Publications
[2010-19] A general class of Voronoi’s and Koshliakov-Ramanujan’s summation formulas involving d_k(n) .
A real inversion formula for the bilateral Laplace transform. Izv. Nats. Akad. Nauk Armenii Mat.. 2005;40:67-79.
The hypergeometric approach to integral transforms and convolutions. Vol 287 Kluwer Academic Publishers Group, Dordrecht 1994.Edit
Integral convolutions for $H$-transformations. Izv. Vyssh. Uchebn. Zaved. Mat.. 1991:72-79.Edit
Integral and series transformations via Ramanujan's identities and Salem's type equivalences to the Riemann hypothesis. Integral Transforms Spec. Funct.. 2014;25:255-271.
[2011-1] The use of Kontorovich-Lebedev's transform in an analysis of regularized Schrodinger equation .Edit
Boundedness and inversion properties of certain convolution transforms. J. Korean Math. Soc.. 2003;40:999-1014.
The Kontorovich-Lebedev type transforms and their convolutions. In: Complex analysis and generalized functions (Varna, 1991). Publ. House Bulgar. Acad. Sci., Sofia; 1993. 3. p. 348-360p.
On the Lebedev-Skal\cprime skaya transform. Vests\=ı Akad. Navuk Belarus\=ı Ser. F\=ız. Mat. Navuk. 1995:28-35, 124.Edit
The Fourier-Stieltjes transform of Minkowski's $?(x)$ function and an affirmative answer to Salem's problem. C. R. Math. Acad. Sci. Paris. 2011;349:633-636.
On the convolution for the Kontorovich-Lebedev transformation and its applications to integral equations. Dokl. Akad. Nauk BSSR. 1987;31:101-103, 188.
A stochastic continuous cellular automata traffic flow model with a multi-agent fuzzy system. In: EWGT2012 - 15th Meeting of the EURO Working Group on Transportation, September 2012, Paris. Vol Procedia - Social and Behavioral Sciences vol. 54.; 2012. p. pp. p. 1350-1359p. Edit
On the rank of the intersection of free subgroups in virtually free groups. Journal of Algebra. 2014;418:29-43.
An estimate for the rank of the intersection of subgroups in free amalgamated products of two groups with normal finite amalgamated subgroup. Matematicheskii Sbornik . 2013;204(2):73-86.
[2010-4] Submanifolds in Poisson geometry: a survey .