Publications
Modeling and Simulation of Traffic Movements at Semi-Actuated Signalized Intersections. Journal of Transportation Engineering. 2010;136:554-564.Edit
Simulation and modelling of vehicule’s delay at semi-actuated signalized intersections. In: Compstat’2004 symposium.; 2004. 1. p. 1823-1830p. Edit
a partitional clustering algorithm validated by a clustering tendency index based on graph theory. pattern recognition. 2006;39:776-788.Edit
A note on pure and $p$-pure languages. Acta Inform.. 2003;39:579-595.
On finite-index extensions of subgroups of free groups. J. Group Theory. 2010;13:365-381.Edit
Trees associated to inverse monoid presentations. J. Pure Appl. Algebra. 2001;165:307-335.
Luis Inacio Woodhouse (1857-1927). Vol 1. U. Porto Edições ed. 2018.Edit
Field dimension and skill level constrain team tactical behaviours in small-sided and conditioned games in football. Journal of sports sciences. 2014;32:1888-1896.Edit
[2012-16] Groups and automata: a perfect match .
Rational languages and inverse monoid presentations. Internat. J. Algebra Comput.. 1992;2:187-207.
The homomorphism problem for the free monoid. Discrete Math.. 2002;259:189-200.
On the circulation of algebraic knowledge in the Iberian península: the sources of Pérez de Moya's Tratado de Arithmetica (1573). Revue d'histoire des mathématiques . 2016;2:145-184.Edit
A note on Pérez de Moya's Principios de Geometria (1584). Revue d'histoire des mathématiques . 2008;14 ( fascicule 1 ):113-133.Edit
On an algorithm to decide whether a free group is a free factor of another. Theor. Inform. Appl.. 2008;42:395-414.Edit
Renaissance sources of Juan Pérez de Moya’s geometries. Asclepio. Revista de Historia de la Medicina y de la Ciencia. 2013;65 (2)(julio-diciembre ):1-18.Edit
On free inverse monoid languages. RAIRO Inform. Théor. Appl.. 1996;30:349-378.
The homomorphism problem for trace monoids. Theoret. Comput. Sci.. 2003;307:199-215.
Automorphic orbits in free groups: words versus subgroups. Internat. J. Algebra Comput.. 2010;20:561-590.Edit
Recognizable subsets of a group: finite extensions and the abelian case. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS. 2002:195-215.
Groups and automata: a perfect match. J. Automata Lang. Combin.. 2012;17(2-4):277-292.
Normal-convex embeddings of inverse semigroups. Glasgow Math. J.. 1993;35:115-121.