Publications

Found 2268 results
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
T
Tomás AP. On the enumeration of permutominoes. In: EGC 2013 – XV Spanish Meeting on Computational Geometry. Vol EGC 2013 – XV Spanish Meeting on Computational Geometry (Informal Proceedings). University of Seville, Spain ed.; 2013. 4. p. 47-50p.
Tome A., Teixeira A., Lang EW, Stadlthanner K, Rocha AP, Almeida R. dAMUSE - A new tool for denoising and blind source separation. {DIGITAL SIGNAL PROCESSING}. 2005;{15}:{400-421}.Edit
Tome A., Teixeira A., Lang EW, Stadlthanner K, Rocha AP, Almeida R. Blind source separation using time-delayed signals. In: {IEEE International Joint Conference on Neural Networks (IJCNN)}. Vol {3}. {IEEE}; 2004. {. {p. 2187-2191p. }.Edit
Torgo L., Da Costa J. clustered partial linear regression. machine learning. 2003;50:303-319.Edit
Torgo L., Da Costa J. clustered partial linear regression. machine learning: ecml 2000. 2000;1810:426-436.Edit
Torgo L., da Costa J.. Clustered partial linear regression. In: LaopezDeMantaras R., Plaza E., editors. Machine Learning: Ecml 2000. Vol 1810.; 2000. 4. p. 426-436p. (Lecture Notes in Artificial Intelligence; vol 1810).Edit
Torgo L., Da Costa J. clustered multiple regression. data analysis, classification, and related methods. 2000:217-222.Edit
Torgo L., da Costa J.. Clustered multiple regression. In: Kiers H.AL, Rasson J.P, Gronen P.JF, Schader M., editors. Data Analysis, Classification, and Related Methods.; 2000. 2. p. 217-222p. (Studies in Classification, Data Analysis, and Knowledge Organization).Edit
Trindade M., Matos J., Vasconcelos PB. Towards a Lanczos Tau-Method Toolkit for Differential Problems. Mathematics in Computer Science. 2016;10(3):313-329.Edit
Trindade M., Matos J., Vasconcelos PB. Dealing with functional coefficients within Tau method. In: 3rd International Conference on Numerical and Symbolic Computation. Universidade do Minho ed. APMTAC; 2017. 1. p. 11-26p. Edit
Tuan VK, Yakubovich SB. The Kontorovich-Lebedev integral transformation in a new class of functions. Dokl. Akad. Nauk BSSR. 1985;29:11-14, 92.Edit
Tuan VK, Yakubovich SB. Donoho-Stark and Paley-Wiener theorems for the $G$-transform. Adv. in Appl. Math.. 2010;45:108-124.Edit
Tuan VK, Marichev O., Yakubovich SB. Compositional structure of integral transformations. Dokl. Akad. Nauk SSSR. 1986;286:786-790.Edit
Tuan VK, Yakubovich SB. Kantorovich-Lebedev transformation of functions that admit exponential growth. Mat. Fiz. Neline\uın. Mekh.. 1988:6-9, 85.Edit
[2009-12] Tuan VK, Yakubovich SB. Donoho-Stark and Paley-Wiener theorems for the G-transform .Edit
Tuan VK, Yakubovich SB. A criterion for the unitarity of a two-sided integral transformation. Ukraï n. Mat. Zh.. 1992;44:697-699.Edit
V
Van Assche W., Yakubovich SB. Multiple orthogonal polynomials associated with Macdonald functions. Integral Transform. Spec. Funct.. 2000;9:229-244.Edit
[2015-31] Varandas P, Zhao V.. Weak Gibbs measures: speed of convergence to entropy, topological and geometrical aspects .Edit
[2014-27] Varandas P. A version of Kac's lemma on first return times for suspension flows .
Vasconcelos PB, Matos JM, Trindade M.. Spectral Lanczos’ tau method for systems of nonlinear integro-differential equations. Vol Integral Methods in Science and Engineering Springer 2017.Edit
Vasconcelos PB, Roman JE, d'Almeida FD. Integral Operator Spectral Computations using PETSc/SLEPc libraries. In: Proenca A, Pina A, Tobio J.G, Ribeiro L, editors. IBERGRID: 4th Iberian Grid Infrastructure Conference Proceedings.; 2010. 3. p. 395-403p. Edit
Vasconcelos PB, d'Almeida FD. A Parallel Code for Integral Equations on a Cluster of Computers. In: Constanda C, Largillier A., Ahues M, editors. Integral Methods in Science and Engineering: Analytic and Numerical Techniques. Birkhäuser Boston; 2004. 2. p. 261-266p. Edit
Vasconcelos PB, d'Almeida FD. Preconditioned iterative methods for coupled discretizations of fluid flow problems. IMA Journal of Numerical Analysis. 1998;18:385-397.
Vasconcelos PB. Data-sparse approximation on the computation of a weakly singular Fredholm equation: A stellar radiative transfer application. Applied Numerical Mathematics. 2017;114:55-62.
Vasconcelos PB, Marques O., Roman J.. High-Performance Computing for Spectral Approximations. In: Constanda C, Pérez M.E., editors. Integral Methods in Science and Engineering, Volume 2: Computational Aspects. Birkhäuser Boston; 2010. 3. p. 351-360p. Edit

Pages

Error | CMUP

Error

The website encountered an unexpected error. Please try again later.