Publications

Found 170 results
Author [ Title(Asc)] Type Year
Filters: Author is Jorge Almeida  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
[2012-26] Almeida J, Cardoso Â. A Sequence of Weakly Monotonic Automata with Increasing Level .Edit
Almeida J, Rodaro E. Semisimple synchronizing automata and the Wedderburn-Artin theory. Internat. J. Foundat. Comput. Sci.. 2016;27(2):127-145.Edit
Almeida J, Rodaro E. Semisimple synchronizing automata and the Wedderburn-Artin theory. In: Developments in Language Theory, 2014. Vol Developments in Language Theory. Russia, Ekaterinburg: Springer; 2014. 4. p. 49-60p. Edit
Almeida J, Rodaro E. Semisimple Synchronizing Automata and the Wedderburn-Artin Theory. In: Development in Language Theory, DLT 2014. Vol LNCS, 8633.; 2014. 4. p. 49-60p. Edit
Almeida J. Semigrupos finitos e álgebra universal Universidade de São Paulo, Instituto de Matemática e Estatí stica, São Paulo 1991.Edit
Almeida J, Pin J., Weil P. Semigroups whose idempotents form a subsemigroup. Math. Proc. Cambridge Philos. Soc.. 1992;111:241-253.Edit
Almeida J. Semidirectly closed pseudovarieties of locally trivial semigroups. Semigroup Forum. 1990;40:315-323.Edit
Almeida J, Escada AP. Semidirect products with the pseudovariety of all finite groups. In: Words, languages & combinatorics, III (Kyoto, 2000). World Sci. Publ., River Edge, NJ; 2003. 1. p. 1-21p. Edit
Almeida J. Semidirect products of pseudovarieties from the universal algebraist's point of view. J. Pure Appl. Algebra. 1989;60:113-128.Edit
Almeida J, Costa JC, Teixeira M.. Semidirect product with an order-computable pseudovariety and tameness. Semigroup Forum. 2010;81:26-50.Edit
[2009-28] Almeida J, Costa JC, Teixeira M.. Semidirect product with an order-computable pseudovariety and tameness .Edit
Almeida J, Silva PV. SC-hyperdecidability of $\bf R$. Theoret. Comput. Sci.. 2001;255:569-591.Edit
R
Almeida J. Residually finite congruences and quasiregular subsets in uniform algebras. In: Proceedings of the Second Meeting of Portuguese Algebraists (Portuguese) (Porto, 1987). Univ. Porto, Porto; 1987. 1. p. 11-31p. Edit
Almeida J. Residually finite congruences and quasi-regular subsets in uniform algebras. Portugal. Math.. 1989;46:313-328.Edit
[2015-34] Almeida J, Klíma O. Representations of relatively free profinite semigroups, irreducibility, and order primitivity .Edit
Almeida J, Margolis S, Steinberg B, Volkov M. Representation theory of finite semigroups, semigroup radicals and formal language theory. Trans. Amer. Math. Soc.. 2009;361:1429-1461.Edit
[2006-20] Almeida J, Margolis SW, Steinberg B, Volkov M. Representation theory of finite semigroups, semigroup radicals and formal language theory .Edit
Almeida J, Weil P. Relatively free profinite monoids: an introduction and examples. In: Semigroups, formal languages and groups (York, 1993). Vol 466. Kluwer Acad. Publ., Dordrecht; 1995. 7. p. 73-117p. (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.; vol 466).Edit
Almeida J, Azevedo A. On regular implicit operations. Portugal. Math.. 1993;50:35-61.Edit
Almeida J, Klíma O. Reducibility vs. definability for pseudovarieties of semigroups. International Journal of Algebra and Computation. 2016;26(7):1483-1495.Edit
Almeida J, Costa JC, Zeitoun M. Reducibility of pointlike problems. Semigroup Forum. 2017;94(2):325-335.Edit
Almeida J, Weil P. Reduced factorizations in free profinite groups and join decompositions of pseudovarieties. Internat. J. Algebra Comput.. 1994;4:375-403.Edit
Almeida J. Recent developments in the theory of implicit operations. In: Monoids and semigroups with applications (Berkeley, CA, 1989). World Sci. Publ., River Edge, NJ; 1991. 1. p. 105-117p. Edit
Almeida J, Steinberg B. Rational codes and free profinite monoids. J. Lond. Math. Soc. (2). 2009;79:465-477.Edit
[2008-21] Almeida J, Steinberg B. Rational Codes and Free Profinite Monoids .Edit

Pages