Publications
A Voronoi-type summation formula involving $\sigma_{\rm i\tau(n)$ and index transforms. Integral Transforms Spec. Funct.. 2013;24:98-110.
Certain identities, connection and explicit formulas for the Bernoulli and Euler numbers and the Riemann zeta-values. Analysis (Berlin). 2015;35:59-71.
On the Watson $L_2$-theory for index transforms I. Integral Transforms Spec. Funct.. 2010;21:381-397.
A convolution related to the inverse Kontorovich-Lebedev transform. Sarajevo J. Math.. 2007;3(16):215-232.Edit
On the curious series related to the elliptic integrals. The Ramanujan Journal. 2018;45(3):797-815.
On convolution integral equations associated with the Kontorovich-Lebedev transform. In: Boundary value problems, special functions and fractional calculus (Russian) (Minsk, 1996). Belorus. Gos. Univ., Minsk; 1996. 3. p. 391-400p. Edit
Some generalizations of the Laplace convolution. Mat. Fiz. Neline\uın. Mekh.. 1992:8-12.
On the Mehler-Fock index transform in $L_p$-space. S\=urikaisekikenky\=usho Kōky\=uroku. 1994:130-144.Edit
[2010-19] A general class of Voronoi’s and Koshliakov-Ramanujan’s summation formulas involving d_k(n) .
A class of polynomials and discrete transformations associated with the Kontorovich-Lebedev operators. Integral Transforms Spec. Funct.. 2009;20:551-567.
$L_P$-boundedness of general index transforms. Liet. Mat. Rink.. 2005;45:127-147.
Integral transformations by the index of Lommel's function. Period. Math. Hungar.. 2003;46:223-233.
New inversion, convolution and Titchmarsh's theorems for the half-Hilbert transform. Integral Transforms Spec. Funct.. 2014;25:955-968.
[2008-27] A class of polynomials and discrete transformationsassociated with the Kontorovich- Lebedev operator .
Fundamental solutions of the fractional two-parameter telegraph equation. Integral Transforms Spec. Funct.. 2012;23:509-519.Edit
[2011-1] The use of Kontorovich-Lebedev's transform in an analysis of regularized Schrodinger equation .Edit
Multidimensional Kontorovich-Lebedev transforms. Integral Transforms Spec. Funct.. 2011;22:123-141.
A general approach to the theory of integral transforms with respect to an index. Izv. Vyssh. Uchebn. Zaved. Mat.. 1986:77-79, 84.
On a new approach to convolution constructions. Internat. J. Math. Math. Sci.. 1993;16:435-448.Edit
Eddy viscisity of three dimensional flow. Journal of Fluid Mechanics. 1995;288:249-264.Edit