Dynamics near homoclinic networks with a bifocus

Room M031
Friday, 19 June, 2015 - 13:30

In dimension three, the Shilnikov cycle to a saddle-focus is one of the most famous and rich examples in the dynamical systems
theory, in which a simple configuration generates a very complicated behaviour around the neighbourhood of the cycle.

Concerning the study of chaos arising from the presence of rotating nodes, the next big challenge is the study of cycles involving a
bifocus in dimension four. In a homoclinic network associated to a non-resonant hyperbolic bifocus,  we show that the rotation combined with a non-degeneracy condition concerning the intersection of the two-dimensional invariant manifolds
of the equilibrium,  creates switching (a kind of shadowing).

Trajectories that realize switching lie on suspended hyperbolic horseshoes that accumulate on the network.
Some related open challenging problems will be discussed. 
This is a joint work with Santiago Ibáñez from Oviedo University (Spain).

Reference:
S. Ibáñez, A. Rodrigues, \emph{On the dynamics near a homoclinic
network to a bifocus: switching and horseshoes}, Internat. J. Bifur.
Chaos, to appear, 2015

Speaker: 

Alexandre Rodrigues (CMUP)