Publications

Found 2290 results
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Azevedo D, Freitas AC, Freitas JM, Rodrigues FB. Clustering of extreme events created by multiple correlated maxima. Phys. D. 2016;315:33-48.Edit
Torgo L., da Costa J.. Clustered partial linear regression. In: LaopezDeMantaras R., Plaza E., editors. Machine Learning: Ecml 2000. Vol 1810.; 2000. 4. p. 426-436p. (Lecture Notes in Artificial Intelligence; vol 1810).Edit
Torgo L., Da Costa J. clustered partial linear regression. machine learning. 2003;50:303-319.Edit
Torgo L., Da Costa J. clustered partial linear regression. machine learning: ecml 2000. 2000;1810:426-436.Edit
Costa JP, Torgo L., Da Costa J. Clustered partial linear regression. MACHINE LEARNING. 2003.Edit
Costa JP, Torgo L., Da Costa J. Clustered partial linear regression. MACHINE LEARNING: ECML 2000. 2000.Edit
Costa JP, Torgo L., Da Costa J. Clustered multiple regression. In: DATA ANALYSIS, CLASSIFICATION, AND RELATED METHODS.; 2000. Edit
Torgo L., Da Costa J. clustered multiple regression. data analysis, classification, and related methods. 2000:217-222.Edit
Torgo L., da Costa J.. Clustered multiple regression. In: Kiers H.AL, Rasson J.P, Gronen P.JF, Schader M., editors. Data Analysis, Classification, and Related Methods.; 2000. 2. p. 217-222p. (Studies in Classification, Data Analysis, and Knowledge Organization).Edit
Almeida J, Costa JC, Zeitoun M. Closures of regular languages for profinite topologies. Semigroup Forum. 2014;89:20-40.Edit
Yakubovich SB, Drygas P., Mityushev V.. Closed-form evaluation of two-dimensional static lattice sums. Proc. R. Soc. A. 2016;472: 20160510.Edit
Silva PV. Clifford monoid presentations. Math. Proc. Cambridge Philos. Soc.. 1992;111:445-454.
Matos V., Castañeda P., Marchesin D.. Classification of the umbilic point in immiscible three-phase flow in porous media. Ancona F, Bressan A, Marcati P, Marson A, editors Italy, Padova: American Institute of Mathematical Sciences 2014.Edit
Da Costa J, Cardoso JS. classification of ordinal data using neural networks. machine learning: ecml 2005, proceedings. 2005;3720:690-697.Edit
da Costa J., Cardoso JS. Classification of ordinal data using neural networks. In: Gama J., Camacho R, Brazdil P., Jorge A, Torgo L., editors. Machine Learning: Ecml 2005, Proceedings. Vol 3720.; 2005. 6. p. 690-697p. (Lecture Notes in Artificial Intelligence; vol 3720).Edit
[2004-42] Rocha F, Basto-Gonçalves J. Classification of linear differential equations near infinity .Edit
Felgueiras C., de Sá J., Bernardes J, Gama SM. Classification of Foetal Heart Rate Sequences Based on Fractal Features. Medical & Biological Engineering & Computing. 1998;36(2):249-264.Edit
Launois S, Lopes SA. Classification of factorial generalized down-up algebras. J. Algebra. 2013;396:184-206.Edit
[2012-44] Launois S, Lopes SA. Classification of factorial generalized down-up algebras .Edit
Almeida J. A classification of aperiodic power monoids. J. Algebra. 1994;170:355-387.Edit
[2008-27] Yakubovich SB. A class of polynomials and discrete transformationsassociated with the Kontorovich- Lebedev operator .
Yakubovich SB. A class of polynomials and discrete transformations associated with the Kontorovich-Lebedev operators. Integral Transforms Spec. Funct.. 2009;20:551-567.
Yakubovich SB, Saigo M, Lemeshevskaya N.. On the class of Lebedev-Skalskaya type index transforms. Fukuoka Univ. Sci. Rep.. 1994;24:67-81.Edit
Yakubovich SB. A class of integral equations and index transformations related to the modified and incomplete Bessel functions. J. Integral Equations Appl.. 2010;22:141-164.
[2008-1] Yakubovich SB. A class of integral equations and index transformations related to the modified and incomplete Besse .

Pages

Error | CMUP

Error

The website encountered an unexpected error. Please try again later.