Publications

Found 2290 results
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
da Silva MR, Rodrigues MJ. A simple alternative principle for rational τ-method approximation. In: Nonlinear numerical methods and rational approximation (Wilrijk, 1987). Vol 43. Reidel, Dordrecht; 1988. 4. p. 427-434p. (Math. Appl.; vol 43).Edit
[2010-10] Misiurewicz M, Rodrigues A. Simple Conjugacy Invariants for Braids .Edit
[2017-19] Carvalho PA, Matczuk J, Brown K. Simple modules and their essential extensions for skew polynomial rings .Edit
Aguiar MA, Castro SB, Labouriau IS. Simple vector fields with complex behavior. Internat. J. Bifur. Chaos Appl. Sci. Engrg.. 2006;16:369-381.
Aguiar MA, Castro SB, Labouriau IS. Simple vector fields with complex behaviour. Int. Jour. of Bifurcation and Chaos. 2006;16(2).
[2004-24] Aguiar MA, Castro SB, Labouriau IS. Simple vector fields with complex behaviour .
Bokowski J, de Oliveira AG. Simplicial convex $4$-polytopes do not have the isotopy property. Portugal. Math.. 1990;47:309-318.Edit
Aguiar P, Willshaw D. Simulating large and heterogeneous networks of spiking neurons with SpiNet. BMC neuroscience. 2007;8:P9.Edit
Simões L, Costa AP, de Oliveira PM. Simulation and Modelling of Traffic Movements at Semi-Actuated Signalised Intersections. In: 10th International Conference on Computers in Urban Planning and Urban Management.; 2007. 1. 10.Edit
Simões L, de Oliveira PM, Costa AP. Simulation and modelling of vehicule’s delay at semi-actuated signalized intersections. In: Compstat’2004 symposium.; 2004. 1. p. 1823-1830p. Edit
Simões M., Costa A., Oliveira PM. Simulation Based Design of Optimal Phasing Plans for an Intersection with Semi-Actuated Signals. In: Proceedings of the Twelfth International Conference on Civil, Structural and Environmental Engineering Computing.; 2009. 2. 246.Edit
Oliveira PM, Valente PA. Simulation of the movement of a buoy submitted to a velocity field due to ocean currents and random wind forces. In: 3º Congresso de Métodos Numéricos em Ingeniería.; 1996. 9. p. 981-988p. Edit
Gama SM, Frisch U, Scholl H. Simulations of two-dimensional turbulence on the Connection Machine. Appl. Sci. Res.. 1993;51:105-108.Edit
Gama SM, Frisch U. Simulations of two-dimensional turbulence on the Connection Machine. Appl. Sci. Res.. 1993;51:105-108.Edit
Gothen PB, Oliveira AG. The singular fiber of the Hitchin map. Int. Math. Res. Not. IMRN. 2013:1079-1121.
[2005-43] Araújo V, Pacifico MJ, Pujals E., Viana M. Singular-hyperbolic attractors are chaotic .Edit
Basto-Gonçalves J. Singularities of Euler equations and implicit Hamilton equations. In: Real and complex singularities ({S}ão {C}arlos, 1994). Vol 333. Longman, Harlow; 1995. 2. p. 203-212p.
Labouriau IS, Ruas MA. Singularities of equations of Hodgkin-Huxley type. Dynam. Stability Systems. 1996;11:91-108.Edit
Moreira C.. Singularities of optimal averaged profit for stationary strategies. Portugaliae Mathematica. 2006;63(1):1-10.
Mena-Matos H.. Singularities of the Hamiltonian Vectorfield in Nonautonomous Variational Problems. Journal of Mathematical Analysis and Applications. 2003;283(2):610-632.
Mena-Matos H.. Singularities of the Hamiltonian Vectorfield in Optimal Control Problems. Journal of Mathematical Analysis and Applications. 2001;254(1):53-70.
Moreira C.. Singularities of the stationary domain for stationary strategies. Control & Cybernetics. 2006;35(4):881-886.
Davydov A., Mena-Matos H.. Singularity Theory Approach to Time Averaged Optimization. Vol SINGULARITIES IN GEOMETRY AND TOPOLOGY 2007.Edit
Díaz LJ, Esteves S, Rocha J. Skew product cycles with rich dynamics: from totally non-hyperbolic dynamics to fully prevalent hyperbolicity. Dyn. Syst.. 2016;31:1-40.Edit
Alves JF, Pinheiro V. Slow rates of mixing for dynamical systems with hyperbolic structures. J. Stat. Phys.. 2008;131:505-534.Edit

Pages