Found 142 results
[ Author(Desc)] Title Type Year
Filters: First Letter Of Last Name is L  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Leite A, Rocha AP, Silva M, Gouveia S., Carvalho J., Costa O.. Long-Range Dependence in Heart Rate Variability Data: ARFIMA Modelling vs Detrended Fluctuation Analysis. In: {34th Annual Conference on Computers in Cardiology}. Vol {34}. {IEEE}; 2007. {. {p. 21-24p. }.Edit
Leite A, Silva M, Rocha AP. Modeling Volatility in Heat Rate Variability. In: 38Th Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Embc 2016, Orlando, Fl, Usa, August 16-20, 2016. Ieee; 2016. 3. p. 3582-3585p. (Embc).
Leite A, Rocha AP, Silva M. Long Memory and Volatility in HRV: An ARFIMA-GARCH Approach. In: Murray A, editor. {36th Annual Computers in Cardiology Conference (CinC 2009)}. Vol {36}. {IEEE}; 2009. {. {p. 165-168p. }.Edit
Leite A, Silva M, Rocha AP. Scaling Exponents in Heart Rate Variability. J. L. da Silva, F. Caeiro, I. Natário, and C. Braumann, eds ed. Springer 2013.
Leite A., Rocha AP, Silva ME. Beyond long memory in heart rate variability: An approach based on fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity. Chaos. 2013;23.Edit
Lerman I, da Costa JP, Silva H. Validation of very large data sets clustering by means of a nonparametric linear criterion. In: Classification, clustering, and data analysis (Cracow, 2002). Springer, Berlin; 2002. 1. p. 147-157p. (Stud. Classification Data Anal. Knowledge Organ.).Edit
Lerman I., DaCosta J.. Methodological developments in decision trees. An application to protein secondary structure prediction. Diday E., Lechevallier Y., Opitz O., editors 1996.Edit
Lerman I, Dacosta J. methodological developments in decision trees. an application to protein secondary structure prediction. ordinal and symbolic data analysis. 1996:179-188.Edit
Liebeck M, Litterick A, Marion C. A rigid triple of conjugacy classes in G_2. Journal of Group Theory. 2011;14(1):31-35.Edit
Lima D, Sousa M, Aguiar P. Analysis of the mechanisms underlying windup using a detailed biophysical model of WDR neurons. BMC neuroscience. 2010;11:O14.Edit
Linkès M, Afonso MM, Fede P, Morchain J, Schmitz P. Numerical study of substrate assimilation by a microorganism exposed to fluctuating concentration. Chemical Engineering Science. 2012;81:8-19.Edit
[2012-33] Liu S, Ma T, Polasek W. Spatial system estimators for panel models:A sensitivity and simulation study .Edit
[2009-8] Llibre J, Rodrigues A. On the periodic orbits of Hamiltonian systems .Edit
[2009-36] Logares M, Martens J. Moduli space of parabolic Higgs bundles and Atiyah algebroids .Edit
Lohse A, Rodrigues AA. Boundary crisis for degenerate singular cycles. Nonlinearity . 2017;30(6):2211-2245.Edit
Loll R., Mourão J., Tavares JN. Symplectic reduction via complex group actions. In: Constraint theory and quantization methods (Montepulciano, 1993). World Sci. Publ., River Edge, NJ; 1994. 2. p. 291-304p. Edit
Loll R., Mourão J., Tavares JN. Generalized coordinates on the phase space of Yang-Mills theory. Classical Quantum Gravity. 1995;12:1191-1198.Edit
Loll R., Mourão J., Tavares JN. Complexification of gauge theories. J. Geom. Phys.. 1996;18:1-24.Edit
Lomp C. An example of an indecomposable module without non-zero hollow factor modules. Turkish J. Math.. 2007;31:415-419.Edit
[2006-38] Lomp C. Idempotent submodules .
Lomp C. Modules whose small submodules have Krull dimension. J. Pure Appl. Algebra. 1998;133:197-202.Edit
Lomp C. When is a smash product semiprime? A partial answer. J. Algebra. 2004;275:339-355.Edit
Lomp C. Prime elements in partially ordered groupoids applied to modules and Hopf algebra actions. J. Algebra Appl.. 2005;4:77-97.Edit
Lomp C, Pansera D. A note on a paper by Cuadra, Etingof and Walton. Communications in Algebra. 2017;45(8):3402-3409.Edit
Lomp C, Matczuk J. A note on semicentral idempotents. Communications in Algebra. 2017;45:2735-2737.Edit