Publications
A note on the finite basis and finite rank properties for pseudovarieties of semigroups. Semigroup Forum. 2018;97:177-180.Edit
Commutative positive varieties of languages. Acta Cybernetica. 2017;23(1):91-111.Edit
Incremental DFA Minimisation. RAIRO - Theoretical Informatics and Applications. 2014;48:173-186.Edit
A notion of branching rank for semilattices with descending chain condition. Order. 1988;4:397-409.Edit
The globals of pseudovarieties of ordered semigroups containing $B_2$ and an application to a problem proposed by Pin. Theor. Inform. Appl.. 2005;39:1-29.Edit
Some key problems on finite semigroups. Semigroup Forum. 2002;64:159-179.Edit
On regular implicit operations. Portugal. Math.. 1993;50:35-61.Edit
Iterated periodicity over finite aperiodic semigroups. European J. Combin.. 2014;37:115-149.Edit
Exploring QT variability dependence from heart rate in coma and brain death on pediatric patients. In: Computing in Cardiology. Vol 40.; 2013. 6. p. 61-64p. Edit
On hyperdecidable pseudovarieties of simple semigroups. Internat. J. Algebra Comput.. 2000;10:261-284.Edit
On finite simple semigroups. Proc. Edinburgh Math. Soc. (2). 1991;34:205-215.Edit
Infinite-vertex free profinite semigroupoids and symbolic dynamics. J. Pure Appl. Algebra. 2009;213:605-631.Edit
[2015-34] Representations of relatively free profinite semigroups, irreducibility, and order primitivity .Edit
Generalized varieties of commutative and nilpotent semigroups. Semigroup Forum. 1984;30:77-98.Edit
On a problem of Brzozowski and Fich. In: Semigroups and applications (St. Andrews, 1997). World Sci. Publ., River Edge, NJ; 1998. 1. p. 1-17p. Edit
On the topological semigroup of equational classes of finite functions under composition. J. of Mult.-Valued Logic & Soft Computing. 2017;28(1):5-28.Edit
McCammond's normal forms for free aperiodic semigroups revisited. LMS J. Comput. Math.. 2015;18:130-147.Edit
The join of the pseudovarieties of $\scr R$-trivial and $\scr L$-trivial monoids. J. Pure Appl. Algebra. 1989;60:129-137.Edit
Subword complexity of profinite words and subgroups of free profinite semigroups. Internat. J. Algebra Comput.. 2006;16:221-258.Edit
Semidirect products with the pseudovariety of all finite groups. In: Words, languages & combinatorics, III (Kyoto, 2000). World Sci. Publ., River Edge, NJ; 2003. 1. p. 1-21p. Edit
The mathematician Hugo Ribeiro. Portugal. Math.. 1995;52:1-14.Edit