. Anal.. 1998;1:297-309.Edit