Publications
On the number of factorizations of an element in an atomic monoid. Adv. in Appl. Math.. 2002;29:438-453.Edit
On normal affine semigroups. Linear Algebra Appl.. 1999;286:175-186.Edit
Nonnegative elements of subgroups of $\bf Z^n$. Linear Algebra Appl.. 1998;270:351-357.Edit
Modular Diophantine inequalities and numerical semigroups. Pacific J. Math.. 2005;218:379-398.Edit
Modular Diophantine inequalities and rotations of numerical semigroups. J. Aust. Math. Soc.. 2008;84:315-328.Edit
Minimal presentations of full subsemigroups of $\bold N^2$. Rocky Mountain J. Math.. 2001;31:1417-1422.Edit
$k$-factorized elements in telescopic numerical semigroups. In: Arithmetical properties of commutative rings and monoids. Vol 241. Chapman & Hall/CRC, Boca Raton, FL; 2005. 2. p. 260-271p. (Lect. Notes Pure Appl. Math.; vol 241).Edit
Irreducible ideals of finitely generated commutative monoids. J. Algebra. 2001;238:328-344.Edit
Ideals of finitely generated commutative monoids. Semigroup Forum. 2003;66:305-322.Edit
Fundamental gaps in numerical semigroups with respect to their multiplicity. Acta Math. Sin. (Engl. Ser.). 2004;20:629-646.Edit
Fundamental gaps in numerical semigroups. J. Pure Appl. Algebra. 2004;189:301-313.Edit
On full affine semigroups. J. Pure Appl. Algebra. 2000;149:295-303.Edit
On free affine semigroups. Semigroup Forum. 1999;58:367-385.Edit
Finitely generated commutative monoids Nova Science Publishers, Inc., Commack, NY 1999.Edit
On the Frobenius number of a proportionally modular Diophantine inequality. Port. Math. (N.S.). 2006;63:415-425.Edit
Every positive integer is the Frobenius number of a numerical semigroup with three generators. Math. Scand.. 2004;94:5-12.Edit
Every numerical semigroup is one half of infinitely many symmetric numerical semigroups. Comm. Algebra. 2008;36:2910-2916.Edit
Every numerical semigroup is one half of a symmetric numerical semigroup. Proc. Amer. Math. Soc.. 2008;136:475-477 (electronic).Edit
Correction to: ``Modular Diophantine inequalities and numerical semigroups'' [Pacific J. Math. \bf 218 (2005), no. 2, 379–398; \refcno 2218353]. Pacific J. Math.. 2005;220:199.Edit
Constructing almost symmetric numerical semigroups from irreducible numerical semigroups. Comm. Algebra. 2014;42:1362-1367.Edit
Computing the elasticity of a Krull monoid. Linear Algebra Appl.. 2001;336:191-200.Edit
On complete intersection affine semigroups. Comm. Algebra. 1995;23:5395-5412.Edit
Commutative ideal extensions of abelian groups. Semigroup Forum. 2001;62:311-316.Edit
On Cohen-Macaulay subsemigroups of $\bold N^2$. Comm. Algebra. 1998;26:2543-2558.Edit
On Cohen-Macaulay and Gorenstein simplicial affine semigroups. Proc. Edinburgh Math. Soc. (2). 1998;41:517-537.Edit