Publications

Found 2268 results
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
[2006-15] Bessa M, Rocha J. The dynamics of a conservative Hénon map .Edit
Bessa M, Rocha J, Torres MJ. Shades of hyperbolicity for Hamiltonians. Nonlinearity. 2013;26:2851-2873.Edit
[2010-27] Bessa M. Chaotic C¹-generic conservative 3-flows .
[2007-17] Bessa M, Rocha J. On C1-robust transitivity of volume-preserving flows .Edit
Bessa M, Rodrigues AA. Dynamics of conservative Bykov cycles: tangencies, generalized Cocoon bifurcations and elliptic solutions. J. Differential Equations. 2016;261(2):1176-1202.Edit
Bessa M, Rocha J. Topological stability for conservative systems. J. Differential Equations. 2011;250:3960-3966.
[2010-5] Bessa M. Area-preserving diffeomorphisms from the C1 standpoint .
[2007-2] Bessa M. Dynamics of generic multidimensional linear differential systems .
[2009-7] Bessa M, Rocha J. Three-dimensional conservative star-flows are Anosov .Edit
[2015-16] Bessa M, Rodrigues AA. A note on reversibility and Pell equations .Edit
Bessa M, Rocha J. On $C^1$-robust transitivity of volume-preserving flows. J. Differential Equations. 2008;245:3127-3143.
[2005-31] Bessa M. Dynamics of generic 2-dimensional linear differential systems .
[2008-24] Bessa M. Are there chaotic maps in the sphere? .
Bessa M, Rodrigues A. A Dichotomy in Area-Preserving Reversible Maps. Qual. Theory Dyn. Syst.. 2016;15(2):309-326.Edit
[2005-40] Bessa M. The Lyapunov exponents of zero divergence 3-dimensional vector fields .
Bessa M, Rocha J. Denseness of ergodicity for a class of volume-preserving flows. Port. Math.. 2011;68:1-17.
[2015-38] Bessa M, Ferreira C, Rocha J, Varandas P. Generic Hamiltonian dynamics, .Edit
[2008-8] Bessa M. Generic incompressible flows are topological mixing .
[2007-10] Bessa M, Dias JL. Generic dynamics of 4-dimensional C² Hamiltonian systems .Edit
[2007-20] Bessa M, Duarte P. Abundance of elliptic dynamics on conservative 3-flows .Edit
Bessa M, Rocha J. Contributions to the geometric and ergodic theory of conservative flows. Ergodic Theory Dynam. Systems. 2013;33:1709-1731.
[2008-3] Bessa M, Dias JL. Hamiltonian elliptic dynamics on symplectic 4-manifolds .Edit
Bessa M, Rocha J. Homoclinic tangencies versus uniform hyperbolicity for conservative 3-flows. J. Differential Equations. 2009;247:2913-2923.
[2010-8] Bessa M, Varandas P. On the entropy of conservative flows .
[2007-5] Bessa M, Rocha J. Denseness of ergodicity for a class of partially hyperbolic volume-preserving flows .Edit

Pages