Publications

Found 170 results
Author [ Title(Desc)] Type Year
Filters: Author is Jorge Almeida  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Almeida J, Klíma O. Reducibility vs. definability for pseudovarieties of semigroups. International Journal of Algebra and Computation. 2016;26(7):1483-1495.Edit
Almeida J, Azevedo A. On regular implicit operations. Portugal. Math.. 1993;50:35-61.Edit
Almeida J, Weil P. Relatively free profinite monoids: an introduction and examples. In: Semigroups, formal languages and groups (York, 1993). Vol 466. Kluwer Acad. Publ., Dordrecht; 1995. 7. p. 73-117p. (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.; vol 466).Edit
[2006-20] Almeida J, Margolis SW, Steinberg B, Volkov M. Representation theory of finite semigroups, semigroup radicals and formal language theory .Edit
Almeida J, Margolis S, Steinberg B, Volkov M. Representation theory of finite semigroups, semigroup radicals and formal language theory. Trans. Amer. Math. Soc.. 2009;361:1429-1461.Edit
[2015-34] Almeida J, Klíma O. Representations of relatively free profinite semigroups, irreducibility, and order primitivity .Edit
Almeida J. Residually finite congruences and quasi-regular subsets in uniform algebras. Portugal. Math.. 1989;46:313-328.Edit
Almeida J. Residually finite congruences and quasiregular subsets in uniform algebras. In: Proceedings of the Second Meeting of Portuguese Algebraists (Portuguese) (Porto, 1987). Univ. Porto, Porto; 1987. 1. p. 11-31p. Edit
S
Almeida J, Silva PV. SC-hyperdecidability of $\bf R$. Theoret. Comput. Sci.. 2001;255:569-591.Edit
[2009-28] Almeida J, Costa JC, Teixeira M.. Semidirect product with an order-computable pseudovariety and tameness .Edit
Almeida J, Costa JC, Teixeira M.. Semidirect product with an order-computable pseudovariety and tameness. Semigroup Forum. 2010;81:26-50.Edit
Almeida J. Semidirect products of pseudovarieties from the universal algebraist's point of view. J. Pure Appl. Algebra. 1989;60:113-128.Edit
Almeida J, Escada AP. Semidirect products with the pseudovariety of all finite groups. In: Words, languages & combinatorics, III (Kyoto, 2000). World Sci. Publ., River Edge, NJ; 2003. 1. p. 1-21p. Edit
Almeida J. Semidirectly closed pseudovarieties of locally trivial semigroups. Semigroup Forum. 1990;40:315-323.Edit
Almeida J, Pin J., Weil P. Semigroups whose idempotents form a subsemigroup. Math. Proc. Cambridge Philos. Soc.. 1992;111:241-253.Edit
Almeida J. Semigrupos finitos e álgebra universal Universidade de São Paulo, Instituto de Matemática e Estatí stica, São Paulo 1991.Edit
Almeida J, Rodaro E. Semisimple Synchronizing Automata and the Wedderburn-Artin Theory. In: Development in Language Theory, DLT 2014. Vol LNCS, 8633.; 2014. 4. p. 49-60p. Edit
Almeida J, Rodaro E. Semisimple synchronizing automata and the Wedderburn-Artin theory. In: Developments in Language Theory, 2014. Vol Developments in Language Theory. Russia, Ekaterinburg: Springer; 2014. 4. p. 49-60p. Edit
Almeida J, Rodaro E. Semisimple synchronizing automata and the Wedderburn-Artin theory. Internat. J. Foundat. Comput. Sci.. 2016;27(2):127-145.Edit
[2012-26] Almeida J, Cardoso Â. A Sequence of Weakly Monotonic Automata with Increasing Level .Edit
Almeida J, Cardoso Â. A sequence of weakly monotonic automata with increasing level. Int. J. Algebra. 2013;7:91-100.Edit
Almeida J. Some algorithmic problems for pseudovarieties. Publ. Math. Debrecen. 1999;54:531-552.Edit
Almeida J. Some algorithms on the star operation applied to finite languages. Semigroup Forum. 1984;28:187-197.Edit
Almeida J. Some key problems on finite semigroups. Semigroup Forum. 2002;64:159-179.Edit
Almeida J. Some order properties of the lattice of varieties of commutative semigroups. Canad. J. Math.. 1986;38:19-47.Edit

Pages