Publications

Found 2290 results
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Rhodes J, Schilling A, Silva PV. The semaphore codes attached to a Turing machine via resets and their various limits. Internat. J. Algebra Comput.. 2016;26(4):675-704.Edit
[2005-6] Reis H. Semi-complete Foliations associated to Hamiltonian Vector Fields .
Reis H. Semi-complete foliations associated to Hamiltonian vector fields in dimension 2. J. Math. Anal. Appl.. 2007;328(2):813-820.
Reis H. Semi-complete vector fields of saddle-node type in C^n. Trans. Amer. Math. Soc.. 2008;360(12):6611-6630.
[2004-29] Reis H. Semi-complete vector fields of saddle-node type in C^n .
[2004-37] Araújo V. Semicontinuity of entropy, existence of equilibrium states and of physical measures .Edit
Carvalho M, Varandas P. (Semi)continuity of the entropy of Sinai probability measures for partially hyperbolic diffeomorphisms. Journal of Mathematical Analysis and Applications. 2016;434(2):1123-1137.
[2015-11] Varandas P. (Semi)continuity of the entropy of Sinai probability measures for partially hyperbolic diffeomorphisms .
Almeida J, Costa JC, Teixeira M.. Semidirect product with an order-computable pseudovariety and tameness. Semigroup Forum. 2010;81:26-50.Edit
[2009-28] Almeida J, Costa JC, Teixeira M.. Semidirect product with an order-computable pseudovariety and tameness .Edit
Almeida J. Semidirect products of pseudovarieties from the universal algebraist's point of view. J. Pure Appl. Algebra. 1989;60:113-128.Edit
Almeida J, Escada AP. Semidirect products with the pseudovariety of all finite groups. In: Words, languages & combinatorics, III (Kyoto, 2000). World Sci. Publ., River Edge, NJ; 2003. 1. p. 1-21p. Edit
Almeida J. Semidirectly closed pseudovarieties of locally trivial semigroups. Semigroup Forum. 1990;40:315-323.Edit
Carvalho M, Rodrigues F, Varandas P. Semigroup actions of expanding maps. Journal of Statistical Physics. 2017;166(1):114-136.Edit
[2017-11] Branco MJ, Gomes GM, Silva PV. On the semigroup rank of a group .Edit
Delgado M, Fernandes VH, Margolis S, Steinberg B. On semigroups whose idempotent-generated subsemigroup is aperiodic. Internat. J. Algebra Comput.. 2004;14:655-665.Edit
Almeida J, Pin J., Weil P. Semigroups whose idempotents form a subsemigroup. Math. Proc. Cambridge Philos. Soc.. 1992;111:241-253.Edit
Blanco V, García-Sánchez PA, Geroldinger A.. Semigroup-theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids. Illinois J. Math.. 2011;55:1385-1414 (2013).Edit
Almeida J. Semigrupos finitos e álgebra universal Universidade de São Paulo, Instituto de Matemática e Estatí stica, São Paulo 1991.Edit
Silva PV. On the semilattice of idempotents of a free inverse monoid. Proc. Edinburgh Math. Soc. (2). 1993;36:349-360.
Machiavelo A. On semi-linear representations over local fields ProQuest LLC, Ann Arbor, MI 1993.
Lomp C. On semilocal modules and rings. Comm. Algebra. 1999;27:1921-1935.Edit
Lomp C. On the semiprime smash product question. In: International Conference on Noncommutative Rings and their Applications. Vol Contemporary Mathematics 634. France, Lens: American Math. Soc.; 2015. Edit
Almeida J, Rodaro E. Semisimple synchronizing automata and the Wedderburn-Artin theory. Internat. J. Foundat. Comput. Sci.. 2016;27(2):127-145.Edit
Almeida J, Rodaro E. Semisimple Synchronizing Automata and the Wedderburn-Artin Theory. In: Development in Language Theory, DLT 2014. Vol LNCS, 8633.; 2014. 4. p. 49-60p. Edit

Pages

Error | CMUP

Error

The website encountered an unexpected error. Please try again later.