Publications
Numerical semigroups with maximal embedding dimension. Int. J. Commut. Rings. 2003;2:47-53.Edit
Numerical semigroups with maximal embedding dimension [\refcno 2056070]. In: Focus on commutative rings research. Nova Sci. Publ., New York; 2006. 4. p. 47-53p. Edit
Saturated numerical semigroups. Houston J. Math.. 2004;30:321-330 (electronic).Edit
On complete intersection affine semigroups. Comm. Algebra. 1995;23:5395-5412.Edit
On the structure of simplicial affine semigroups. Proc. Roy. Soc. Edinburgh Sect. A. 2000;130:1017-1028.Edit
$k$-factorized elements in telescopic numerical semigroups. In: Arithmetical properties of commutative rings and monoids. Vol 241. Chapman & Hall/CRC, Boca Raton, FL; 2005. 2. p. 260-271p. (Lect. Notes Pure Appl. Math.; vol 241).Edit
On normal affine semigroups. Linear Algebra Appl.. 1999;286:175-186.Edit
Atomic commutative monoids and their elasticity. Semigroup Forum. 2004;68:64-86.Edit
Every numerical semigroup is one half of a symmetric numerical semigroup. Proc. Amer. Math. Soc.. 2008;136:475-477 (electronic).Edit
Minimal presentations of full subsemigroups of $\bold N^2$. Rocky Mountain J. Math.. 2001;31:1417-1422.Edit
On presentations of commutative monoids. Internat. J. Algebra Comput.. 1999;9:539-553.Edit
Fundamental gaps in numerical semigroups with respect to their multiplicity. Acta Math. Sin. (Engl. Ser.). 2004;20:629-646.Edit
Nonnegative elements of subgroups of $\bf Z^n$. Linear Algebra Appl.. 1998;270:351-357.Edit
Ideals of finitely generated commutative monoids. Semigroup Forum. 2003;66:305-322.Edit
How to check if a finitely generated commutative monoid is a principal ideal commutative monoid. In: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (St. Andrews). ACM, New York; 2000. 2. p. 288-291p. (electronic).Edit
Numerical semigroups with a monotonic Apéry set. Czechoslovak Math. J.. 2005;55(130):755-772.Edit
On the structure of Cohen-Macaulay simplicial affine semigroups. Comm. Algebra. 1999;27:511-518.Edit
Every positive integer is the Frobenius number of a numerical semigroup with three generators. Math. Scand.. 2004;94:5-12.Edit
Numerical semigroups having a Toms decomposition. Canad. Math. Bull.. 2008;51:134-139.Edit
Presentations for subsemigroups of finitely generated commutative semigroups. Israel J. Math.. 1999;113:269-283.Edit
On numerical semigroups with high embedding dimension. J. Algebra. 1998;203:567-578.Edit
The oversemigroups of a numerical semigroup. Semigroup Forum. 2003;67:145-158.Edit
Irreducible ideals of finitely generated commutative monoids. J. Algebra. 2001;238:328-344.Edit
Pseudo-symmetric numerical semigroups with three generators. J. Algebra. 2005;291:46-54.Edit
On free affine semigroups. Semigroup Forum. 1999;58:367-385.Edit