Publications
A convolution operator related to the generalized Mehler-Fock and Kontorovich-Lebedev transforms. Results Math.. 2013;63:511-528.Edit
Three Dimensional Flows: From Hyperbolicity to Quasi-Stochasticity. In: Dynamics, Games and Science. Vol Dynamics, Games and Science, . Lisbon, Portugal: Springer ; 2015. 5. p. 573-591p. Edit
Numerical solution of partial differential equations with the tau method. In: First Meeting on Numerical Methods for Partial Differential Equations (Coimbra, 1995). Vol 11. Univ. Coimbra, Coimbra; 1997. 1. p. 111-121p. (Textos Mat. Sér. B; vol 11).Edit
Moduli for heteroclinic connections involving saddle-foci and periodic solutions. Disc. Cont. Dyn. Systems A. 2015;35(7):3155-3182.Edit
Attractors in complex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2017;27:103105.Edit
A tau method for nonlinear dynamical systems. Numerical Algorithms. 2013;62(4):583-600.
A chaotic carousel: dynamics near heteroclinic networks. Bol. Soc. Port. Mat.. 2010:103-109.Edit
Harnessing GPU Power from High-level Libraries: Eigenvalues of Integral Operators with SLEPc. Procedia Computer Science. 2013;18:2591-2594.Edit
Eigenvalue computations in the context of data-sparse approximations of integral operators. Journal of Computational and Applied Mathematics. 2013;237:171-181.Edit
A Parallel Implementation of the Jacobi-Davidson Eigensolver for Unsymmetric Matrices. In: Palma JMLaginha, Daydé M, Marques O, Lopes JCorreia, editors. High Performance Computing for Computational Science – VECPAR 2010: 9th International conference, Berkeley, CA, USA, June 22-25, 2010, Revised Selected Papers. Vol 6449. Springer Berlin Heidelberg; 2011. 3. p. 380-393p. (Lecture Notes in Computer Science; vol 6449).Edit
On complete intersection affine semigroups. Comm. Algebra. 1995;23:5395-5412.Edit
Saturated numerical semigroups. Houston J. Math.. 2004;30:321-330 (electronic).Edit
On the structure of simplicial affine semigroups. Proc. Roy. Soc. Edinburgh Sect. A. 2000;130:1017-1028.Edit
On normal affine semigroups. Linear Algebra Appl.. 1999;286:175-186.Edit
Every numerical semigroup is one half of infinitely many symmetric numerical semigroups. Comm. Algebra. 2008;36:2910-2916.Edit
$k$-factorized elements in telescopic numerical semigroups. In: Arithmetical properties of commutative rings and monoids. Vol 241. Chapman & Hall/CRC, Boca Raton, FL; 2005. 2. p. 260-271p. (Lect. Notes Pure Appl. Math.; vol 241).Edit
Atomic commutative monoids and their elasticity. Semigroup Forum. 2004;68:64-86.Edit
Minimal presentations of full subsemigroups of $\bold N^2$. Rocky Mountain J. Math.. 2001;31:1417-1422.Edit
On presentations of commutative monoids. Internat. J. Algebra Comput.. 1999;9:539-553.Edit
Constructing almost symmetric numerical semigroups from irreducible numerical semigroups. Comm. Algebra. 2014;42:1362-1367.Edit
Nonnegative elements of subgroups of $\bf Z^n$. Linear Algebra Appl.. 1998;270:351-357.Edit
Numerical semigroups with maximal embedding dimension [\refcno 2056070]. In: Focus on commutative rings research. Nova Sci. Publ., New York; 2006. 4. p. 47-53p. Edit
Fundamental gaps in numerical semigroups with respect to their multiplicity. Acta Math. Sin. (Engl. Ser.). 2004;20:629-646.Edit
Ideals of finitely generated commutative monoids. Semigroup Forum. 2003;66:305-322.Edit