Publications
Boundedness and inversion properties of certain convolution transforms. J. Korean Math. Soc.. 2003;40:999-1014.
On the curious series related to the elliptic integrals. The Ramanujan Journal. 2018;45(3):797-815.
[2012-15] Integral and series transformations via Ramanujan's identities and Salem's type equivalences to the .
Convolutions for $H$-function transformations. Indian J. Pure Appl. Math.. 1992;23:743-752.Edit
The Fourier-Stieltjes transform of Minkowski's $?(x)$ function and an affirmative answer to Salem's problem. C. R. Math. Acad. Sci. Paris. 2011;349:633-636.
On the non-convolution transformation with the Macdonald type kernel function. Fract. Calc. Appl. Anal.. 1998;1:297-309.Edit
Generalizations of the Leibniz rule to integral convolutions. Dokl. Akad. Nauk BSSR. 1991;35:111-115, 188.Edit
Convolutions related to the Fourier and Kontorovich-Lebedev transforms revisited. Integral Transforms Spec. Funct.. 2010;21:259-276.Edit
Composition theorems of Plancherel type for index transformations. Dokl. Akad. Nauk Belarusi. 1994;38:29-32, 122 (1995).
On the theory of the Kontorovich-Lebedev transformation on distributions. Proc. Amer. Math. Soc.. 1994;122:773-777.Edit
A remark on the inversion formula for Wimp's integral transformation with respect to the index. Differentsial\cprime nye Uravneniya. 1985;21:1097-1098, 1104.
On the theory of convolution integral equations related to Lebedev's type operators. Sarajevo J. Math.. 2009;5(17):119-132.
On the Lebedev transformation in Hardy's spaces. Int. J. Math. Math. Sci.. 2004:3603-3616.
Voronoi-Nasim summation formulas and index transforms. Integral Transforms Spec. Funct.. 2012;23:369-388.
On some properties of the Abel-Goncharov polynomials and the Casas-Alvero problem. Integral Transforms and Special Functions. 2016;27(8):599-610.
The Plancherel and Hausdorff-Young type theorems for an index transformation. Z. Anal. Anwend.. 2006;25:193-204.
Integral transforms of the Kontorovich-Lebedev convolution type. Collect. Math.. 2003;54:99-110.
The generalizations of integral analog of the Leibniz rule on the $G$-convolutions. Extracta Math.. 1991;6:119-122.Edit